
Lecture 1

M. Klazar

September 30, 2025

Chapter 1. Diophantine approximations

Dirichlet’s theorem

Recall that fractions p
q are pairs of integers p, q (∈ Z) with q ̸= 0, that the set

of fractions is denoted by Q, and that we have p
q = r

s iff ps = qr. We say that

a fraction p
q is in lowest terms if q > 0 and (p, q) = 1 (the greatest common

divisor of p and q is 1). We may and will assume that the denominator q > 0.

Proposition 1. If p
q ̸= r

s are fractions, then their distance∣∣∣∣rs − p

q

∣∣∣∣ ≥ 1

sq
.

Proof. Indeed, r
s − p

q = rq−sp
sq and the numerator is a nonzero integer. □

In other words, if α ∈ Q then for every fraction p
q ̸= α we have∣∣∣∣α− p

q

∣∣∣∣ ≫ 1

q

—no fraction α can be well approximated by other fractions. We will show
that every irrational real number has infinitely many good approximations by
fractions.

We denote the set of real numbers by R, and the set of natural numbers
{1, 2, . . . } by N. We denote nonnegative integers {0, 1, . . . } by N0. For α ∈ R,
the integer part of α is denoted by ⌊α⌋. It is the maximum m ∈ Z such that
m ≤ α. The fractional part of α is {α} := α − ⌊α⌋ (∈ [0, 1)). The following
theorem and corollary are due to the German mathematician Peter L. Dirichlet
(1805–1859)

Theorem 2 (P. L. Dirichlet, 1842). Let α ∈ R and Q ∈ N with Q ≥ 2.
Then there exist integers p and q such that

1 ≤ q < Q and

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qQ
.
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Proof. Let α and Q be as stated. Among the Q+ 1 numbers

0, {α}, {2α}, . . . , {(Q− 1)α}, 1

in the interval [0, 1] some two, but not 0 and 1, have distance ≤ 1
Q . Thus there

exist integers a, b, c and d such that 0 ≤ a < b < Q and

|(bα− c)− (aα− d)| ≤ Q−1 .

Setting q := b − a and p := c − d, and dividing the inequality by q, we get
1 ≤ q < Q and ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qQ
.

□

Corollary 3 (P. Dirichlet, 1842). For every number α ∈ R \ Q there exist
infinitely many distinct fractions p

q ∈ Q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

Proof. Let α be an irrational real number. We define an infinite sequence of
distinct fractions p1

q1
, p2

q2
, . . . such that for every n,∣∣α− pn/qn

∣∣ < q−2
n .

We begin with q1 := 1 and p1 := ⌊α⌋. Suppose that p1

q1
, . . . , pn

qn
are already

defined. We take Q ∈ N such that Q−1 < |α − pi/qi| for every i = 1, 2, . . . , n
(this is possible due to irrationality of α) and use Theorem 2:∣∣α− p/q

∣∣ < 1/qQ

for some integers p, q with 1 ≤ q < Q. We may set pn+1

qn+1
:= p

q because 1
qQ < 1

q2

and 1
qQ ≤ 1

Q , so that p
q ̸= pi

qi
for every i = 1, 2, . . . , n. □

We use Theorem 2 to prove the old result of Leonhard Euler (1707–1783)
that every prime number p = 4n+1 is a sum of two squares. Thus 5 = 12 +22,
13 = 22 + 32, 17 = 12 + 42, 29 = 22 + 52, 37 = 12 + 62, 41 = 42 + 52 and so
on. Also, 2 = 12 +12. On the other hand, it is easy to see by reduction modulo
4 that no prime number p = 4n + 3 is a sum of two squares. For the proof we
need a lemma.

Lemma 4. For every prime number p = 4n+ 1 there is a number m ∈ N such
that p divides m2 + 1.

Proof. We use the algebraic result that the set Zp of p residues modulo p
forms a field with respect to addition and multiplication modulo p. Let M :=
Zp \ {0 mod p}. We consider the partition of the set M in blocks

{a, −a, a−1, −a−1} (a ∈ M) .
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Each has 4 or 2 distinct elements. The latter case occurs iff a = ±a−1, that is,
iff a2 = ±1. Hence we have one or two two-element blocks:

{1 mod p, −1 mod p} and, possibly, {m mod p, −m mod p}

if m2 is −1 modulo p for some m ∈ N. Since M has p− 1 = 4n elements, there
are two two-element blocks and the numbers m exist. □

Theorem 4 (L. Euler, 1747). For every prime number p = 4n+1 there exist
numbers a, b ∈ N such that

p = a2 + b2 .

Proof. Let p be a prime number that is 1 modulo 4. Using the previous lemma
we set

α :=
m

p
and Q := ⌊√p⌋+ 1

where m ∈ N is such that m2 is −1 modulo p. By Theorem 2 there exist integers
a and b such that 1 ≤ b < Q and

∣∣m/p− a/b
∣∣ ≤ 1/bQ. It follows that

0 ≤
∣∣∣∣mp − a

b

∣∣∣∣ < 1

b
√
p

and 1 ≤ b <
√
p .

Multiplying the first bound by pb, squaring the result and adding to it the
squared second bound 1 ≤ b2 < p we get

1 ≤ (mb− pa)2 + b2 < p+ p = 2p .

