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48. Théorème. Deux nombres entiers consécutifs, autres
que 8 et 9, ne peuvent être des puissances exactes. (Catalan.)

See [6].

192
13.

Note
extraite d’une lettre adressée à l’éditeur par Mr. E. Catalan, Répétiteur à l’école

polytechnique de Paris.

,, Je vous prie, Monsieur, de vouloir bien énconcer, dans votre recueil, le
,, théorème suivant, que je crois vrai, bien que je n’aie pas encore réussi à
,, le démontrer complètement: d’autres seront peut-être plus heureux:

,, Deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent être
,, des puissances exactes; autrement dit: l’équation xm − yn = 1, dans
,, laquelle les inconnues sont entières et positives, n’admèt qu’une seule
,, solution. ”

See [7].

Like FLT, Catalan’s conjecture — the only solution of xm − yn = 1 in integers
x, y > 0 and m,n > 1 is 32 − 23 = 1 — was born in 1842 as a theorem. Unlike
P. de Fermat, after two years E. Catalan corrected himself and changed it to
a conjecture. Written according to [2, pp. 1–2].

The term Catalan’s conjecture, in contrast to the Catalan conjecture, avoids
ambiguities. The reader probably knows that the Catalan numbers 1

n+1

(
2n
n

)
(see the book [32] on them), where n = 0, 1, 2, . . . , are also named after the
Belgian-French mathematician Eugène Ch. Catalan (1814–1894) ([14]). But the
Catalan Opening in chess, 1. d4 Nf6 2. c4 e6 3. g3, is named after Catalonia. It
was invented by the grandmaster Savielly (Xavier, Ksawery) Tartakower (1887–
1956) for the 1929 tournament in Barcelona ([8]).



Introduction

This is the first installment in the Diophantine tetralogy ([33]1)

Mihăilescu−Baker−Siegel−Faltings

I plan and hope to write. In 2004 in [24] P. Mihăilescu affirmatively solved
the conjecture posed by E. Catalan in [7] in 1844: The only solution of the
equation xm − yn = 1 in integers x, y, m, n with x, y > 0 and m,n > 1
is 32 − 23 = 1. In this text I completely describe Mihăilescu’s proof and the
whole solution of Catalan’s conjecture, including the involved algebraic number
theory. I rely on three books on Mihăilescu’s theorem (Catalan’s conjecture):
Ribenboim [28], Schoof [31], and Bilu, Bugeaud and Mignotte [2]. There is
a survey by Metsänkylä [23] of Mihăilescu’s theorem.

In my text I stress proofs and clarity of presentation. The beauty and sense
of mathematics lies in the arguments and proofs by which she justifies her results
and theorems. So I make an effort to present also the “standard” material with
all details and as clearly as I can. The appendices present in detail and slow
pace considerable amounts of standard material in elementary number theory,
commutative algebra, and algebraic number theory.

As for the other three parts of the tetralogy, Baker will treat the effec-
tive solution of Thue equations achieved by A. Baker, and Siegel, respectively
Faltings, will be devoted to the finiteness theorems for integral, respectively
rational, points on algebraic curves, that were obtained by C.-L. Siegel, respec-
tively G. Faltings. I am somewhat sentimental about this first part because it
gives me the opportunity to present my 1989 solution of the case x2 − y3 = 1.

Praha and Louny, October 2024 to ?? Martin Klazar

1One of the best known tetralogies is Wagner’s (commutative) Ring: Das Rheingold, Die
Walküre, Siegfried and/und Götterdämmerung.
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Notation

N = {1, 2, . . . } are natural numbers and N0 = N∪{0} are nonnegative integers.
By (N, <) we denote the standard well ordering of natural numbers. For n ∈ N
we set [n] = {1, 2, . . . , n}; [0] = ∅. The ordered domain (ring) of integers is
denoted by Z. We denote the set of prime numbers by P, thus

P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . . . } ,

and primes are denoted by the letters p and q. If a, b, c ∈ Z and a = b · c = bc,
we say that b (and c) divides a, or that b is a divisor of a, or that a is a multiple
of b, and write b | a. For a, b, c ∈ Z we write a ≡ b (mod c) if a = b + dc
for some d ∈ Z. If b does not divide a, we write ¬(b | a). Two integers are
coprime if they are simultaneously divisible only by −1 and 1. For a nonempty
set A ⊂ Z we write GCD(A) for the greatest common divisor of the elements in
A. If A = {m,n}, we write just GCD(m,n). Phrases like “the only solution of
x2 − y2 = 1 is (±1, 0)” mean that the only solutions of the equation in Z2 are
(x, y) = (−1, 0) and (x, y) = (1, 0). The symbols Q, R and C denote the fields
of fractions, real numbers and complex numbers, respectively.

By ∧, respectively ∨, we denote the connective of conjunction (“and”), re-
spectively of disjunction (“or”). For a finite set X we denote by |X| (∈ N0)
the number of its elements. A linear order (X,≺) on a set X is a binary rela-
tion ≺ on X such that for every a, b, c ∈ X we have ¬(a ≺ a) (irreflexivity),
a ≺ b∧ b ≺ c⇒ a ≺ c (transitivity) and a ≺ b∨ b ≺ a∨ a = b (trichotomy). For
two sets X,Y we write f : X → Y to say that the set f is a function (map) from
X to Y . It means that f ⊂ X × Y = {(a, b) : a ∈ X, b ∈ Y } and that for every
a ∈ X there is a unique b ∈ Y with (a, b) ∈ f , written f(a) = b. If f : X → Y
and Y has a distinguished “zero” element 0Y ∈ Y , then the support of f refers
to the set {x ∈ X : f(x) 6= 0Y }. Let f : X → Y be a map. For any set Z we
define f [Z] = {f(a) : a ∈ X ∩ Z} and f−1[Z] = {x ∈ X : f(x) ∈ Z}. We
say that f is injective iff f(a) = f(b) always implies a = b. For injective f we
define the inverse map f−1 : f [X] → X by setting f−1(b) = a ⇐⇒ f(a) = b.
We say that f is a bijection iff it is injective and surjective, the latter meaning
that f [X] = Y . What is the purpose of this terminology in a number-theoretic
text? In Theorem B.1.3 we succinctly express the Fundamental Theorem of
Arithmetic by the statement that the factorization map F : P → N is a bijec-
tion. The prime factorization of n ∈ N is then simply the value F−1(n). We
use the same approach more generally for (unique) factorization in monoids and
integral domains. We denote the variables of complex functions

f : M → C, M ⊂ C ,

by X, Y , Z, . . . and write f(X), G(Y ), . . . ; small letters x, y and z are reserved
for integral solutions of Diophantine equations.
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Chapter 1

Outline of Mihăilescu’s
proof and of this text
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Chapter 2

Equation xm − y2 = 1

Catalan’s conjecture (1844), which says that the only solution of the equation
xm − yn = 1 in integers x, y > 0 and m,n > 1 is x = n = 3 & y = m = 2,
is clearly equivalent to the same claim with the exponents restricted to prime
numbers: m = p and n = q. This follows from the identity

zk·l =
(
zk
)l

that is valid for all z ∈ C and k, l ∈ N. Note, however, that

(−1)2·
1
2 = (−1)1 = −1 6= 1 = 1

1
2 =

(
(−1)2

) 1
2 .

In this and the next two chapters we treat the cases when p = 2 or q = 2.

2.1 Equation xm − y2 = 1

Theorem 2.1.1 For every integer m ≥ 2, equation xm − y2 = 1 has only the
solution (±1, 0) for even m and (1, 0) for odd m.

Proof. Let m = 2m0 ≥ 2 be even and x, y be integers such that xm − y2 = 1.
Then (xm0 + y)(xm0 − y) = 1. Hence x = ±1 and y = 0.

Let m ≥ 3 be odd and x, y be nonzero integers such that xm − y2 = 1. We
derive a contradiction; so in this case the only integral solution is (1, 0). If y
is odd then xm = y2 + 1 ≡ 2 modulo 4, contradicting that xm ≡ 0 modulo 4.
Thus x is odd and y is even, and both are nonzero.

The factorization

xm = 1 + y2 = (1 + yi)(1− yi)

takes us in the domain Z[i] of Gaussian integers; see Proposition C.1.16. The
numbers 1 + yi and 1− yi in it are coprime; see Section C.1 for the divisibility
terminology in rings. Indeed, if α ∈ Z[i] is their common divisor then α divides
their sum 2, and αα ∈ N divides (in the domain Z) 22 = 4 and their odd
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product 1 + y2 = xm. Thus αα = 1 and α ∈ Z[i]× = {±1,±i}. Since Z[i]
is UFD (Proposition C.1.16), part 1 of Proposition C.1.9 gives that for some
α ∈ Z[i] and ε ∈ Z[i]×,

1 + yi = εαm and 1− yi = ε(α)m .

Since m is odd, like in the domain Z every unit in Z[i] is an m-th power and we
can express both numbers more simply as 1+yi = (a+bi)m and 1−yi = (a−bi)m
for some a, b ∈ Z. From (m is odd)

2 = (a+ bi)m + (a− bi)m = 2a · β, β ∈ Z[i] ,

we get a = ±1. We rule out a = −1. Since (1 + b2)m = (a2 + b2)m = 1 + y2 is
odd, the number b is even. From

1 + yi = (a+ bi)m =
∑m
j=0

(
m
j

)
am−j(bi)j ≡ am +mam−1bi (mod 4)

we get am ≡ 1 modulo 4, and indeed a = −1 is impossible (m is odd).
Hence a+ bi = 1 + bi, with even and nonzero b (since y 6= 0). By comparing

the real parts in 1 + yi = (1 + bi)m we get an identity in the domain Z:

1 =
∑(m−1)/2
j=0 (−1)j

(
m
2j

)
b2j , that is, −

(
m
2

)
b2 +

∑(m−1)/2
j=2 (−1)j

(
m
2j

)
b2j = 0

(for m = 3 the last sum is 0). We show that the 2-adic order of −
(
m
2

)
b2 is

smaller than all 2-adic orders of summands in the last sum. Corollary B.1.10
then says that the last displayed equality is impossible.

