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118 00 Praha 1

Czech Republic

klazar@kam.ms.mff.cuni.cz

Abstract

A finite sequence u = a1a2 . . . ap of some symbols is contained in another sequence v = b1b2 . . . bq if

there is a subsequence bi1bi2 . . . bip of v which can be identified, after an injective renaming of symbols,

with u. We say that u = a1a2 . . . ap is k-regular if i − j ≥ k whenever ai = aj , i > j. We denote

further by |u| the length p of u and by ‖u‖ the number of different symbols in u. In this expository

paper we give a survey of combinatorial results concerning the containment relation. Many of them

are from the author’s PhD thesis with the same title. Extremal results concern the growth rate of

the function Ex(u, n) = max |v|, the maximum is taken over all ‖u‖-regular sequences v, ‖v‖ ≤ n,

not containing u. This is a generalization of the case u = ababa . . . which leads to Davenport-Schinzel

sequences. Enumerative results deal with the numbers of abab-free and abba-free sequences. We

mention a well quasiordering result and a tree generalization of our extremal function from sequences

(=colored paths) to colored trees.

1 Introduction

Suppose u = a1a2 . . . ap is a finite sequence over n symbols which has no immediate repetition (ai 6= ai+1

for i = 1, 2, . . . , p − 1) and which has no four alternations (ai1 = ai3 6= ai2 = ai4 for no four indices

1 ≤ i1 < . . . < i4 ≤ p). What is the maximum length N3(n) = p of such a u?
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1



Davenport and Schinzel [4] proved N3(n) = 2n− 1 and considered the more general extremal problem

of sequences with no d + 1 alternations, d ≥ 3 fixed. The case d = 4 is much more difficult than d = 3, it

took almost 20 years to determine satisfactorily [7] the asymptotics of N4(n). The original motivation to

investigate functions Nd(n) lies in geometry: the structure of the pointwise minimum function of a system

of n continuous real functions, no two of them have graphs sharing ≥ d points, is described by a finite

sequence of names of the functions. This sequence has no immediate repetition and no d + 1 alternations.

No wonder that the bounds on Nd(n) found many applications in computational geometry, see [19].

To say that u has no four alternations is the same as to say that u has no subsequence of the type

abab. Generally, to prohibite d + 1 alternations is the same as to prohibite subsequence ababa . . . of

length d + 1. This suggests to generalize the extremal problem even further and to consider sequences

avoiding a fixed general pattern, say abcabbc. The generalization was proposed in fall 1988 in the Prague

Combinatorial Seminar led by J. Nešetřil and J. Matoušek and this eventually resulted in the author’s PhD

thesis [th]. Besides investigations of the generalized extremal problem the thesis contains order-theoretical

and enumerative results. The aim of this paper is to propagate the results of [th] and to collect interesting

combinatorics related to DS sequences in one place. The paper is expository and most of what follows was

already published with details elsewhere.

Each of the five forthcoming sections contains at least one complete proof and at least one open problem.

In Section 2 we recapitulate classical extremal results treating the case of forbidden alternations and in

Section 3 we present generalized extremal results. Section 4 is devoted to enumeration. In Section 5 we

review a result saying under which condition the containment of sequences is a well quasiordering. In

Section 6 we generalize our extremal function even further from sequences of symbols to colored trees.

2 Classical Davenport-Schinzel Sequences

Formally, Nd(n) is the maximum number m such that there is a sequence u = a1a2 . . . am of some symbols

such that

1. |{a1, a2, . . . , am}| ≤ n,

2. ai 6= ai+1 for i = 1, 2, . . . ,m− 1, and

3. never . . . = ai5 = ai3 = ai1 6= ai2 = ai4 = ai6 = . . . for any d + 1 indices 1 ≤ i1 < . . . < id+1 ≤ m.
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The set of such sequences is denoted by DS(d, n). Trivially, N1(n) = 1 and N2(n) = n. Now we present

two bounds on the functions N3(n) and N4(n) due to Davenport and Schinzel.

Theorem 2.1 ([4]) N3(n) = 2n− 1 for any n ≥ 1.

Proof. The lower bound N3(n) ≥ 2n − 1 follows from 1 2 . . . n − 1 n n − 1 . . . 2 1 ∈ DS(3, n).