Since
(mb− pa)2 + b2 = (m2 + 1)b2 − 2mbpa+ (pa)2

is zero modulo p, we see that (mb− pa)2 + b2 = p. □

In 1985 the Dutch mathematician René Schoof (1955) found in [4] a deter-
ministic algorithm that finds in time polynomial in log p for each input prime
p = 4n+ 1 the decomposition p = a2 + b2. See [5] for more information.

Farey fractions

Let n ∈ N. We consider the finite ordered list

Fn :=

(
0 =

p0
q0

<
p1
q1

< · · · < pmn

qmn

= 1

)
consisting of the fractions in [0, 1] such that every pi

qi
is in lowest terms and

qi ≤ n. The entries in Fn are so-called Farey fractions of order n. They were
introduced by the geologist John Farey (1766–1826) in 1816. For example,

F5 =
(
0
1 < 1

5 < 1
4 < 1

3 < 2
5 < 1

2 < 3
5 < 2

3 < 3
4 < 4

5 < 1
1

)
.
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Note that every two consecutive entries have minimum possible distance, the
reciprocal of the product of denominators (cf. Proposition 1). For example,
1
3 − 1

4 = 1
12 or 3

5 − 1
2 = 1

10 . This general property of Farey fractions was proven
by Augustin-Louis Cauchy (1789–1857).

Theorem 5 (A.-L. Cauchy, 1816). Every two consecutive fractions in Fn

have minimum possible distance, for every i ∈ N0 with i < mn we have

pi+1

qi+1
− pi

qi
=

1

qi+1qi
.

Equivalently, qipi+1 − piqi+1 = 1.

Proof. We set a
b := pi

qi
, c

d := pi+1

qi+1
and consider the equation

bx− ay = 1 .

Since (b, a) = 1, it has some solution x, y ∈ Z. (We consider the ideal I =
{αa + βb : α, β ∈ Z} in the ring Z. Division with remainder shows that the
minimum positive element e ∈ I divides every element of I, in particular a and
b. Thus e = 1.) We show that c, d is a solution.

If x, y ∈ Z is a solution, then so is x− ra, y − rb for any integer r. Thus for
every interval J ⊂ Z of length b there exist a solution x, y ∈ Z of the equation
with y ∈ J . Hence we take a solution x1, y1 ∈ Z such that

n− b < y1 ≤ n .

From bx1 − ay1 = 1 we get the expression

x1

y1
=

1

by1
+

a

b
.

We claim that x1/y1 ∈ Fn. Indeed, bx1 − ay1 = 1 shows that (x1, y1) = 1,
0 ≤ n − b < y1 ≤ n and 0 ≤ x1 = 1

b + a
b y1 ≤ y1 because a

b < 1, hence
a
b ≤ 1 − 1

b . It follows that x1/y1 ≥ c/d. We show that strict inequality here
leads to a contradiction.

So let us assume that x1/y1 > c/d. We add the bounds

x1

y1
− c

d
≥ 1

dy1
and

c

d
− a

b
≥ 1

bd

of Proposition 1 and get, using the above expression, that

1

by1
=

x1

y1
− a

b
≥ b+ y1

bdy1
.

Thus d ≥ b+ y1 > n, which is a contradiction because c
d ∈ Fn.

Therefore x1/y1 = c/d. Since these are fractions in lowest terms, we see that
x1 = c and y1 = d. Thus c, d is a solution of the equation and

bc− ad = qipi+1 − piqi+1 = 1 .
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□

The theorem of Hurwitz

How much can one strengthen Corollary 3? Is there a constant c > 1 such that
for every α ∈ R \Q the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

cq2

has infinitely many rational solutions p
q ? You can obtain such strengthening

with c = 2 as an exercise, starting with the assumption that a
b < α < c

d for two
consecutive Farey fractions of some order. The best possible strengthening with
c =

√
5 was obtained by the German mathematician Adolf Hurwitz (1859–1919).

Theorem (A. Hurwitz, 1891). The following is true.

1. For every α ∈ R \Q the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

has infinitely many rational solutions p
q .

2. Let β := (
√
5− 1)/2 and c >

√
5. Then the inequality∣∣∣∣β − p

q

∣∣∣∣ < 1

cq2

has only finitely many rational solutions p
q .

Proof. 1. For details see [1]. I only say that now one employs three fractions,
two consecutive Farey fractions a

b < c
d (of some order) and their median a+c

b+d .

2. We assume for the contrary that c >
√
5 and that (pn/qn) is a sequence

of distinct fractions such that qn → +∞ as n → ∞ and that for every n,

β =
pn
qn

+
δn
q2n

with δn ∈ R such that |δn| < 1/c .

Hence for every n,

δn
qn

− qn
√
5

2
= qnβ − pn − qn

√
5

2
= −qn

2
− pn .

By squaring and subtracting 5q2n/4 we get that for every n,

δ2n
q2n

− δn
√
5 = p2n + pnqn − q2n .
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For every n ≥ n0 the left-hand side is in absolute value < 1. For every n the
right-hand side is an integer. Thus

p2n + pnqn − q2n = 0

for every n ≥ n0. But this is equivalent with (2pn + qn)
2 − 5q2n = 0 and we get√

5 ∈ Q, which is a contradiction. □

The lonely runner conjecture

An interesting and still unresolved conjecture in Diophantine approximations is
the lonely runner conjecture.

If n ∈ N runners on a circular track with unit length run with
mutually distinct speeds, then each will be at some moment lonely,
at least 1/n apart from other runners.

See [2] for more information and [3] for recent progress.
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