For m = 3 it is clear because
(
m
2

)
b2 6= 0 but the last displayed sum is 0. Let

m ≥ 5, A =
(
m
2

)
b2 and Bj =

(
m
2j

)
b2j for j = 2, 3, . . . , m−12 . Then

Bj = A · 1
j(2j−1)

(
m−2
2j−2

)
b2j−2 = A · Cj .

Thus, since b is even, ord2(Bj) − ord2(A) = ord2(Cj) ≥ (2j − 2)ord2(b) −
ord2(j) ≥ 2j − 2− blog2 jc > 0 for every j ≥ 2. 2

2.2 Remarks

Theorem 2.1.1 is due to V. Lebesgue in [22] in 1850. Here we adapt the proof in
[2, pp. 11–12]. Noteworthy features of the proof are the fact that Z[i] is UFD
(Proposition C.1.16) and the local trick for obtaining the final contradiction
(Corollary B.1.10).
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Chapter 3

Equation x2 − y3 = 1

In this chapter we prove in two ways by elementary means — we work only in
the domain Z, almost — that the solutions of x2−y3 = 1 are just (±3, 2), (±1, 0)
and (0,−1). To solve this Diophantine equation one can go in two ways and
start from the factorization x2 = (y + 1)(y2 − y + 1) or (x+ 1)(x− 1) = y3. In
Sections 3.1 and 3.2 we take the former way, and in Section 3.3 the latter.

3.1 Equation x4 − 3y2 = 1

We prove in Theorem 3.1.6 that the only solution of the equation is (±1, 0).

Proposition 3.1.1 If x, y, z ∈ N0 satisfy x2+y2 = z2 and are pairwise coprime
then for some u, v ∈ N0 we have z = u2 + v2 and x = u2 − v2, y = 2uv, or
x = 2uv, y = u2 − v2.

Proof. Suppose that x, y, z are as stated. Modulo 4 we see that z and exactly

one of x, y, say x, is odd. Then, since z−x
2 and z+x

2 are coprime, from
(
y
2

)2
=

z−x
2 ·

z+x
2 we get by 1 of Corollary B.1.6 numbers u, v ∈ N0 such that z−x

2 = v2,
z+x
2 = u2 and uv = y

2 . Hence x = u2 − v2, y = 2uv and z = u2 + v2. 2

Corollary 3.1.2 If x, y ∈ N0 satisfy 2x2 − y2 = 1 then there exist a, b ∈ N0

such that a2 − 2b2 = 1 and x = a2 + 2b2 ± 2ab.

Proof. Let x, y be as stated. Then y is odd, y = 2y0 + 1 with y0 ∈ N0. So
x2 = 2y20 + 2y0 + 1 = y20 + (y0 + 1)2. By Proposition 3.1.1 there exist u, v ∈ N0

such that x = u2 + v2, y0 = 2uv, y0 + 1 = u2− v2 or y0 = u2− v2, y0 + 1 = 2uv.
In the first case 1 = u2 − v2 − 2uv = (u − v)2 − 2v2. In the second case
1 = 2uv − u2 + v2 = (u + v)2 − 2u2. We set a = u − v, b = v, respectively
a = u+ v, b = u, and get a, b ∈ N0 satisfying the two stated relations. 2

4



Proposition 3.1.3 If x, y ∈ Z satisfy x4 − 2y2 = 1 then (x, y) = (±1, 0).

Proof. Let x, y be as stated. Then x is odd and x2 = 1 + 4k for some k ∈ N0.
From (x2 − 1)(x2 + 1) = 2y2 we get 4k(2k + 1) = y2. Since 4k and 2k + 1 are
coprime, by 1 of Corollary B.1.6 we get 4k = a2, a ∈ N0. Thus (x−a)(x+a) = 1
and x = ±1, y = 0. 2

Proposition 3.1.4 All solutions of x2 − 3y2 = 1 are (±xn,±yn) for n =
0, 1, 2, . . . , where

xn + yn
√

3 =
(
2 +
√

3
)n
.

Also, x0 = 1, y0 = 0 and xn+1 = 2xn + 3yn, yn+1 = xn + 2yn.

Proof. This is an instance of Theorem B.2.1, the Pell equation x2 − 3y2 = 1
has the minimum solution (a, b) = (2, 1). 2

Proposition 3.1.5 If (xn, yn) (∈ N2
0) for n ∈ N0 are pairs in the previous

proposition then for every n ∈ N0,

x2n = 2x2n−1, y2n = 2xnyn, x2n+1 = (yn+yn+1)2 +1 and y2n+1 = y2n+1−y2n .

It holds that xn is odd iff n is even, and that yn is odd iff n is odd.

Proof. Indeed, x2n + y2n
√

3 equals (recall that x2n − 3y2n = 1)(
2 +
√

3
)2n

=
(
xn + yn

√
3
)2

= x2n + 3y2n + 2xnyn
√

3 = 2x2n − 1 + 2xnyn
√

3

and x2n+1 + y2n+1

√
3 = (2 +

√
3)(x2n + 3y2n + 2xnyn

√
3) equals

2x2n + 6xnyn + 6y2n + (x2n + 4xnyn + 3y2n)
√

3 .

Now 2x2n + 6xnyn + 6y2n = x2n + 6xnyn + 9y2n + 1 = (yn + xn + 2yn)2 + 1 =
(yn + yn+1)2 + 1 and x2n + 4xnyn + 3y2n = (xn + 2yn)2 − y2n = y2n+1 − y2n. The
last claim easily follows from these relations by induction on n. 2

We prove the main result of this section.

Theorem 3.1.6 If x, y ∈ Z satisfy x4 − 3y2 = 1 then (x, y) = (±1, 0).

Proof. We need to solve xn = m2 for n,m ∈ N0 where xn are as in Propo-
sition 3.1.4. If n = 2n0 + 1 is odd then Proposition 3.1.5 gives (m − yn0 −
yn0+1)(m + yn0

+ yn0+1) = 1. Thus m = ±1 and yn0
+ yn0+1 = 0. But this is

impossible because always yn0
+ yn0+1 > 0.

Let n = 2n0 be even. Then Proposition 3.1.5 gives 2x2n0
− 1 = x2n0

= xn =
m2 and 2x2n0

− m2 = 1. Modulo 4 we see that xn0 is odd. Proposition 3.1.5
gives xn0 = x2n1 = 2x2n1

−1. Corollary 3.1.2 shows that there are a, b ∈ N0 such
that a2 − 2b2 = 1 and

2x2n1
− 1 = xn0 = a2 + 2b2 ± 2ab = 2a2 − 1± 2ab .

5



Hence x2n1
= a(a ± b). Since a, b are coprime, so are a, a ± b, and by 1 of

Corollary B.1.6 the number a is a square. By Proposition 3.1.3 we have a = 1.
Thus b = 0, xn = xn0

= 1 and x = ±1, y = 0. 2

3.2 Equation x2 − y3 = 1

Starting from x2 = (y + 1)(y2 − y + 1) and using the previous theorem, in the
next theorem we find all solutions of x2 − y3 = 1. In Theorem 3.2.2, which can
be proven by the same method, we mention without proof solutions of some
more Diophantine equations similar to x2 − y3 = 1.

Theorem 3.2.1 The only solutions of x2 − y3 = 1 are (±3, 2), (±1, 0) and
(0,−1).

Proof. Let (x, y) ∈ Z2 satisfy x2 − y3 = 1. Then

x2 = (y + 1) · (y2 − y + 1) = (y + 1) · ((y + 1)(y − 2) + 3) .

Note that y2 − y+ 1 ≥ 0, hence y+ 1 ≥ 0, and that GCD(y+ 1, y2 − y+ 1) = 1
or 3. In the former case we have by 1 of Corollary B.1.6 that y+1 and y2−y+1
are squares. Thus 4y2−4y+4 = (2a)2 for a ∈ N0, 3 = (2a−2y+1)(2a+2y−1)
and (a, y) = (±1, 1) or (±1, 0). For y = 1 the number y + 1 is not a square and
for y = 0 we get the trivial solution (±1, 0).

Let GCD(y + 1, y2 − y + 1) = 3. By 1 of Corollary B.1.7 there are a, b ∈ N0

such that 3a2 = y + 1 and 3b2 = y2 − y + 1. Thus 3(2b)2 − (2y − 1)2 = 3 and
2y − 1 = 3Y for some Y ∈ Z. With X = 2b (∈ N0) we get

X2 − 3Y 2 = 1 and Y = 2a2 − 1 .

The triple (X,Y, a) = (2,−1, 0) solves this system. We get y = −1 and the
trivial solution (0,−1).

We can assume that Y ∈ N0. We look for an n ∈ N0 such that Y = yn =
2a2 − 1, where a ∈ N0 and xn, yn are as in Proposition 3.1.4. Since yn is odd,
so is n. By Proposition 3.1.5 we have for some m ∈ N0 that

2a2 − 1 = yn = y2m+1 = y2m+1 − y2m = (xm + 2ym)2 − y2m
= x2m + 4ymym + 3y2m = 2x2m + 4xmym − 1

= 2xm(xm + 2ym)− 1 = 2xmym+1 − 1 .

Thus
a2 = xmym+1 .

