Lecture 1

M. Klazar

September 30, 2025

Chapter 1. Diophantine approximations

Dirichlet's theorem

Recall that fractions $\frac{p}{q}$ are pairs of integers p,q ($\in \mathbb{Z}$) with $q \neq 0$, that the set of fractions is denoted by \mathbb{Q} , and that we have $\frac{p}{q} = \frac{r}{s}$ iff ps = qr. We say that a fraction $\frac{p}{q}$ is in *lowest terms* if q > 0 and (p,q) = 1 (the greatest common divisor of p and q is 1). We may and will assume that the denominator q > 0.

Proposition 1. If $\frac{p}{q} \neq \frac{r}{s}$ are fractions, then their distance

$$\left| \frac{r}{s} - \frac{p}{q} \right| \ge \frac{1}{sq} \,.$$

Proof. Indeed, $\frac{r}{s} - \frac{p}{q} = \frac{rq - sp}{sq}$ and the numerator is a nonzero integer. \Box

In other words, if $\alpha \in \mathbb{Q}$ then for every fraction $\frac{p}{q} \neq \alpha$ we have

$$\left|\alpha - \frac{p}{q}\right| \gg \frac{1}{q}$$

—no fraction α can be well approximated by other fractions. We will show that every irrational real number has infinitely many good approximations by fractions.

We denote the set of real numbers by \mathbb{R} , and the set of natural numbers $\{1,2,\ldots\}$ by \mathbb{N} . We denote nonnegative integers $\{0,1,\ldots\}$ by \mathbb{N}_0 . For $\alpha\in\mathbb{R}$, the integer part of α is denoted by $\lfloor\alpha\rfloor$. It is the maximum $m\in\mathbb{Z}$ such that $m\leq\alpha$. The fractional part of α is $\{\alpha\}:=\alpha-\lfloor\alpha\rfloor$ (\in [0,1)). The following theorem and corollary are due to the German mathematician Peter L. Dirichlet (1805–1859)

Theorem 2 (P. L. Dirichlet, 1842). Let $\alpha \in \mathbb{R}$ and $Q \in \mathbb{N}$ with $Q \geq 2$. Then there exist integers p and q such that

$$1 \le q < Q \ \ and \ \left| \alpha - \frac{p}{q} \right| \le \frac{1}{qQ}$$
.

Proof. Let α and Q be as stated. Among the Q+1 numbers

$$0, \{\alpha\}, \{2\alpha\}, \ldots, \{(Q-1)\alpha\}, 1$$

in the interval [0,1] some two, but not 0 and 1, have distance $\leq \frac{1}{Q}$. Thus there exist integers a, b, c and d such that $0 \leq a < b < Q$ and

$$|(b\alpha - c) - (a\alpha - d)| \le Q^{-1}.$$

Setting q := b - a and p := c - d, and dividing the inequality by q, we get $1 \le q < Q$ and

$$\left|\alpha - \frac{p}{q}\right| \le \frac{1}{qQ} \,.$$

Corollary 3 (P. Dirichlet, 1842). For every number $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ there exist infinitely many distinct fractions $\frac{p}{a} \in \mathbb{Q}$ such that

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2} \,.$$

Proof. Let α be an irrational real number. We define an infinite sequence of distinct fractions $\frac{p_1}{q_1}$, $\frac{p_2}{q_2}$, ... such that for every n,

$$\left|\alpha - p_n/q_n\right| < q_n^{-2} \,.$$

We begin with $q_1 := 1$ and $p_1 := \lfloor \alpha \rfloor$. Suppose that $\frac{p_1}{q_1}, \ldots, \frac{p_n}{q_n}$ are already defined. We take $Q \in \mathbb{N}$ such that $Q^{-1} < |\alpha - p_i/q_i|$ for every $i = 1, 2, \ldots, n$ (this is possible due to irrationality of α) and use Theorem 2:

$$\left|\alpha - p/q\right| < 1/qQ$$

for some integers p,q with $1 \le q < Q$. We may set $\frac{p_{n+1}}{q_{n+1}} := \frac{p}{q}$ because $\frac{1}{qQ} < \frac{1}{q^2}$ and $\frac{1}{qQ} \le \frac{1}{Q}$, so that $\frac{p}{q} \ne \frac{p_i}{q_i}$ for every $i = 1, 2, \dots, n$.

We use Theorem 2 to prove the old result of Leonhard Euler (1707–1783) that every prime number p=4n+1 is a sum of two squares. Thus $5=1^2+2^2$, $13=2^2+3^2$, $17=1^2+4^2$, $29=2^2+5^2$, $37=1^2+6^2$, $41=4^2+5^2$ and so on. Also, $2=1^2+1^2$. On the other hand, it is easy to see by reduction modulo 4 that no prime number p=4n+3 is a sum of two squares. For the proof we need a lemma.

Lemma 4. For every prime number p = 4n + 1 there is a number $m \in \mathbb{N}$ such that p divides $m^2 + 1$.