The upper bound N3(n) ≤ 2n − 1 can be proved by induction on n. Obviously N3(1) = 1. For any

u = a1a2 . . . am ∈ DS(3, n) there is a symbol a that occurs in u just once: take ai+1 such that ai = aj, i < j,

and j − i is as small as possible. Deleting the a-occurrence and, if necessary, one of the neighbors of a we

get a sequence v ∈ DS(3, n− 1). By induction, the length of u is ≤ 2(n− 1)− 1 + 2 = 2n− 1. 2

The questions how many different sequences are there in DS(3, n) and how many of them have length

2n− 1 are addressed in Section 4.

Theorem 2.2 ([4]) N4(n) = O(n log n).

Proof. Let u ∈ DS(4, n) be of the maximum length, let a be a symbol appearing in u, and let k(a)

be the number of a-occurrences in u. It is easy to see that only the first and the last a-occurrence may

have equal neighbors. Thus by deleting at most k(a) + 2 elements we obtain a sequence v ∈ DS(4, n− 1)

proving N4(n) ≤ 2 + k(a) + N4(n − 1). Summing up all these inequalities for all a’s we get nN4(n) ≤

2n + N4(n) + nN4(n− 1). This can be rewritten as N4(n)/n−N4(n− 1)/(n− 1) ≤ 2/(n− 1). Summing

up these inequalities for m = 1, 2, . . . , n we get N4(n) = O(n log n). 2

Davenport proved later [3] N4(n) = O(n log n/ log log n). By an easy pigeon hole argument Nd(n) = O(n2).

Davenport and Schinzel derived [4] the general upper bound

Nd(n) = O(n exp(10
√

d log d
√

log n))

(the constant in O depends on d). Szemerédi improved [21] this to Nd(n) = O(n log∗(n)) (log∗ is defined

below) but it was still conceivable that Nd(n) = O(n) for any fixed d. In 1986 Hart and Sharir [7] found

the true oder of magnitude of N4(n). Proof of this deep result can be found in [7], [19], or in [th].

Theorem 2.3 ([7]) N4(n) = Θ(nα(n)).
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In other words, c.nα(n) < N4(n) < d.nα(n) for all n for two absolute constants 0 < c < d. To explain

what α(n) is we define first α1(n) = dn/2e for n ≥ 1 and αk(1) = αk(2) = 1 for k ≥ 1. The value of

the kth function αk(n) for k > 1 and n > 2 is the minimum i such that α
(i)
k−1(n) = 1, (i) indicates i

repeated applications of αk−1. Thus α2(n) = dlog2 ne, α3(n) is often denoted as log∗(n). Finally, α(n) is

the minimum i such that αi(n) ≤ i. The function α(n) is the functional inverse to the Ackermann function

known from the recursion theory.

The bottom line is that N4(n) is a superlinear function that is linear from the practical point of view.

The constants in N4(n) = Θ(nα(n)) (n ≥ n0) are quite reasonable, in [7] originally 1/4 and 52. The

construction in [22], see also [19], provides the lower constant 1/2. In [th] it has been proven that

N4(n) ≤ 4nα(n) + O(nα(n)1/2).

Problem 2.4 Improve further the constants in the estimate in Theorem 2.3. Does the limit

lim
n→∞

N4(n)

nα(n)

exist?

As to the functions Nd(n) for d > 4, Agarwal, Sharir and Shor proved [2] that N5(n) = Θ(n2α(n)) and that

Nd(n) is roughly n2αd/2(n). For the precise formulation consult [2] or [19].

3 Generalized Davenport-Schinzel Sequences

The generalization of Nd(n) we are going to explain was studied first in [1]. We need few definitions. Two

sequences u = a1a2 . . . am and v = b1b2 . . . bm of the same length are called equivalent if ai = aj ↔ bi = bj

for all i, j. Thus the equivalent sequences differ only in names of their symbols. A sequence v = b1b2 . . . bm is

u = a1a2 . . . an-free, in other words v does not contain u or u 6≺ v, if there is no subsequence in v equivalent

to u. In the opposite case we say that v contains u, in notation v � u. A sequence u = a1a2 . . . am is

k-regular if i− j ≥ k whenever i > j, ai = aj. The case k = 2 corresponds to the no-immediate-repetition

condition. We will work often with the length m of u = a1a2 . . . am and with the number |{a1, a2, . . . , am}|

of different symbols in u. These quantities are therefore denoted by |u| and ‖u‖, respectively.