We have GCD(xm, ym+1) = GCD(xm, xm+2ym) = 1 or 2. If GCD(xm, ym+1) =
1 then by 1 of Corollary B.1.6 the number xm is a square. Theorem 3.1.6 gives
xm = 1. Thus m = 0, n = 1, yn = Y = 1 and y = 2. We get the nontrivial
solution (±3, 2).

6



Finally, it remains to treat the case GCD(xm, ym+1) = 2. Part 1 of Corol-
lary B.1.7 shows that ym+1 = 2c2 for some c ∈ N0. By Proposition 3.1.5 we
have for some k ∈ N that

2c2 = ym+1 = y2k = 2xkyk and c2 = xkyk .

Since xk, yk are coprime, by 1 of Corollary B.1.6 the number xk is a square.
But by Theorem 3.1.6 this is not possible, the number xk is never a square for
k ≥ 1. We do not obtain any more solutions of x2 − y3 = 1 and are done. 2

This method also gives the following theorem. See [20] for more details.

Theorem 3.2.2 The following hold.

1. The only solution of x2 − y3 = −1 is (0, 1).

2. The two equations 3x2 − y3 = ±1 have no solution with x 6= 0.

3. For every k ∈ N and choice of the sign the equation x2 − y3 = ±33k has
effectively finitely many solutions.

In part 3 we say that an algorithm can be given that for every k and every
choice of the sign finds all (finitely many) solutions of the equation.

3.3 Equation x3 + y3 = 2z3

In this section we again determine all solutions of x2 − y3 = 1, but now we
start from the factorization (x+ 1)(x− 1) = y3. We first reduce x2 − y3 = 1 to
x3− 2y3 = ±1. These equations are actually equivalent, and to explain how we
introduce the following notation. If f ∈ Z[x1, . . . , xn] is an integral polynomial
in n variables, then

S(f) = {a ∈ Zn : f(a) = 0}
denotes the set of solutions of the Diophantine equation f(x) = 0. If X ⊂ Zn
and i ∈ [n], then

Xi = {x ∈ Z : ∃ a ∈ Zn : ai = x ∧ a ∈ X}

denotes the projection of X on the i-th coordinate. For n = 2 we use the
convention that x denotes the coordinate x1, and y the coordinate x2.

Proposition 3.3.1 Let S(x3 − 2y3 ± 1) = S(x3 − 2y3 + 1) ∪ S(x3 − 2y3 − 1).
Then two inclusions hold, S(x2 − y3 − 1)1 is a subset of

{0} ∪ {2x3 + 1 : x ∈ S(x3 − 2y3 ± 1)1} ∪ {2x3 − 1 : x ∈ S(x3 − 2y3 ± 1)1} ,

and S(x3 − 2y3 ± 1)1 of

{x : 2x3 + 1 ∈ S(x2 − y3 − 1)1} ∪ {x : 2x3 − 1 ∈ S(x2 − y3 − 1)1} .

Thus given S(x3 − 2y3 ± 1), we can determine S(x2 − y3 − 1), and vice versa.
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Proof. Given S(x3 − 2y3 ± 1), we solve x2 − y3 = 1. Let x, y be integers such
that x2 − y3 = 1. In (x + 1)(x − 1) = y3 we have GCD(x + 1, x − 1) = 1 or 2.
In the former case, 2 of Corollary B.1.6 gives x + 1 = a3 and x − 1 = b3, with
a, b ∈ Z. Thus 2 = a3 − b3 = (a − b)(a2 + ab + b2). Hence (a, b) = (1,−1) and
x = 0. If GCD(x + 1, x − 1) = 2 then with x − 1 = 2x0 and y = 2y0, where
x0, y0 ∈ Z, we get (x0 + 1)x0 = 2y30 . Now x0 + 1, x0 are coprime and by 2 of
Corollary B.1.8 there are u, v ∈ Z such that x0+1 = u3, x0 = 2v3 or x0+1 = 2v3,
x0 = u3. Subtracting we get u3 − 2v3 = ±1. So x = 2x0 + 1 = 2u3 ± 1 and
(u, v) ∈ S(x3 − 2y3 ± 1). We get the first inclusion.

Given S(x2− y3−1), we solve equations x3−2y3 = ±1. Let x, y be integers
such that x3 − 2y3 = 1. Then with u = 2x3 − 1 = 4y3 + 1 we have u2 − 1 =
(u + 1)(u − 1) = (2xy)3. Thus (u, 2xy) ∈ S(x2 − y3 − 1). If x, y ∈ Z satisfy
x3 − 2y3 = −1, we set v = 2x3 + 1 = 4y3 − 1 and again get v2 − 1 = (2xy)3.
Thus (v, 2xy) ∈ S(x2 − y3 − 1). We get the second inclusion. 2

The almost perfect symmetry between both reductions is remarkable. So if we
prove that

S(x3 − 2y3 ± 1) = {(1, 1), (−1, 0), (1, 0), (−1,−1)}

then S(x3 − 2y3 ± 1)1 = {−1, 1}, and we get by the first reduction that

S(x2 − y3 − 1)1 ⊂ {0} ∪ {2x3 + 1 : x ∈ {−1, 1}} ∪ {2x3 − 1 : x ∈ {−1, 1}}

which is {0,−1, 3,−3, 1}. Hence we again get

S(x2 − y3 − 1) = {(0,−1), (−1, 0), (3, 2), (−3, 2), (1, 0)} .

We solve x3−2y3 = ±1 by solving the next more general Diophantine equation.

Theorem 3.3.2 Equation x3 + y3 = 2z3 has no solution with x 6= y and z 6= 0.

Indeed, then x3 + (±1)3 = 2y3 may have a solution only if x = ±1 or y = 0,
which gives the above solution set S(x3− 2y3± 1). We prove Theorem 3.3.2 by
reducing x3 + y3 = 2z3 to another Diophantine equation, and then by solving
that equation.

Proposition 3.3.3 If equation x3 + y3 = 2z3 has a solution with x 6= y and
z 6= 0, then equation 27d4 + 9a2d2 + a4 = l2 has a solution with dal 6= 0.

Proof. Suppose that x, y, z ∈ Z are such that x3 + y3 = 2z3, x 6= y and z 6= 0.
It follows that xyz 6= 0. Canceling out common factors we may assume that
x, y are coprime and odd. Then u = x+y

2 and v = x−y
2 are coprime integers,

u(u2 + 3v2) = z3 and uvz 6= 0 .

The case ¬(3 |u). Then u, u2 + 3v2 are coprime and 2 of Corollary B.1.6
gives that u = z31 and u2 + 3v2 = z32 for coprime z1, z2 ∈ Z. Thus

z32 − z61 = 3v2 and (z2 − z21) · ((z2 − z21)2 + 3z2z
2
1) = 3v2 .
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We set k = z2−z21 . Then k, z1 are coprime and k(k2+3kz21 +3z41) = 3v2. Hence
k = 3k1, v = 3v1 for some k1, v1 ∈ Z and k1(3k21 + 3k1z

2
1 + z41) = 3v21 . Since

z32 − z61 = 3v2 and z1, z2 are coprime, ¬(3 | z1). So k1 = 3k2 with k2 ∈ Z and

k2 · (27k22 + 9k2z
2
1 + z41) = v21

where k2, z1 are coprime. The above definitions give that z2, k, k2 ≥ 0. Since
the last two displayed factors are coprime, 1 of Corollary B.1.6 gives k3, l ∈ N0

such that k2 = k23 and
27k43 + 9k23z

2
1 + z41 = l2 .

Since k3z1l 6= 0 (uv 6= 0), we are done.
The case 3 |u. Then ¬(3 | v) and for some u1, z1 ∈ Z we have u = 3u1,

z = 3z1 and 27u31 + 9u1v
2 = 27z31 . Thus u1 = 3u2 with u2 ∈ Z and

u2(27u22 + v2) = z31 .

Since u2, v are coprime, 2 of Corollary B.1.6 gives coprime numbers a, b ∈ Z
such that u2 = a3 and 27u22 + v2 = b3. Hence

27a6 + v2 = b3 .

We set k = b− 3a2. Then

v2 = k(k2 + 9a2k + 27a4) .

Since k ≥ 0 and k, a are coprime, 1 of Corollary B.1.6 gives numbers k1, l ∈ N0

such that k = k21 and k2 + 9a2k + 27a4 = l2. Hence

27a4 + 9a2k21 + k41 = l2 .

Since ak1l 6= 0 (uv 6= 0), we are done in this case too. 2

We prove the main result of this section.

Theorem 3.3.4 Equation 27d4 + 9a2d2 +a4 = l2 has no solution with dal 6= 0.

Proof. We assume that d, a, l ∈ N are such that 27d4 + 9a2d2 + a4 = l2

and obtain a contradiction. First we show that if we take a triple d, a, l with
minimum a then ¬(3 | a). Suppose not, that is, a = 3a1 with a1 ∈ Z. Then
l = 3l1 with l1 ∈ Z, and 3d4 + 9a21d

2 + 9a41 = l21. Thus l1 = 3l2 with l2 ∈ Z, and
d4 + 3a21d

2 + 3a41 = 3l22. Thus d = 3d1 with d1 ∈ Z, and 27d41 + 9a21d
2
1 + a41 = l22;

we got the triple d1, a1, l2 with a1 < a.
So we assume that d, a, l ∈ N are such that 27d4 + 9a2d2 + a4 = l2 and

¬(3 | a), and obtain a contradiction. By canceling common factors we get that

d, a, l are pairwise coprime. The pair (x, y) = (d
2

l ,
a2

l ) solves equation

27x2 + 9xy + y2 = 1 .
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By Proposition B.2.2, all rational solutions (x, y) ∈ Q2 of this equation, with
the exception of (0, 1), are given by the formulas

x = 2m+9
m2+9m+27 and y = m2−27

m2+9m+27 for m ∈ Q .