Proof. We use the algebraic result that the set \mathbb{Z}_p of p residues modulo p forms a field with respect to addition and multiplication modulo p. Let $M := \mathbb{Z}_p \setminus \{0 \bmod p\}$. We consider the partition of the set M in blocks

$${a, -a, a^{-1}, -a^{-1}} (a \in M).$$

Each has 4 or 2 distinct elements. The latter case occurs iff $a = \pm a^{-1}$, that is, iff $a^2 = \pm 1$. Hence we have one or two two-element blocks:

$$\{1 \mod p, -1 \mod p\}$$
 and, possibly, $\{m \mod p, -m \mod p\}$

if m^2 is -1 modulo p for some $m \in \mathbb{N}$. Since M has p-1=4n elements, there are two two-element blocks and the numbers m exist. \square

Theorem 4 (L. Euler, 1747). For every prime number p = 4n + 1 there exist numbers $a, b \in \mathbb{N}$ such that

$$p = a^2 + b^2.$$

Proof. Let p be a prime number that is 1 modulo 4. Using the previous lemma we set

$$\alpha := \frac{m}{p}$$
 and $Q := \lfloor \sqrt{p} \rfloor + 1$

where $m \in \mathbb{N}$ is such that m^2 is -1 modulo p. By Theorem 2 there exist integers a and b such that $1 \le b < Q$ and $|m/p - a/b| \le 1/bQ$. It follows that

$$0 \le \left| \frac{m}{p} - \frac{a}{b} \right| < \frac{1}{b\sqrt{p}} \text{ and } 1 \le b < \sqrt{p}.$$

Multiplying the first bound by pb, squaring the result and adding to it the squared second bound $1 \le b^2 < p$ we get

$$1 \le (mb - pa)^2 + b^2$$

Since

$$(mb - pa)^2 + b^2 = (m^2 + 1)b^2 - 2mbpa + (pa)^2$$

is zero modulo p, we see that $(mb - pa)^2 + b^2 = p$.

In 1985 the Dutch mathematician René Schoof (1955) found in [4] a deterministic algorithm that finds in time polynomial in $\log p$ for each input prime p=4n+1 the decomposition $p=a^2+b^2$. See [5] for more information.

Farey fractions

Let $n \in \mathbb{N}$. We consider the finite ordered list

$$F_n := \left(0 = \frac{p_0}{q_0} < \frac{p_1}{q_1} < \dots < \frac{p_{m_n}}{q_{m_n}} = 1\right)$$

consisting of the fractions in [0,1] such that every $\frac{p_i}{q_i}$ is in lowest terms and $q_i \leq n$. The entries in F_n are so-called *Farey fractions* of order n. They were introduced by the geologist John Farey (1766–1826) in 1816. For example,

$$F_5 = \left(\frac{0}{1} < \frac{1}{5} < \frac{1}{4} < \frac{1}{3} < \frac{2}{5} < \frac{1}{2} < \frac{3}{5} < \frac{2}{3} < \frac{3}{4} < \frac{4}{5} < \frac{1}{1}\right).$$

Note that every two consecutive entries have minimum possible distance, the reciprocal of the product of denominators (cf. Proposition 1). For example, $\frac{1}{3} - \frac{1}{4} = \frac{1}{12}$ or $\frac{3}{5} - \frac{1}{2} = \frac{1}{10}$. This general property of Farey fractions was proven by Augustin-Louis Cauchy (1789–1857).

Theorem 5 (A.-L. Cauchy, 1816). Every two consecutive fractions in F_n have minimum possible distance, for every $i \in \mathbb{N}_0$ with $i < m_n$ we have

$$\frac{p_{i+1}}{q_{i+1}} - \frac{p_i}{q_i} = \frac{1}{q_{i+1}q_i} \,.$$

Equivalently, $q_i p_{i+1} - p_i q_{i+1} = 1$.

Proof. We set $\frac{a}{b} := \frac{p_i}{q_i}$, $\frac{c}{d} := \frac{p_{i+1}}{q_{i+1}}$ and consider the equation

$$bx - ay = 1$$
.

Since (b, a) = 1, it has some solution $x, y \in \mathbb{Z}$. (We consider the ideal $I = \{\alpha a + \beta b \colon \alpha, \beta \in \mathbb{Z}\}$ in the ring \mathbb{Z} . Division with remainder shows that the minimum positive element $e \in I$ divides every element of I, in particular a and b. Thus e = 1.) We show that c, d is a solution.

If $x, y \in \mathbb{Z}$ is a solution, then so is x - ra, y - rb for any integer r. Thus for every interval $J \subset \mathbb{Z}$ of length b there exist a solution $x, y \in \mathbb{Z}$ of the equation with $y \in J$. Hence we take a solution $x_1, y_1 \in \mathbb{Z}$ such that

$$n - b < y_1 \le n$$
.