The general extremal function of a sequence u is defined by

Ex(u, n) = max |v|
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where the maximum is taken over all ‖u‖-regular and u-free sequences v with ‖v‖ ≤ n symbols. It is

useful to have the general form Ex(u, n, k) = max |v|, the maximum is taken over all k-regular and u-free

sequnces v with ‖v‖ ≤ n symbols. The parameters k ≥ ‖u‖ and u are fixed, n ≥ 1 approaches infinity.

For instance, N5(n) = Ex(ababab, n). Two more trivial examples. Ex(u, n, k) is, for n ≥ k, constant

iff u has no repetition whatsoever. Denote by ai the sequence aa . . . a of i a’s. Obviously, for n ≥ k,

Ex(ai, n, k) = (i− 1)n.

What is the role of k in Ex(u, n, k)? In [1], [th] it has been proven that Ex(u, n, l) = Θ(Ex(u, n, k)) for

any fixed k, l ≥ ‖u‖. Thus the growth rate of the extremal function does not change when k is changed. It

is also easy to prove [1], [th] that u ≺ v implies Ex(u, n) = O(Ex(v, n)). Smaller sequence does not have

substantially larger extremal function. Note that Ex(u, n) = Ex(ū, n) where ū is the reversed u.

N3(n) = Ex(abab, n) = 2n − 1 is a linear function but Ex(ababa, n) grows superlinearly. Hence

Ex(ababab, n), Ex(abababa, n), . . . and all functions Ex(u, n) such that ababa ≺ u grow superlinearly too.

But what about the functions like Ex(aabaaabb, n) where ‖u‖ ≤ 2 and u 6� ababa? No other superlinearity

hides here, Ex(u, n) = O(n) for such sequences u, see [1], [th], or [11]. Actually, it is enough to prove only

that Ex(abbaab, n) = O(n) as the following theorem shows. We omit the proof.

Theorem 3.1 ([1], [th]) Recall that ai stands for the sequence aa . . . a of i a’s, a is a symbol. Then

Ex(aiu, n) = Ex(au, n) + O(n) and Ex(wajv, n) = Θ(Ex(waav, n))

where i ≥ 1, j ≥ 2 are integers and u, v, and w are sequences.

Therefore Ex(abbaab, n) = O(n) implies Ex(u, n) = O(n) for any u such that ‖u‖ ≤ 2 and ababa 6≺ u.

Generally, changing the number of a’s in an interval of a-occurrences in u does not change the asymptotics

of Ex(u, n), except for the case when the single a is in the middle of u and is replaced by two or more a’s.

Then our proof of Theorem 3.1 does not work and we have the following problem.

Problem 3.2 Is it true that Ex(waav, n) = O(Ex(wav, n)) whenever v and w are sequences, a is a

symbol, and wav has some repetition?

For wav with no repetition the function Ex(wav, n) is constant and the answer is, trivially, ”no”.

The only nontrivial exact value of Ex(u, n) we have seen so far was Ex(abab, n) = 2n − 1. One can

generalize this a little [th], [10] to Ex(abab, n, k) = 2n−k +1. We give now, with proof, another nontrivial

exact value of Ex(u, n, k).
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Theorem 3.3 ([th], [10]) For any n ≥ k ≥ 2

Ex(abba, n, k) = 2n + bn− 1

k − 1
c − 1.

In particular, Ex(abba, n) = 3n− 2.

Proof. We prove first by induction on n the general upper bound. It is true for n = k giving the value

2k. Suppose now we have a k-regular and abba-free sequence v satisfying ‖v‖ = n > k.

Claim 1 One can suppose that no symbol appears in v more than three times.

Take four a-occurrences in v and consider the second and the third of them. A symbol b 6= a must appear

between them. We see that b has only one occurrence in v, for otherwise a xyyx-subsequence arises.

It is easy to check that one can delete the b-appearance plus eventually one a-appearance so that the

k-regularity is not violated. By induction

|v| ≤ 2(n− 1) + bn− 2

k − 1
c − 1 + 2 ≤ 2n + bn− 1

k − 1
c − 1

and we are done in this case.

Let S2 be the set of the symbols which appear in v at most twice and let S3 consist of those appearing

exactly three times. Let |S2| = n2 and |S3| = n3. Thus n = n2 + n3.

Claim 2 n3(2k − 4) + 2 ≤ 2n2 − 2(k − 1).

The proof of Claim 2 follows. By a 3-interval we mean an interval I in v which begins and ends with an

a-occurrence and which has one a-occurrence inside. There are n3 3-intervals, one for each a ∈ S3, no two

of them are comparable by inclusion and no three of them intersect.