Since y = a2

l > 0, we can exclude m = 0. Thus for m = p
q with coprime p ∈ Z

and q ∈ N we have pq 6= 0 and

d2

l = 2pq+9q2

p2+9pq+27q2 and a2

l = p2−27q2
p2+9pq+27q2 .

Since d2, l, a2 are pairwise coprime, we get that

GCD(2pq + 9q2, p2 + 9pq + 27q2) = GCD(p2 − 27q2, p2 + 9pq + 27q2) = δ .

Let p = 3sp1 where s ∈ N0, p1 ∈ Z and ¬(3 | p1). We show that the case s ≥ 1
is impossible. 2

3.4 Remarks

The Diophantine equation x2 − y3 = 1 was first solved by Euler in 1748. See
[2] and [28] for more information on its history. In this chapter we described
the solution this author gave in [20] in 1989. In 2003 Notari [27] published
a similar solution, based on properties of solutions of the same Pell equation
x2 − 3y2 = 1. As explained in [20] (but this is well known), the Diophantine
equations x2−y3 = 1 and x3−2y3 = ±1 can be reduced one to the other. So the
somewhat forgotten article [34] of Wakulicz ([28, 31, 2] do not mention it) on
the equation x3 + y3 = 2z3 provides another solution of x2 − y3 = 1. Wakulicz
proved in an elementary way that the only integral solutions of x3 + y3 = 2z3

are the trivial ones with x = y or xyz = 0. For more high-tech proof see Cohen
[10, Chapter 6.4.5].

Proposition 3.1.1 is a standard result on Pythagorean triples (x, y, z) ∈ N3
0,

x2 + y2 = z2, for which we refer in [20] to ... . Corollary 3.1.2 is an original
result of [20]. Proposition 3.1.3 is a standard result for which we refer in [20] to
... . Proposition 3.1.4 is an instance of the standard Theorem B.2.1 on the Pell
equation; in [20] we refer for theory of the Pell equation to ... . Proposition 3.1.5
is an original result of [20]. The proof of Theorem 3.1.6 is an original result of
[20]. The proof of Theorem 3.2.1 is an original result of [20]. The proof of
Theorem 3.2.2 is an original result of [20].
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Chapter 4

Equation x2− yq = 1 for q ≥ 5

Combining two congruences in Propositions 4.1.2 and 4.1.4, we prove in Theo-
rem 4.1.5 that for every prime q ≥ 5 the only solutions of equation x2 − yq = 1
are (±1, 0) and (0,−1).

4.1 Equation x2 − yq = 1 for q ≥ 5

Lemma 4.1.1 Let q be a prime number and a, b ∈ Z, a 6= b, be coprime. Then

d = GCD
(
aq−bq
a−b , a− b

)
= GCD

(∑q−1
i=0 a

ibq−1−i, a− b
)

divides q.

Proof. By the binomial theorem, aq−bq
a−b = (a−b+b)q−bq

a−b equals∑q
i=1

(
q
i

)
(a− b)i−1bq−i = qbq−1 +

∑q
i=2

(
q
i

)
(a− b)i−1bq−i .

Thus d | qbq−1. Since a, b are coprime, so are b, a− b and by Corollary B.1.5 the
number d divides q. 2

Proposition 4.1.2 If q ≥ 3 is a prime number and nonzero x, y ∈ Z∗ satisfy
x2 − yq = 1, then 2 | y and q |x.

Proof. We may assume that x, y ∈ N. We begin with a simple proof that y is
even. Using Corollary B.1.6 we see that in (x+ 1)(x− 1) = yq the two factors
cannot be coprime because the only two q-th powers differing by 2 are −1 and
1, hence x = 0 but this was excluded. Since GCD(x + 1, x − 1) = 1 or 2, we
conclude that y is even.

It is harder to prove that q divides x. We assume that ¬(q |x) and obtain
a contradiction. By Lemma 4.1.1, in the factorization

x2 = (y + 1) · y
q−(−1)
y−(−1)
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the GCD of the two factors divides q. By the assumption on x they are therefore
coprime. Both factors are nonnegative and by Corollary B.1.6 they are squares.
So y + 1 = u2 for u ∈ N0. The equalities

x2 − y ·
(
y(q−1)/2

)2
= 1 and u2 − y · 12 = 1

show that (x, y(q−1)/2) and (u, 1) are solutions of the equation X2 − yY 2 = 1.
Since y = u2 − 1 ≥ 3 and is not a square, X2 − yY 2 = 1 is a Pell equation. It
is clear that (u, 1) ∈ N2 is its minimum solution. By Theorem B.2.1 there is an
m ∈ N0 such that in the domain Z[

√
y] we have equality

x+ y(q−1)/2
√
y =

(
u+
√
y
)m

.

So m ∈ N and in Z[
√
y] we have congruence x ≡ um + mum−1

√
y (mod y).

Hence, in Z, the number y divides mum−1. But y is even, so u is odd and m is
even. In Z[

√
y] we therefore have equality

x+ y(q−1)/2
√
y =

(
u2 + y + 2u

√
y
)m/2

and congruence x + y(q−1)/2
√
y ≡ ym/2 (mod u). Thus in Z the number u

divides y(q−1)/2. But y+ 1 = u2, so y, u are coprime and u = ±1. Hence y = 0,
which contradicts y ∈ N. 2

Lemma 4.1.3 Let q ∈ N with q ≥ 3 be odd and x, y ∈ Z∗ be nonzero such that
x2 − yq = 1. Then, replacing x with −x if necessary, for some coprime a, b ∈ Z
with odd b we have

x− 1 = 2q−1aq and x+ 1 = 2bq .

Proof. In the factorization (x − 1)(x + 1) = yq the two factors are coprime
or their GCD is 2. From the previous proof we know that the former case is
impossible, and so GCD(x−1, x+1) = 2, x is odd, y is even and 2q | (x−1)(x+1).
Changing the sign of x if necessary, we may assume that x ≡ 1 (mod 4). Then
x+1
2 is odd and using Corollary B.1.7 we get the required numbers a and b. 2

Proposition 4.1.4 If q ≥ 5 is prime and x, y ∈ Z∗ are nonzero integers such
that x2 − yq = 1 then x ≡ ±3 (mod q).

Proof. Suppose that q is as stated and that the numbers x, y ∈ Z∗ satisfy
x2 − yq = 1. Changing the sign of x if necessary, by the previous lemma we
have coprime a, b ∈ Z with odd b such that x − 1 = 2q−1aq and x + 1 = 2bq.
Hence b2q − (2a)q equals(

x+1
2

)2 − 2(x− 1) =
(
x−3
2

)2
, and (b2 − 2a) ·

( b2q−(2a)q
b2−2a

)
=
(
x−3
2

)2
.
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The numbers 2a, b2 are coprime and by Lemma 4.1.1 the GCD of the last two
factors divides q.

We show that it is q; then x ≡ 3 (mod q) and for the original x, before
the possible change of sign, we have x ≡ ±3 (mod q). We assume for the
contrary that the GCD is 1 and obtain a contradiction. So we assume that

b2 − 2a, b
2q−(2a)q
b2−2a are coprime. Since b2q − (2a)q ≥ 0 (it is a square), also

b2 − 2a ≥ 0 and by Corollary B.1.6 there is a c ∈ N0 such that b2 − 2a = c2.
Since y 6= 0, also a 6= 0 and c2 6= b2. The nearest squares to b2 different from it
are (b± 1)2. Thus 2|a| = |b2 − c2| ≥ 2|b| − 1 and hence |a| ≥ |b|. On the other
hand,

|a|q = |x−1|
2q−1 ≤ |x−1|16 < |x+1|

2 = |b|q .
For x ∈ Z the crucial strict inequality |x − 1| < 8|x + 1| does not hold only
for x = −1. This value of x is excluded by the bound |x| ≥ 2q−1|a|q − 1 ≥ 15.
Hence also |a| < |b| and we have a contradiction. 2

Theorem 4.1.5 Equation x2− yq = 1, where q ≥ 5 is a prime number, has no
nonzero solution x, y ∈ Z∗.

Proof. Suppose that q is as stated and x, y ∈ Z∗ satisfy x2 − yq = 1. By
Proposition 4.1.2 we have x ≡ 0 (mod q), but also x ≡ ±3 (mod q) by Proposi-
tion 4.1.4. For q > 3 these congruences are contradictory. 2

4.2 Remarks

Theorem 4.1.5 was first proven by Chao Ko in [21] in 1965. His proof is repro-
duced on [25, pp. 302–304] of the book of L. J. Mordell. Proposition 4.1.2 is
due to T. Nagel in [26] in 1921. Proposition 4.1.4 is due to E. Z. Chein in [9]
in 1976. By it E. Z. Chein gave in [9] a simpler proof of Chao Ko’s theorem.
We reproduce and streamline the proof in [31, pp. 13–16], and consult also [2,
pp. 15–18]. The history of solving the Diophantine equation x2 − yq = 1 is
surveyed in [2, Section 2.3.3].

Say to an extremal combinatorialist slowly and clearly “ko, ko, ko, . . . ” and
you should get the reply: The Erdős–Ko–Rado theorem! The second author
is indeed Chao Ko (or Ke Zhao) (1910–2002); the other two are Paul Erdős
(1913–1996) and Richard Rado (1906–1989). We give this theorem, proven in
[12], and its proof, taken from [1], below. The article [12] with 715 citations in
Mathematical Reviews in November 2024 belongs to the most cited articles in
pure mathematics. Endlichkeitssätze [15] of G. Faltings have 623 citations, the
solution [24] of Catalan’s conjecture by P. Mihăilescu has 173 citations and the
article [9] of E. Z. Chein has 2 citations.