From $bx_1 - ay_1 = 1$ we get the expression

$$\frac{x_1}{y_1} = \frac{1}{by_1} + \frac{a}{b} \, .$$

We claim that $x_1/y_1 \in F_n$. Indeed, $bx_1 - ay_1 = 1$ shows that $(x_1, y_1) = 1$, $0 \le n - b < y_1 \le n$ and $0 \le x_1 = \frac{1}{b} + \frac{a}{b}y_1 \le y_1$ because $\frac{a}{b} < 1$, hence $\frac{a}{b} \le 1 - \frac{1}{b}$. It follows that $x_1/y_1 \ge c/d$. We show that strict inequality here leads to a contradiction.

So let us assume that $x_1/y_1 > c/d$. We add the bounds

$$\frac{x_1}{y_1} - \frac{c}{d} \ge \frac{1}{dy_1}$$
 and $\frac{c}{d} - \frac{a}{b} \ge \frac{1}{bd}$

of Proposition 1 and get, using the above expression, that

$$\frac{1}{by_1} = \frac{x_1}{y_1} - \frac{a}{b} \ge \frac{b + y_1}{bdy_1} .$$

Thus $d \geq b + y_1 > n$, which is a contradiction because $\frac{c}{d} \in F_n$.

Therefore $x_1/y_1 = c/d$. Since these are fractions in lowest terms, we see that $x_1 = c$ and $y_1 = d$. Thus c, d is a solution of the equation and

$$bc - ad = q_i p_{i+1} - p_i q_{i+1} = 1.$$

The theorem of Hurwitz

How much can one strengthen Corollary 3? Is there a constant c > 1 such that for every $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ the inequality

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{cq^2}$$

has infinitely many rational solutions $\frac{p}{q}$? You can obtain such strengthening with c=2 as an exercise, starting with the assumption that $\frac{a}{b} < \alpha < \frac{c}{d}$ for two consecutive Farey fractions of some order. The best possible strengthening with $c=\sqrt{5}$ was obtained by the German mathematician Adolf Hurwitz (1859–1919).

Theorem (A. Hurwitz, 1891). The following is true.

1. For every $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ the inequality

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}$$

has infinitely many rational solutions $\frac{p}{q}$.

2. Let $\beta := (\sqrt{5} - 1)/2$ and $c > \sqrt{5}$. Then the inequality

$$\left|\beta - \frac{p}{q}\right| < \frac{1}{cq^2}$$

has only finitely many rational solutions $\frac{p}{a}$.

Proof. 1. For details see [1]. I only say that now one employs three fractions, two consecutive Farey fractions $\frac{a}{b} < \frac{c}{d}$ (of some order) and their median $\frac{a+c}{b+d}$.

2. We assume for the contrary that $c > \sqrt{5}$ and that (p_n/q_n) is a sequence of distinct fractions such that $q_n \to +\infty$ as $n \to \infty$ and that for every n,

$$\beta = \frac{p_n}{q_n} + \frac{\delta_n}{q_n^2} \text{ with } \delta_n \in \mathbb{R} \text{ such that } |\delta_n| < 1/c \,.$$

Hence for every n,

$$\frac{\delta_n}{q_n} - \frac{q_n \sqrt{5}}{2} = q_n \beta - p_n - \frac{q_n \sqrt{5}}{2} = -\frac{q_n}{2} - p_n.$$

By squaring and subtracting $5q_n^2/4$ we get that for every n,

$$\frac{\delta_n^2}{q_n^2} - \delta_n \sqrt{5} = p_n^2 + p_n q_n - q_n^2.$$

For every $n \ge n_0$ the left-hand side is in absolute value < 1. For every n the right-hand side is an integer. Thus

$$p_n^2 + p_n q_n - q_n^2 = 0$$

for every $n \ge n_0$. But this is equivalent with $(2p_n + q_n)^2 - 5q_n^2 = 0$ and we get $\sqrt{5} \in \mathbb{Q}$, which is a contradiction.

The lonely runner conjecture

An interesting and still unresolved conjecture in Diophantine approximations is the lonely runner conjecture.

If $n \in \mathbb{N}$ runners on a circular track with unit length run with mutually distinct speeds, then each will be at some moment lonely, at least 1/n apart from other runners.

See [2] for more information and [3] for recent progress.

References

- [1] M. Klazar, Introduction to Number Theory, 2006, https://kam.mff.cuni.cz/~klazar/ln_utc.pdf
- [2] Lonely runner conjecture, Wikipedia article, https://en.wikipedia.org/wiki/Lonely_runner_conjecture#For_specific_n
- [3] M. Rosenfeld, The lonely runner conjecture holds for eight runners, arXiv:2509.14111v1 [math.CO], 2025, 10 pp.
- [4] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp. 44 (1985), 483–494
- [5] Schoof's algorithm, Wikipedia article, https://en.wikipedia.org/wiki/ Schoof%27s_algorithm