For any 3-interval I corresponding to an a ∈ S3 there are at least 2k− 2 distinct symbols appearing in

I which are distinct to a. Only at most 2 of those symbols can belong to S3 and hence any I contributes

by at least 2k − 4 elements to S2.

On the other hand it is not difficult to check that any x ∈ S2 can appear only in at most two 3-intervals.

This gives basically the inequality in Claim 2, the corrections +2 and −2(k − 1) are due the first and the

last 3-interval — each contributes by at least 2k − 3 elements to S2 and for each there are at least k − 1

elements of S2 which appear only in it.

Therefore

n2 ≥ n3(k − 2) + k = (n− n2)(k − 2) + k
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and

n2 ≥ n− n− 1

k − 1
+ 1.

Finally,

|v| ≤ 3n3 + 2n2 = 3n− n2 ≤ 2n +
n− 1

k − 1
− 1.

To prove the lower bound we express n, n ≥ k, in the form n− 1 = m(k − 1) + i, 0 ≤ i < k − 1 and we

consider the sequence

v = B1B2 . . . Bm−1Bm,

where the jth block Bj, 1 ≤ j ≤ m− 1, is of the form

Bj = j xj
1x

j
2 . . . xj

k−2 (j + 1) j xj
1x

j
2 . . . xj

k−2

and the mth block is of the form

Bm = m xm
1 . . . xm

k−2 (m + 1) m y1y2 . . . yi xm
1 . . . xm

k−2 (m + 1) y1y2 . . . yi.

The n symbols v is made of are

{1, 2, . . . ,m + 1, y1, y2, . . . , yi} ∪ {xp
q | p = 1 . . . m, q = 1 . . . k − 2}.

An easy check reveals that the k-regular v is abba-free and that the length of v is

m(2k − 1) + 2i + 1 = 2(n− 1) + m + 1 = 2n + bn− 1

k − 1
c − 1.

The upper bound and the lower bound match! The proof is finished. 2

We do not know much more nontrivial exact values of the extremal function Ex(u, n) or Ex(u, n, k).

In [th] it has been shown that, for n ≥ 3,

4n− 8 ≤ Ex(abcabc, n) ≤ 6n− 10 and 7n− 9 ≤ Ex(abbaab, n) ≤ 8n− 7.

Problem 3.4 What are the exact values of these functions?

The following theorem describes the most general and powerful method for deriving linear upper bounds

on Ex(u, n) we know of. The proof can be found in [13] or in [th].

Theorem 3.5 ([13], [th]) Let u, v, and w be sequences, let a and b be symbols.
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1. Suppose that uaav and w have no common symbol and that w has some repetition. Then Ex(uawav, n) =

O(Ex(w, 2Ex(uaav, n))).

2. Suppose b does not occur in uaava. Then Ex(uabbavab, n) = O(Ex(uaava, n)).

Sequences ai have linear extremal function. Starting with them and applying repeatedly Theorems 3.1 and

3.5 it follows that the extremal functions of the sequences

aa, abbab, abccbabc, abcddcbabcd, . . . or of the sequences aa, ababb, ababcdcdb, . . .

are all O(n). One can generate much more such examples.

Theorems 3.1 and 3.5 can be applied to derive strong superlinear upper bounds as well but first we

have to have initial sequences to start with.

Problem 3.6 Is it true that Ex(abbaabba, n) = Θ(nα(n))?

In [13] we claim that the anwer is the affirmative via an easy modification of the proof of Ex(ababa, n) =

Θ(nα(n)) but, thinking it over more carefully, we changed our mind.

For many sequences u one can prove the linear upper bound Ex(u, n) = O(n) but not all sequences

have linearly growing extremal functions. However, all of them have almost linear extremal functions.

This has been proven in [8], see also [th].

Theorem 3.7 ([8], [th]) For any fixed sequence u,

Ex(u, n) ≤ n2O(α|u|−4(n)).

It would be interesting to know whether nα(n) is the laziest superlinear extremal function.

Problem 3.8 Is there any u such that n � Ex(u, n) � nα(n)?

4 Enumeration

Let us recall that the sequences differing only in names of symbols, like bbaacabc and 11223213, are called

equivalent. We say that a sequence u is normal if the symbols of u are the numbers 1, 2, . . . , ‖u‖ and the
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first i-appearance in u precedes that of j for all 1 ≤ i < j ≤ ‖u‖. Obviously, any equivalence class contains

exactly one normal sequence. A normal sequence u is called n-normal if ‖u‖ = n.