A set X (of sets) is an intersecting set system if for every A,B ∈ X we have
A ∩B 6= ∅. For any set X and k ∈ N0 we define(

X
k

)
= {Y : Y ⊂ X ∧ |Y | = k} .
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Theorem 4.2.1 (Erdős–Ko–Rado) Let k, n ∈ N be such that n ≥ 2k. Then

every intersecting set system X ⊂
(
[n]
k

)
has |X| ≤

(
n−1
k−1
)

elements. This bound
is tight.

Proof.
2
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Chapter 5

The relations of Cassels

We want to show, and eventually we prove it, that for no primes p, q ∈ P \ {2}
there are nonzero integers x, y ∈ Z∗ such that xp − yq = 1. Clearly, p = q is
impossible. If (x, y, p, q) is a nonzero solution, then so is (−x,−y, q, p). Thus
we may assume that p > q. In this chapter we prove the property of the
hypothetical nonzero solution x, y ∈ Z∗ of the equation

xp − yq = 1 where p > q > 2 are primes ,

obtained by John W. S. Cassels (1922–2015): p divides y and q divides x. In
particular, |y| ≥ q and |x| ≥ p, but in Section 5.3 we deduce much stronger lower
bounds . . . but bounds on what? On the size of the hypothetical (nonzero)
solution of the displayed Catalan’s equation. But we eventually prove that this
solution does not exist! Starting from such a solution, in the next chapter we
begin a long journey. On the end of it there will be a shining supernova, or if
you want a black hole, of a contradiction.

5.1 The relation q |x
The next lemma is proven as Lemma A.1.2 in Section A.1.

Lemma 5.1.1 Let u be a real number. Then the following hold.

1. If u ≥ 1 then f(x) =
(
ux + 1

)1/x
: (0,+∞)→ (0,+∞) decreases.

2. If u > 1 then f(x) =
(
ux − 1

)1/x
: (0,+∞)→ (0,+∞) increases.

Now we prove the easier of the two divisibilities due to J. W. S. Cassels.

Theorem 5.1.2 If p > q > 2 are primes and x, y ∈ Z∗ satisfy xp− yq = 1 then
q |x.
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Proof. Suppose that p, q, x and y are as stated and that ¬(q |x). Then by

Lemma 4.1.1 the two factors in (y + 1) · y
q+1
y+1 = xp are coprime. By Corol-

lary B.1.6 we have y + 1 = bp with b ∈ Z. Since x 6= 0, also b 6= 0. Hence

xp − (bp − 1)q = 1

— we show that this equality cannot hold.
We set

g(X) = Xp − (bp − 1)q, X ∈ R ,

and show that g(X) 6= 1 for every X ∈ Z. Suppose that b > 0. Since y 6= 0, we
have b ≥ 2. Then

g(bq) =
∑q−1
j=0 b

jp(bp − 1)q−1−j ≥ q > 1

and
g(bq − 1) = (bq − 1)p − (bp − 1)q < 0

because, since q < p, by part 2 of Lemma 5.1.1 it holds that(
(bq − 1)p

) 1
pq = (bq − 1)

1
q < (bp − 1)

1
p =

(
(bp − 1)q

) 1
pq .

The function g(X) increases on R and we see that there is no X ∈ Z with
g(X) = 1.

Suppose that b < 0, thus b ≤ −1. Then, similarly,

g(bq) =
∑q−1
j=0(bp)j(bp − 1)q−1−j ≥ q > 1

(each summand has sign (−1)q−1 = 1) and

g(bq − 1) = −((−b)q + 1)p − ((−b)p + 1)q < 0

because, since q < p, by part 1 of Lemma 5.1.1 it holds that(
((−b)q + 1)p

) 1
pq = ((−b)q + 1)

1
q > ((−b)p + 1)

1
p =

(
((−b)p + 1)q

) 1
pq .

Again, g(X) increases on R and we see that there is no X ∈ Z with g(X) = 1.
We have a contradiction and deduce that q |x. 2

Thus |x| ≥ q, but in the next section we need a stronger lower bound on x. In
its proof in the next proposition we use two lemmas.

Lemma 5.1.3 Let q ∈ N and y ∈ Z. If q > 2 is odd, and y ≡ −1 (mod q) then
yq+1
y+1 is q both modulo q2 and y + 1.

Proof. This follows from

yq+1
y+1 = (y+1−1)q+1

y+1 =
∑q−1
j=1

(
q
j

)
(y + 1)j−1(−1)q−j .

Modulo q2 this is q(−1)q−1 +
(
q
2

)
(y + 1) ≡ q. 2
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Lemma 5.1.4 Let q ∈ N and y ∈ Z. If q > 2 and is odd, and y ≡ −1 (mod q)

then yq+1
y+1 ≡ q (mod q2).

Proposition 5.1.5 If p > q > 2 are primes and x, y ∈ Z∗ satisfy xp − yq = 1
then |x| ≥ q + qp−1.

Proof. Suppose that p, q, x and y are as stated. From the proof of Theo-
rem 5.1.2 we know that both factors in (y + 1) · y

q+1
y+1 = xp are divisible by q.

By Lemma ?? we have yq+1
y+1 ≡ q (mod q2), hence ¬

(
q2 | y

q+1
y+1

)
. Since the GCD

of both factors is q, Corollary B.1.7 gives

y + 1 = qp−1bp and yq+1
y+1 = qup for b, u ∈ Z .

2

5.2 The relation p | y
Recall from Section A.2 that for m ∈ N, a point a ∈ I, an open interval I ⊂ R
and an m times differentiable function f : I → R, we denote by

Tma (f) = Tma (f(X)) = Tma (f)(X) =
∑m
j=0

1
j!f

j(a)(X − a)j (∈ R[X])

the Taylor polynomial of f with orderm and center a. In this section we consider
for odd integers p > q ≥ 3, for m ∈ N, I = R and a = 0 the polynomial Tm0 (F )
for the function

F (X) = Fp,q(X) =
(
(1 +X)p −Xp

)1/q
.

This is possible because (1 +X)p−Xp > 0 for every X ∈ R. The following first
lemma is proven as Corollary A.2.2 in Section A.2.

Lemma 5.2.1 If Fp,q(X) is as above and m < p then

Tm0 (Fp,q(X)) = Tm0 ((1 +X)p/q) =
∑m
j=0

(
p/q
j

)
Xj .

The second lemma is proven as Lemma A.1.4 in Section A.1.

Lemma 5.2.2 Suppose that Fp,q(X) is as above and m = bp/qc+ 1. Then for
every X ∈ (−1, 1),

|Fp.q(X)− Tm0 (Fp,q(X))| ≤ (1− |X|)−2 · |X|m+1 .

The third lemma is proven as Corollary B.1.13 in Section B.1. Recall that
for k ∈ N, (

X
k

)
= 1

k!X(X − 1) . . . (X − k + 1)

and that
(
X
0

)
= 1.
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Lemma 5.2.3 Suppose that q is a prime, a ∈ Z is not divisible by q and k ∈ N0.
Then there exists a number b ∈ Z not divisible by q such that(

a/q

k

)
=

b

qk+ordq(k!)
.

Finally, recall the classical bound on the p-adic order of factorial which is
proven as Proposition B.1.11 in Section B.1.

Lemma 5.2.4 If q is a prime and m ∈ N0 then

ordq(m!) ≤ m

q − 1
.

With the help of the four lemmas and the previous section we prove the
main result of this chapter.

Theorem 5.2.5 If p > q > 2 are primes and x, y ∈ Z∗ satisfy xp− yq = 1 then
p | y.

Proof. Let p, q, x and y be as stated and let ¬(p |x). By Lemma 4.1.1
the two factors in (x − 1) · x

p−1
x−1 = yq are coprime; we obtain a contradiction.

By Corollary B.1.6 we have x − 1 = aq with a ∈ Z. Clearly a 6= 0. Thus
yq = (aq + 1)p − 1 and with Fp,q(X) as above we express y as

y = ap · Fp,q(1/aq) .

We set m = bp/qc+ 1 (≥ 2), D = qm+ordq(m!) and

z = amq−py − amq · Tm0 (Fp,q)(1/a
q) (∈ Q) .

Using Lemmas 5.2.1 and 5.2.3 and the inequality mq − p ≥ 0 (following from
m > p

q ) we see that

Dz = Damq−py −
∑m
k=0D

(
p/q
k

)
amq−qk ∈ Z .

We obtain a contradiction by proving that the integer Dz 6= 0 but at the
same time |Dz| < 1. Non-vanishing of Dz follows from the non-divisibility
¬(q |Dz): in the displayed expression for Dz all terms are divisible by q except

for the summand with k = m, which by Lemma 5.2.3 is the integer D
(
p/q
m

)
not

divisible by q.
We show that |Dz| < 1. We have z = amq

(
Fp.q(1/a

q) − Tm0 (Fp.q)(1/a
q)
)
.

Since x 6= 0 but q |x by Theorem 5.1.2, a 6= 0,±1 and |a| ≥ 2. We can use
Lemma 5.2.2 with X = 1/aq and get the bound

|z| ≤ |a|
mq · |a|−(m+1)q

(1− |a|−q)2
=

|a|q

(|a|q − 1)2
≤ 1

|a|q − 2
≤ 1

|x| − 3
.
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By Proposition 5.1.5, |x| ≥ qp−1 + q. Thus

|Dz| ≤ qm+ordq(m!)−(p−1) .

If the exponent is negative, we are done. And indeed, by Lemma 5.2.4, the
inequality m < p

q + 1 and since p ≥ 5 and q ≥ 3, it is negative:

m+ ordq(m!)− (p− 1) ≤ m
(
1 + 1

q−1
)
− (p− 1)

<
(
p
q + 1

)(
1 + 1

q−1
)
− (p− 1)

= 3−(p−2)(q−2)
q−1 ≤ 0 .

2

5.3 Lower bounds on x and y

5.4 Remarks

Theorem 5.1.2 is due to J. W. S. Cassels in [4] in 1953. We followed the proof in
[31, pp. 33–34], [31, Exercise 6.1] and fixed in it some errors. Theorem 5.2.5 is
due to J. W. S. Cassels in [5] in 1960. We followed the proof in [31, pp. 35–37],
[31, Exercise 5.7].
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Chapter 6

The obstruction group
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Chapter 7

Mihăilescu IV

In this chapter we prove the next theorem.

7.1 Equation xp − yq = 1 for p ≤ 5 or q ≤ 5

Theorem 7.1.1 (Mihăilescu IV) Equation xp− yq = 1 has no nonzero solu-
tion x, y ∈ Z∗ if p and q are odd primes such that p ≤ 5 or q ≤ 5.

7.2 Remarks
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Appendix A

Mathematical analysis

In this appendix we collect and, more importantly, prove several analytical
results that we used in the previous pages in the described solution of Catalan’s
conjecture.

A.1 Sums, inequalities and bounds

Proposition A.1.1 If m ∈ N0 and X ∈ (−1, 1) then∑∞
n=mX

−n = X−m

1−X .

Proof. Let m and X be as stated. Then for n ∈ N with n ≥ m we have
Xm +Xm+1 + · · ·+Xn = Xm

1−X (1−Xn−m+1)→ Xm

1−X as n→∞. 2

Lemma A.1.2 Let u be a real number. Then the following hold.

1. If u ≥ 1 then f(X) =
(
uX + 1

)1/X
: (0,+∞)→ (0,+∞) decreases.

2. If u > 1 then f(X) =
(
uX − 1

)1/X
: (0,+∞)→ (0,+∞) increases.

Proof. 1. We have f ′(X) = f(X)
(
uX log u
X(uX+1)

− log(uX+1)
X2

)
and (· · · ) < 0 because

XuX log u = uX log(uX) < (uX + 1) log(uX + 1).

2. Similarly, f ′(X) = f(X)
(
uX log u
X(uX−1) −

log(uX−1)
X2

)
and (· · · ) > 0 because

XuX log u = uX log(uX) > (uX − 1) log(uX − 1). 2

Lemma A.1.3 If p > 1, X ∈ (−1, 1) and ξ are real numbers such that ξ lies
between (1 +X)p −Xp and (1 +X)p, then |ξ| ≥ (1− |X|)p
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Proof.
2

For odd integers p > q > 2 and X ∈ R let

Fp,q(X) =
(
(X + 1)p −Xp

)1/q
.

Lemma A.1.4 Suppose that F (X) = Fp,q(X) is as above and m = bp/qc+ 1.
Then for every X ∈ (−1, 1),

|F (X)− Tm0 (F )(X)| ≤ (1− |X|)−2 · |X|m+1 .

Proof. We bound the terms A = A(X) and B = B(X) in

|F (X)−Tm0 (F )(X)| ≤ |F (X)−(1+X)p/q|+ |(1+X)p/q−Tm0 (F )(X)| = A+B .

We estimate |A| by applying Lagrange’s mean value theorem to the function
f(Y ) = Y 1/q and the interval spanned by the numbers (1 + X)p − Xp and
(1+X)p. Thus with some number ξ lying between them we have by Lemma A.1.3
and by the inequality p(1− 1

q ) > 2 that

|A| ≤ 1
q |X|

p|ξ|1/q−1 ≤ 1
q |X|

p|(1− |X|)p(1/q−1) ≤ 1
q |X|

p(1− |X|)−2 .

2

A.2 Power series

Let n ∈ N, a ∈ I ⊂ R where I is an open interval and let f : I → R have at
every X ∈ I finite n-th derivative f (n)(X) ∈ R. Then

Tna (f(X)) = Tna (f)(X) =

n∑
j=0

1

j!
f (j)(a)(X − a)j (∈ R[X])

is the Taylor polynomial of f with order n and center a.

Proposition A.2.1 In this situation Tna (f)(X) is a unique polynomial p(X)
in R[X] with degree at most n such that

f(X) = p(X) + o
(
(X − a)n

)
(X → a) .

Proof.
2

Corollary A.2.2 If F (X) = Fp,q(X) is as before Lemma A.1.4 and m ∈ N
satisfies m < p then

Tm0 (F (X)) = Tm0 ((1 +X)p/q) =
∑m
j=0

(
p/q
j

)
Xj .
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Proof. In view of the previous proposition, to prove the first equality it suffices
to show that F (X) − (1 + X)p/q = o(Xm) as X → 0. This is true because
F (X)− (1 +X)p/q equals(

(1 +X)p −Xp
)1/q − (1 +X)p/q = (1 +X)p/q

((
1− Xp

(1+X)p

)1/q − 1
)

= (1 +O(X)) · ((1 +O(Xp))− 1)

= O(Xp) = o(Xm) .

The second equality is immediate from the definition of Taylor polynomials,

1
j!

(
(1 +X)p/q

)(j)
(0) =

(
p/q
j

)
(1 +X)p/q−j+1(0) =

(
p/q
j

)
.

2

A.3 Remarks
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Appendix B

Elementary number theory

In this appendix we collect and, more importantly, prove several results in ele-
mentary number theory that were helpful in the described solution of Catalan’s
conjecture.

In Section B.1 we discuss properties of prime numbers. Theorem B.1.2
demonstrates in three ways the infinitude of primes. Theorem B.1.3 is the
Fundamental Theorem of Arithmetic (FTA) — prime factorizations of natural
numbers are unique. Corollaries B.1.5–B.1.8 of FTA are the main tool in ele-
mentary solution of Diophantine equation; we use them repeatedly in Chapter 3.
In Chapter 2 we apply Corollary B.1.10 on the p-adic order, the properties of it
are obtained in Proposition B.1.9.

In Section B.2 we discuss some Diophantine equations. Theorem B.2.1 ex-
presses all integral solutions of any Pell equation in terms of the minimum so-
lution. Proposition B.2.2 describes all rational solutions of αx2 + βxy+ y2 = 1,
under a condition on α, β ∈ Q. We need these results in Chapters 3 and 4.

B.1 Prime numbers

Recall that p ∈ N is a prime number, briefly a prime, if p > 1 and for m,n ∈ N
the equality p = mn is possible only if {m,n} = {1, p}; the number p is in this
sense multiplicatively indecomposable, irreducible. The set of primes is denoted
by P, so that P = {2, 3, 5, 7, 11, 13, 17, . . . }, and primes themselves are denoted
by the letters p and q. We say that p ∈ P is a prime divisor of n ∈ N if p |n.
We begin with a simple but important lemma.

Lemma B.1.1 An integer n ∈ Z has a prime divisor iff n 6= −1, 1.

Proof. The numbers ±1 clearly have no prime divisor. Every prime is a prime
divisor of 0. Let n 6= 0,±1 be an integer and M = {m ∈ N : m > 1 ∧m |n}.
Then M 6= ∅ because |n| ∈M and min(M) is a prime divisor of n. 2
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Theorem B.1.2 The set of prime numbers P is infinite.

Proof. We give three proofs. Many more can be found in the literature and on
the Internet.

The first proof of Euclid. The world with only finitely many primes is con-
tradictory because it contains an integer m ≥ 2 with no prime divisor, in con-
tradiction with Lemma B.1.1. We assume that P is finite. P 6= ∅ because 2 ∈ P.
The number m = 1 +

∏
p∈P p (≥ 3) exists due to finiteness and nonemptiness of

P. It has no prime divisor: if p ∈ P and p |m then p | 1 which is impossible.
The second proof of Euclid. Positively taken, the previous proof gives a recipe

for obtaining for any finite set of primes X a prime q 6∈ X. If X = ∅, we take
q = 2. For X 6= ∅ we take the above number m = 1+

∏
p∈X p and set q to be any

prime divisor of m, for example the one described in the proof of Lemma B.1.1.
Then q 6∈ X, for else q | 1. Hence P is infinite.

The proof of Cass and Wildenberg. It is not as well known as Euclid’s
proof(s), which is a pity. A set X ⊂ Z is periodic if for some a ∈ N we have
X = a + X (= {a + x : x ∈ X}). It is easy to see that (i) no nonempty finite
set is periodic and that (ii) every (infinite) arithmetic progression a + dZ =
{a+ dx : x ∈ Z}, a ∈ Z and d ∈ N, is periodic. Periodic sets are closed (iii) to
complements to Z and (iv) to finite unions. Due to Lemma B.1.1 we have the
equality

Z \ {−1, 1} =
⋃
p∈P(0 + pZ) .

If P is finite, it is contradictory. By (i) and (iii) the left-hand side is not periodic.
By (ii) and (iv) the right-hand side is periodic. 2

We view the maps f : P → N0 with finite supports as finite multisets of
primes. We denote the set of those maps by P . For f ∈ P and p ∈ P, we denote
the support of f by S(f) (⊂ N) and call the value f(p) (∈ N0) the multiplicity
of the prime p in f . We define the factorization map F : P → N by

F (f) =
∏
p∈P p

f(p)
(

=
∏
p∈P,f(p)>0 p

f(p)
)
.