In this moment it should be clear that equivalence class is a set partition: u = a1a2 . . . am is replaced

by the partition P = {1, 2, . . . ,m}/ ∼ where i ∼ j iff ai = aj. All our results can be recast in terms of set

partitions. To count the number of nonequivalent sequences of length m which do not contain a sequence

u means to count the number of set partitions of {1, 2, . . . ,m} such that no subset of |u| elements induces

a partition isomorphic to the one given by u.

We start with two interesting enumerative results due to Mullin & Stanton and Gardy & Gouyou-

Beauchamps. We present them without proof.

Theorem 4.1 ([15]) The number of n-normal sequences in DS(3, n) of the maximum length 2n − 1 is

given by the Catalan number Cn−1 =
(

2n−2
n−1

)
/n. The total number bn of n-normal sequences in DS(3, n) is

twice the nth Schröder number and satisfies the recurrent relation

(n + 1)bn+1 − (6n− 3)bn + (n− 2)bn−1 = 0, b2 = 2, b3 = 6.

Theorem 4.2 ([6]) The number bn,k of n-normal sequences of length k in DS(3, n) is given by the formula

bn,k = Ck−n.

(
k − 1

2n− k − 1

)
=

(
2k−2n
k−n

)(
k−1

2n−k−1

)
k − n + 1

.

The proof of the above formula in [6] is based on generating functions, a combinatorial proof is given in

[th], [12].

There is a combinatorial identity involving DS(3, n) sequences, its first version (with two parameters k

and l) was proved combinatorially in [20] by Simion & Ullman. Here we give a generating-function proof

of a finer version (three parameters k, l, and n).

Theorem 4.3 ([th], [10]) Consider the bivariate generating functions

Φk(x, y) =
∑

x‖u‖y|u| and Θk(x, y) =
∑

x‖u‖y|u|

where in Φk we sum over all k-regular, normal, and abab-free sequences (inluding an empty one), in Θk

we sum over the subset of those of them in which each symbol appears at most twice. Then, for any k ≥ 2,

Φk(x, y)− 1 = xyΘk−1(x, y).
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In other words, the number of k-regular, normal, abab-free sequences with n symbols and length l is the

same as the number of (k− 1)-regular, normal, abab-free sequences with n− 1 symbols and length l− 1, in

which no symbol appears more than twice.

Proof. We derive explicit formulas for Φk and Θk. Consider, for an abab-free sequence u, the decom-

position u = 1u11u2 . . . 1uj given by all appearances of the first symbol, say 1. The segments ui are

also abab-free, do not use 1, do not share symbols and, if u is k-regular, are k-regular too and satisfy

|ui| ≥ k − 1, 1 ≤ i < j. On the other hand, given sequences ui with these properties the concatenation

1u11u2 . . . 1uj is a k-regular and abab-free sequence. Noting that k-regular sequences with length < k − 1

have the generating function C(k) = 1+xy+(xy)2+. . .+(xy)k−2 (C(1) = 0) we translate the decomposition

in the equation

Φk = 1 + x
∑
j≥1

yj(Φk − C(k))j−1Φk = 1 +
xyΦk

1 + yC(k)− yΦk

.

Thus we have the quadratic equation

yΦ2
k − (1 + y + yC(k)− xy)Φk + 1 + yC(k) = 0.

Using Φk(0, 0) = 1 we obtain the solution

Φk(x, y) =
1

2y

(
1 + y + yC(k)− xy −

√
(1 + y + yC(k)− xy)2 − 4y(1 + yC(k))

)
.

The argument for Θk is similar, the only difference is that j may now attain only the values 1 and 2.

So Θk = 1 + x(yΘk + y2(Θk − C(k))Θk) and we obtain the equation

y(xyΘk)
2 − (1 + xy2C(k)− xy)(xyΘk) + xy = 0.

Thus

xyΘk−1(x, y) =
1

2y

(
1 + xy2C(k − 1)− xy −

√
(1 + xy2C(k − 1)− xy)2 − 4xy2

)
.

Noting that xy2C(k−1) = yC(k)−y and comparing the expressions we obtain xyΘk−1(x, y) = Φk(x, y)−1.