To be precise, if 2 = p1 < p2 < . . . is the sequence of all primes then we define
the value F (f) ∈ N0 as the limit

F (f) = limn→∞
∏n
i=1 p

f(pi)

of the eventually constant sequence of partial products. If f ∈ P and F (f) = n,
we say that f is a prime factorization of n. We prove the Fundamental Theorem
of Arithmetic (FTA).

Theorem B.1.3 (FTA) The factorization map F : P → N is a bijection.

We preface the proof with a lemma.

Lemma B.1.4 The following hold.
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1. Every n ∈ N has a prime factorization f : P→ N0.

2. If n ∈ N and p |n then n has a prime factorization f such that f(p) > 0.

Proof. 1. In fact, this is the surjection part of Theorem B.1.3. We prove by
induction on n ∈ N that there is a map f : P→ N0 with finite support such that
F (f) = n. For n = 1 we take for f simply the constantly 0 function. Suppose
that n > 1 and that every m < n has a prime factorization. Using Lemma B.1.1
we write n as n = pm where p is a prime and m ∈ N is smaller than n. Let f
be a prime factorization of m. Then the map g : P → N0 with the same values
as f , except for g(p) = f(p) + 1, is a prime factorization of n.

2. Let n ∈ N and p ∈ P be as stated, so that n = pm with m ∈ N. We use
part 1 and take a prime factorization g of m. We define a map f : P → N0 by
giving it the values of g, except for f(p) = g(p) + 1. Then f ∈ P , f(p) > 0 and
F (f) = pF (g) = pm = n. 2

Proof of Theorem B.1.3. In part 1 of Lemma B.1.4 we proved that F is
surjective and it remains to show that it is injective; this is the main claim of
FTA. For contrary let n ∈ N be minimum such that there are f, g ∈ P with
f 6= g and F (f) = F (g) = n. Clearly,

∑
p∈P f(p) ≥ 2,

∑
p∈P g(p) ≥ 2 and

S(f) ∩ S(g) = ∅ (else for some p the number n
p would contradict the choice of

n). Thus if p = min(S(f)) and q = min(S(g)), then p 6= q. It follows that
m = n − pq > 0, m ∈ N and m < n. Let h be the unique prime factorization
of m. Since p and q divide n, they divide m. Part 2 of Lemma B.1.4 gives that
p, q ∈ S(h). Thus pq |m and pq |n. Then n

p < n and q | np . We set f0 ∈ P to be

equal to f , except for f0(p) = f(p) − 1. Then F (f0) = n
p and f0 is the unique

prime factorization of n
p . Part 2 of Lemma B.1.4 gives that q ∈ S(f0). Since

f(q) = f0(q), we have the contradiction that q ∈ S(f) ∩ S(g). 2

Thus for every n ∈ N we can correctly denote its unique prime factorization by
F−1(n), and n has the unique expression as the product

n = pa11 p
a2
2 . . . pakk ,

where k ∈ N0, p1 < p2 < · · · < pk are primes and ai = F−1(n)(pi) ∈ N are their
multiplicities. For n = 1 we have k = 0 and define this product as 1.

FTA has several corollaries which in elementary number theory, especially in
elementary solutions of Diophantine equations, are used all the time. Recall that
m,n ∈ Z are coprime if their common divisors are only −1 and 1. If m,n 6= 0
then by Theorem B.1.3 m and n are coprime iff F−1(|m|) and F−1(|n|) have
disjoint supports.

Corollary B.1.5 Let a, b, c ∈ Z. If the number a divides the product bc and
a, b are coprime, then a divides c.

Proof. If bc = 0 then b = 0 or c = 0. In the former case a = ±1 and divides c.
In the latter case a divides c because 0 is divisible by every number. We suppose
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that b, c 6= 0, hence a 6= 0, and consider the prime factorizations f = F−1(|a|),
g = F−1(|b|), h = F−1(|c|) and j = F−1(|bc|). By Theorem B.1.3, for every
p we have g(p) + h(p) = j(p). By the assumption the supports of f and g are
disjoint and for every p we have f(p) ≤ j(p). Thus for every p it holds that
f(p) ≤ h(p). It means that a | c. 2

For x, y ∈ Z we write x ∼ y iff x = y or x = −y. It is an equivalence relation.

Corollary B.1.6 Let k ∈ N with k ≥ 2, x, y, z ∈ Z with xy ∼ zk and x, y be
coprime. Then there exist x0, y0 ∈ Z such that x ∼ xk0 and y ∼ yk0 . For odd k
the last two ∼s may be replaced by =s.

Proof. For xyz = 0 it holds because then {x, y} = {0,±1} are ± k-th powers.
We assume that x, y, z 6= 0 and consider the prime factorizations f = F−1(|x|),
g = F−1(|y|) and h = F−1(|xy|). Since |x| · |y| = |z|k, Theorem B.1.3 implies
that for every p we have f(p) + g(p) = k · h(p). Since f and g have disjoint
supports, one of the last two summands is always zero. Hence for every p both
f(p) and g(p) is divisible by k, both |x| and |y| is a k-th power and the result
follows. For odd k the k-th powers absorb the sign − as −1 = (−1)k. 2

Note that for even k ≥ 2 the ∼ s in general cannot be removed. For example,
(−1)(−1) = 12 with coprime −1,−1 gives only −1 ∼ (±1)2.

Corollary B.1.7 Let p be a prime, k ∈ N with k ≥ 2, x, y, z ∈ Z with xy ∼ zk
and let GCD(x, y) = p. Then there exist coprime x0, y0 ∈ Z such that x ∼ pxk0 ,
y ∼ pk−1yk0 or x ∼ pk−1xk0 , y ∼ pyk0 . For odd k we have instead of the last four
∼s equalities.

Proof. For xyz = 0 it holds because then {x, y} = {0,±p}. We assume that
x, y, z 6= 0 and consider the prime factorizations f = F−1(|x|), g = F−1(|y|) and
h = F−1(|xy|). As in the previous proof we deduce that for every q 6= p both
f(q) and g(q) is divisible by k. Also, f(q) · g(q) = 0. Since f(p) + g(p) = h(p)
is divisible by k, f(p) · g(p) > 0 and one of f(p) and g(p) is 1, we deduce that

{f(p), g(p)} = {1, k − 1 + rk} with r ∈ N0 .

The result follows. Minuses are absorbed by odd powers as before. 2

Note that for k = 2 the two possibilities for x and y coincide.
We leave the proof of the fourth corollary to the interested reader.

Corollary B.1.8 Let p be a prime, k ∈ N with k ≥ 2, x, y, z ∈ Z with xy ∼ pzk
and let x, y be coprime. Then there exist coprime x0, y0 ∈ Z such that x ∼ pxk0 ,
y ∼ yk0 or x ∼ xk0 , y ∼ pyk0 . For odd k we have instead of the last four ∼s
equalities.
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In Section C.1 we generalize these corollaries to monoids and domains.
For any prime p and nonzero a ∈ Z we define ordp(a) ∈ N0 as the maximum

k ∈ N0 such that pk | a. Thus ordp(a) = F−1(|a|)(p). We extend ordp to Q.
For any nonzero fraction a

b we set ordp(
a
b ) = ordp(a) − ordp(b). We define

ordp(0) = +∞. It is easy to see that ordp(
a
b ) does not depend on the concrete

representation of the fraction a
b . We extend addition of integers commutatively

to Z+ = Z ∪ {+∞} by setting a+ (+∞) = (+∞) + a = +∞ for every a ∈ Z+.
As for the comparison, a < +∞ for every a ∈ Z. The map ordp : Q → Z+ has
the following properties.

Proposition B.1.9 Let p be a prime number and α, β ∈ Q.

1. It holds that ordp(αβ) = ordp(α) + ordp(β).

2. We have ordp(α + β) ≥ min(ordp(α), ordp(β)), and if ordp(α) 6= ordp(β)
then the equality holds.

3. More generally, for every fractions α1, α2, . . . , αn where n ≥ 2 we have

ordp
(∑n

i=1 αi
)
≥ min(α1, α2, . . . , αn) ,

and if the minimum is attained uniquely then the equality holds.

Proof. 1. If αβ = 0 then it holds because we have +∞ on both sides. If αβ 6= 0
then with α = a

b and β = c
d we have by Theorem B.1.3 for every p that

ordp(αβ) = ordp(ac)− ordp(bd) = ordp(a) + ordp(c)−
− ordp(b)− ordp(d) = ordp(a)− ordp(b) +

+ ordp(c)− ordp(d) = ordp(α) + ordp(β) .

2. Let α = a
b and β = c

d . Multiplying

α+ β = ad+bc
bd = a

b + c
d

by bd ( 6= 0) and using part 1 we see that we may assume that α, β ∈ Z. Then
it is easy to check part 2 if αβ = 0. Let αβ 6= 0 and α = prα0, β = psβ0 with
r = ordp(α), s = ordp(β) (∈ N0) and nonzero α0, β0 ∈ Z not divisible by p. We
may assume that r ≤ s and get

α+ β = pr(α0 + ps−rβ0) =: prc, c ∈ Z .

By part 1 we have ordp(α + β) = r + ordp(c) ≥ r = min(ordp(α), ordp(β)). If
r < s then c is not divisible by p, thus ordp(c) = 0 and ordp(α + β) = r =
min(ordp(α), ordp(β)).