The identity is verified. 2

For example, if n = 3, l = 5, k = 2 the corresponding sets are

{12321, 12131} and {1122, 1221}.
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It should be mentioned here that abab-free sequences were studied as set partitions first in [14] and [18].

There they are called noncrossing partitions . A classical result implicit already in [16] is that the number

of normal abab-free sequences with n symbols and of length l is

1

l − n + 1

(
l

n

)(
l − 1

n− 1

)
.

More enumerative results about abab-free sequences can be found in [10].

The problem of counting pattern-free set partitions seems, except for the pattern abab, neglected. We

conclude this section by mentioning without proof some results of ours about abba-free sequences.

Theorem 4.4 ([th], [10]) Consider the generating function F (x) =
∑

x‖u‖ where we sum over all 2-

regular and abba-free normal sequences u. Then

F (x) = x
−2x2 + 5x− 1−

√
1− 6x + x2

2x3 − 10x2 + 14x− 2
= x + 3x2 + 15x3 + 85x4 + . . .

Theorem 4.5 ([10]) Consider the bivariate generating functions

Φ∗
k(x, y) =

∑
x‖u‖y|u| and Θ∗

k(x, y) =
∑

x‖u‖y|u|

where in Φ∗
k we sum over all k-regular, normal, and abba-free sequences (∅ included), in Θ∗

k over the subset

of those of them in which each symbol appears at most twice. Then, for any k ≥ 1,

Φ∗
k(x, y) =

(1− 2xy)Θ∗
k(x, y)− 1

(1− xy)2Θ∗
k(x, y)− 1

.

Theorem 4.6 ([th], [10]) For any n ≥ 1 among n-normal and abba-free sequences in which each symbol

appears at most twice there is the same number of 2-regular ones and those which are not 2-regular.

For example, for n = 2 the revelant sets are

{12, 121, 1212} and {112, 122, 1122}.

Theorem 4.7 ([10]) For any l ≥ 2 the number of normal 2-regular and abba-free sequences of length l is

the same as the number of words v over {1, 2, 3} of length l − 2 and such that each initial segment of v

contains at least as many 1’s as 2’s.
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For example, for l = 5 we have the 13 element sets

{12123, 12131, 12132, 12134, 12312, 12313, 12314, 12323, 12324, 12341, 12342, 12343, 12345}

and {111, 112, 113, 121, 123, 131, 132, 133, 311, 312, 313, 331, 333}.

Problem 4.8 What can be said about numbers of abcabc-free or ababa-free sequences? Try also other

patterns.

5 Well Quasiorderings

In Section 3 we mentioned the result saying that, for ‖u‖ ≤ 2, Ex(u, n) = O(n) iff ababa 6≺ u. This

equivalence is not valid for sequences with more than two symbols: in [9], [th] it has been shown that

abcbadadbcd has a superlinear extremal function, at the same time clearly ababa 6≺ abcbadadbcd. Consider

the sets of linear sequences

Lin = {u | Ex(u, n) = O(n)}

and the set of minimal nonlinear sequences

B = {u 6∈ Lin | but v ∈ Lin whenever v ≺ u, |v| < |u|}.

We know already that u ≺ v ∈ Lin implies u ∈ Lin, thus u ∈ Lin iff there is no v ∈ B, v ≺ u. By results

descibed in Section 3 ababa ∈ B. Also |B| ≥ 2 because some sequence contained in abcbadadbcd must be

in B.

Problem 5.1 Is the set B of all minimal nonlinear sequences infinite?

Note that B is an antichain to ≺. Recall that a transitive and reflexive relation is called a quasiordering ,

it is called a well quasiordering if in addition it has no infinite strictly descending chains and no infinite

antichains. There are no strictly descending chains in≺ from trivial reasons but there are infinite antichains.

Observation 5.2 ([9], [th]) The containment ≺ of sequences is not a well quasiordering.

Proof. Consider the mapping that assignes to a sequence u the graph G(u) = (V, E) where V is the

set of symbols of u and {a, b} ∈ E iff abab or baba is a subsequence of u. Observe that u ≺ v implies
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G(u) ⊂ G(v) where ⊂ is the subgraph relation. The set {Ci | i ≥ 3} of all cycles of length i is an infinite

antichain to ⊂. It is easy to find sequences ui such that G(ui) = Ci. For instance,

Z = {u3, u4, u5, . . .} = {abacbcac, abacbcdcdad, abacbcdcdedeae, . . .}.

Hence Z is an infinite antichain with respect to ≺. 2

It is known [5] that the set Gk of finite graphs containing no path of k edges is well quasiordered by ⊂.

The following theorem which we state without proof asserts that this reflects back to sequences.

Theorem 5.3 ([9], [th]) Define the set Sk as consisting of all finite sequences u such that G(u) has no

path of k edges. Then, for any fixed k ≥ 1, (Sk,≺) is a well quasiordering.

We feel that this may hold for a more general class of structures and hence we state the following problem.

Problem 5.4 Generalize Theorem 5.3.

Possible generalization may be similar to the way Kruskal theorem generalizes Higman theorem. The

reader not familiar with them can find details in [17].

6 Colored Trees

One can view sequences of symbols as sequences or, as we explained in Section 4, as set partitions. Another

perspective is to understand u = a1a2 . . . am as a colored path on m vertices. Then sequences of symbols

are just special cases of colored trees. One may try to extend extremal theory of sequences to this wider

context. We present two isolated but perhaps interesting results in this spirit. Theorem 6.1 generalizes

Theorem 2.1 and Theorem 6.3 extends the trivial equality Ex(ai, n) = (i − 1)n. We give proof only for

Theorem 6.1.

First few definitions. Recall that a tree T = (V, E) is a connected graph without cycles. An injective

mapping F : V1 → V2 is an embedding of a tree T1 = (V1, E1) into a tree T2 = (V2, E2) if the paths joining

the vertices F (v) and F (w), {v, w} = e ∈ E1, intersect for different edges e only in their endpoints. We

fix an infinite set of colors S. A colored tree is a pair (T, f) where T = (V, E) is a tree and f : V → S

is a mapping. A properly colored tree (T, f) satisfies f(v) 6= f(w) whenever {v, w} ∈ E. For a colored
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tree (T, f) the symbol |T | stands for the number of vertices, and ‖T‖ stands for the number of colors used

in T . Suppose (Ti, fi), Ti = (Vi, Ei), i = 1, 2, are two colored trees. Suppose that there is an embedding

F of T1 into T2 and an injection G from T1’s colors to T2’s colors such that f2(F (v)) = G(f1(v)) for all

v ∈ V1. Then we write (T1, f1) ≺ (T2, f2) and say that (T1, f1) is contained in (T2, f2). Otherwise we say

that (T2, f2) is (T1, f1)-free.

These definitions and concepts generalize those we have seen in Section 3. The forbidden sequence abab

is replaced by the four vertex path colored alternatively by two colors. We call it ABAB. To forbid ABAB

or any other path pattern is not enough because any star avoids it. The way out of this is, it seems, to

prohibite at the same time tripod , the star with three rays with the central vertex colored black and the

three remaining vertices colored white. Forbidding simultaneously a path pattern and tripod may lead to

interesting extremal problems.

Theorem 6.1 ([th]) Suppose that (T, f) is ABAB-free and tripod-free and is properly colored. Then

max |T | = 2‖T‖ − 1.

Proof. The lower bound max |T | ≥ 2‖T‖ − 1 is attained already by paths. We prove the upper bound.

Suppose (T, f), T = (V, E), is as described. The proof proceeds by induction on ‖T‖ and by induction on

the number of split vertices. A vertex v ∈ V is a split vertex if deg(v) ≥ 3 and T − {v} has at most one

nonpath component. Each tree different from a path has a split vertex.

If T has no split vertex our theorem reduces to Theorem 2.1. Otherwise let T − {v} = P1 ∪ . . . Pl ∪ C

where v is a split vertex, l ≥ 2, Pi are paths, and C is a component which may not be a path.

Suppose f(v1) = f(v2) where v1, v2 ∈ Pi are two different vertices. There must be a vertex w between

them colored by a color not appearing elsewhere in T . We delete, as in Theorem 2.1, w and eventually

one more vertex from Pi (and add one edge) and then we use induction on ‖T‖. This reduction applies

also when v1 = v.

Suppose now f(v1) = f(v2) = c as before but v1 ∈ Pi and v2 ∈ Pj for i 6= j. Obviously c 6= f(v),

otherwise we are in the previous case. No other vertex in T can be colored by c. Otherwise we would be in

the previous case or tripod would arise. The two neighbors of each vi have different colors because ABAB

is forbidden. We can delete v1 and v2 and use induction on ‖T‖.

Therefore we can suppose that f is injective on T − C. We cut the l edges joining v to the paths and

we arrange the segments Pi in an appropriate order in a new single path P . We add l new edges to connect

14



the segments between themselves and to join P back to v. The orientation of each segment is preserved.

The new colored tree (T ∗, f∗) is properly colored, does not contain tripod, and has fewer split vertices

because v is not a split vertex in T ∗. To complete the proof by induction it remains to show that the order

of the segments Pi in P can be choosen so that ABAB is not created.

To this end we define a binary relation R on the set of colors in P by setting aRb iff a 6= b and there

is a path Q = (v0, . . . , vk), v0 = v, in C such that f(vi) = a and f(vj) = b for i < j. We show that R is a

strict partial ordering. Suppose for the contradiction that aRb, witnessed by the path Q1, and at the same

time bRa, witnessed by the path Q2. No matter where the merging point of Q1 and Q2 is, the vertices of

Q1 and Q2 colored by a and b together with the vertices colored by a and b which are in the segments Pi

create ABAB in (T, f). We finish the proof by showing that R is transitive. Let aRb, witnessed by the

path Q1 = (v0, . . . , vk), v = v0, and bRc, witnessed by the path Q2 = (w0, . . . , wl), v = w0. Suppose Q1

and Q2 merge at vi = wi, i > 0. Let f(vj) = a and let first i < j. If f(wm) = b and m < i then the colors

a and b realize, with the help of the a in some Pi, ABAB in (T, f). If m ≥ i then, because of the tripod

condition, it must be f(wi) = b and we arrive at the same contradiction. So j ≤ i and, going from v, the

colors a, b, and c appear on Q2 in this order and therefore aRc.

Thus R is a partial order. Any conceivable ABAB in (T ∗, f∗) would use two vertices of C and then

two vertices of P (of different Pi’s). We order the segments Pi in P so that if aRb then the a in P is closer

to v then the b in P . Then no ABAB can appear. By induction |T | = |T ∗| ≤ 2‖T ∗‖ − 1 = 2‖T‖ − 1. 2

Consequence 6.2 Any tree on 2n − 1 or less vertices can be properly colored by n colors so that the

coloring is ABAB-free and tripod-free. On the other hand, no tree on 2n or more vertices can be so

colored.

Proof. The second part is proved above. To prove the first part we color two leaves of the given T by

the same color, then we cut them off and we color two leaves of the remaining tree by another color and so

on. In the end we color the remaining vertex by a new color or we give to the endpoints of the remaining

edge two new different colors. The obtained coloring has all properties claimed. 2

The above theorem has the consequence that in any properly colored and ABAB-free and tripod-free tree

(T, f) some color appears only once. This holds even without the tripod condition, the interested reader

may want to prove this from first principles.
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The path of i vertices which are all colored by the same color is denoted by Ai. This is an analogue of

the sequence ai of Section 3. For sequences it is trivial that Ex(ai, n) = (i − 1)n. For trees the situation

is more interesting.

Theorem 6.3 ([th]) Suppose the properly colored tree (T, f) is Ai-free and tripod-free. Then max |T | =

(2i− 3)‖T‖ − (2i− 4) for i ≥ 2 even and max |T | = (2i− 4)‖T‖ − (2i− 6) for i ≥ 3 odd.

The question is how to extend the bound Ex(aibiaibi, n) = O(n) from sequences to colored trees. The

smallest open case is the pattern ABBA which is a path of four vertices, two outer black and two inner

white.

Problem 6.4 Show that max |T | = O(‖T‖) for properly colored, ABBA-free and tripod-free trees (T, f).

References

[1] R. Adamec, M. Klazar, and P. Valtr, Generalized Davenport-Schinzel sequences with linear upper

bound, Discrete Math. 108 (1992), 219–229.

[2] P. K. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds on the lengths of general

Davenport-Schinzel sequences, J. Combin. Theory A 52 (1989), 228–274.

[3] H. Davenport, A combinatorial problem connected with differential equations II, Acta Arith. 17 (1971),

363–372.

[4] H. Davenport and A. Schinzel, A combinatorial problem connected with differential equations, Amer.

J. Math. 87 (1965), 684–694.

[5] G. Ding, Subgraphs and well-quasiordering, J. Graph Theory 16 (1992), 489–502.

[6] D. Gardy and D. Gouyou-Beauchamps, Enumerating Davenport-Schinzel sequences, Informatique
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