3. We proceed by induction on n. For n = 2 this is part 2. For n > 2 we
get by induction, denoting S =

∑n
i=1 αi and T =

∑n−1
i=1 αi, that ordp(S) is

ordp(T + αn)
(1)

≥ min(ordp(T ), ordp(an))

(2)

≥ min
(

min(ordp(a1), . . . , ordp(an−1)), ordp(an)
)

= min(ordp(a1), . . . , ordp(an)) .
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If min(ordp(αi) : i ∈ [n]) is attained uniquely for i = n, then

ordp(αn) < min(ordp(a1), . . . , ordp(an−1)) ≤ ordp(T )

and inequalities (1) and (2) become equalities. If that minimum is attained
uniquely for an i ∈ [n− 1], then by induction

ordp(T ) = min(ordp(a1), . . . , ordp(an−1)) < ordp(αn)

and inequalities (1) and (2) again become equalities. 2

Corollary B.1.10 Let n ∈ N, p be a prime number and for i ∈ [n] we have
fractions αi ∈ Q. Suppose that

∀ i ∈ [n− 1] : ordp(αi) > ordp(αn) ,

where for n = 1 we interpret it as +∞ > ordp(αn). Then
∑n
i=1 αi 6= 0.

Proof. Let n = 1. Then +∞ > ordp(αn) gives
∑n
i=1 αi = αn 6= 0. Let n ≥ 2.

By the assumption, +∞ > ordp(αn). By property 3 in the previous proposition,
ordp

(∑n
i=1 αi

)
= ordp(αn). Thus +∞ > ordp(

∑n
i=1 αi) and

∑n
i=1 αi 6= 0. 2

Proposition B.1.11 If p is a prime and m ∈ N0 then

ordp(m!) =
∑∞
k=1

⌊
m
pk

⌋
≤ m

p−1 .

Proof. For m = 0 this holds trivially, and we assume that m ∈ N. The first
equality displayed then follows by double counting the pairs

A = {(k, n) ∈ N2 : pk |n ∧ n ≤ m} .

Then |A| =
∑∞
k=1b

m
pk
c by grouping the pairs according to k, but on the other

hand |A| =
∑m
n=1 ordp(n) = ordp(m!) by grouping the pairs according to n and

using part 1 of Proposition B.1.9. The inequality displayed follows from the
sum of geometric series∑∞

k=1
1
pk

=
∑∞
k=1 p

−k = 1/p
1−1/p = 1

p−1 ,

see Proposition A.1.1. 2

This formula for the p-adic order of factorial is due to A.-M. Legendre. We need
a generalization of it.

Proposition B.1.12 Let p be a prime, m ∈ N and M =
∏m
j=1(a+ jd), where

a, d ∈ Z and ¬(p | d). For k ∈ N we denote by r(k) ∈ {0, 1, . . . ,m − 1} the
remainder obtained when m is divided by pk, so that r(k) = m − pm

⌊
m
pk

⌋
, and

set ε(k) = |{j ∈ [r(k)] : pk | (a+ jq)}|. Then ε(k) ∈ {0, 1} for every k and

ordp(M) =
∑∞
k=1

(⌊
m
pk

⌋
+ ε(k)

)
.
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Proof. For k ∈ N let s(k) = |{j ∈ [m] : pk | (a + jd)}|. The argument in
the previous proof shows that ordp(M) =

∑∞
k=1 s(k). We show that s(k) =⌊

m
pk

⌋
+ ε(k). For j, j′ ∈ [m] if a + jd ≡ a + j′d modulo pk, then (j − j′)d ≡ 0

and j ≡ j′. So if I ⊂ [m] is an interval of numbers with length |I| ≤ pk then
for every residue r modulo pk there is at most one j ∈ I such that a + jd ≡ r,
and if |I| = pk then there is exactly one such j ∈ I. Hence the partition
[m] = J ∪ I1 ∪ · · · ∪ Il into intervals J < I1 < · · · < Il with |J | = r(k) and
|Ii| = pk, thus l =

⌊
m
pk

⌋
, shows that s(k) = l + ε(k) and that ε(k) ∈ {0, 1}. 2

Corollary B.1.13 Suppose that q is a prime, a ∈ Z is not divisible by q and
k ∈ N0. Then there exists a number b ∈ Z not divisible by q such that(

a/q

k

)
=

b

qk+ordq(k!)
.

Proof. For k = 0 it trivially holds, as
(
a/q
0

)
= 1, and we assume that k ∈ N.

Then (
a/q
k

)
= 1

k! ·
1
qk
·
∏k
j=1(a+ q − jq) .

Let M =
∏k
j=1(a+ q − jq). Then ordq

((
a/q
k

))
= ordq

(
1
k! ·

1
qk

)
= −k − ordq(k!)

as ordq(M) = 0, and for every p 6= q we have by Propositions B.1.11 and B.1.12

that ordp
((
a/q
k

))
= ordp(M)− ordp(k!) ≥ 0. 2

B.2 Diophantine equations

A Pell equation is any Diophantine equation x2−dy2 = 1 with unknowns x, y and
parameter d ∈ N that is not a square. If d is a square then it is easy to show that
there is only the trivial solutions (±1, 0). Every Pell equation has infinitely many
(integral) solutions. In Chapters 3 and 4 we rely on the important property of
the solution set that it is generated by the minimum (nontrivial) solution. This
is the solution (a, b) ∈ N2 such that there is no solution (a′, b′) ∈ N2 with a′ < a.
Every Pell equation has a unique minimum solution. Already for moderately
sized d the minimum solution can be quite large, but on the other hand it is
often easy to find. In Chapter 3, for x2 − 3y2 = 1 it is (a, b) = (2, 1). In
Chapter 4, for x2 − (c2 − 1)y2 = 1, c ∈ N with c ≥ 2, it is (a, b) = (c, 1).

We express generation of solutions of x2 − dy2 = 1 by an equality in the
integral domain (Z[

√
d], 0, 1,+, ·), where

Z[
√
d] = {a+ b

√
d : a, b ∈ Z} (⊂ R) .

It is a subring of the field R, hence a domain. The conjugation map is the
automorphism a+ b

√
d 7→ a− b

√
d.
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Theorem B.2.1 Let (a, b) ∈ N2 be the minimum solution of the Pell equation
x2 − dy2 = 1. Then the set of integral solutions has the form

{(±xn, ±yn) ∈ Z2 : n ∈ N0} ,

where
xn + yn

√
d =

(
a+ b

√
d
)n

(∈ Z[
√
d]) .

The sequences (xn) in N and (yn) in N0, n ∈ N0, satisfy two recurrences, with
the initial conditions x0 = 1, y0 = 0, x1 = a and y1 = b.
1. xn+1 = axn + dbyn and yn+1 = bxn + ayn.
2. xn+2 = 2axn+1 + (b2d− a2)xn and yn+2 = 2ayn+1 + (b2d− a2)yn.

Proof. Let a, b, xn and yn be as stated. The conjugation map gives that also
xn − yn

√
d = (a− b

√
d)n. Hence x2n − y2nd = (xn + yn

√
d)(xn − yn

√
d) equals

(a+ b
√
d)n(a− b

√
d)n = (a2 − b2d)n = 1n = 1

and (xn, yn) ∈ N2
0 is a solution. Let (e, f) ∈ N2

0 with e ∈ N be an arbitrary
nonnegative solution. Since 1 = x0 < x1 < . . . , we have a unique n ∈ N0 such
that xn ≤ e < xn+1. Then also yn ≤ f < yn+1 and (a + b

√
d)n ≤ e + f

√
d <

(a+ b
√
d)n+1. We set

g + h
√
d = e+f

√
d

(a+b
√
d)n

= (e+ f
√
d)(a− b

√
d)n (∈ Z[

√
d]) .

It follows that (g, h) ∈ Z2 is a solution. From 1 ≤ g + h
√
d < a + b

√
d we get

1 ≤ g < a and 0 ≤ h < b. By the minimality of (a, b) we have g = 1 and h = 0.
Hence e = xn, f = yn and we see that (±xn,±yn), n ∈ N0, exhaust all integral
solutions of x2 − dy2 = 1. Let α = a + b

√
d. The two recurrences follow from

the respective identities αn+1 = (a+ b
√
d) · αn and α2 = 2a · α+ b2d− a2. 2

The description of the generation of the set of solutions of x2 − dy2 = 1 by the
minimum solution could be completely coached in Z in terms of recurrences,
but the description in Z[

√
d] is easy to manipulate algebraically.

We describe all rational solutions of a family of quadratic equations with
two unknowns and rational coefficients.

Proposition B.2.2 Let α, β ∈ Q be such that β2 − 4α is not a square in Q,
in particular α, β are not both zero. Then all solutions (x, y) ∈ Q2 of equation
αx2 + βxy + y2 = 1, except (0, 1), are given by the formulas

x = β+2m
α+βm+m2 and y = m2−α

α+βm+m2 for m ∈ Q .

Proof. We substitute for y in the left-hand side of αx2 + βxy + y2 − 1 = 0 the
polynomial mx− 1 (∈ Q[m,x]):

αx2 + βx(mx− 1) + (mx− 1)2 − 1 = (α+ βm+m2)x2 − (β + 2m)x = 0 .
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Thus x = 0 or x = β+2m
α+βm+m2 . With the latter value we have y = mx − 1 =

m2−α
α+βm+m2 . By the assumption the denominator α + βm + m2 6= 0 for every
m ∈ Q. Since for every x, y ∈ Q, x 6= 0, there is an m ∈ Q such that y = mx−1,
the result follows. 2

B.3 Remarks

The original proof of Euclid of Theorem B.1.2 appears, in a form, in Proposition
20 in Book IX of his Elements. The two Euclid’s proofs here are inspired by
Euclid’s proof in [11]. The third proof of Theorem B.1.2 is due to D. Cass and
G. Wildenberg in [3]. It combinatorially simplifies H. Fürstenberg’s topological
proof [17] (of infinitude of P). On my visit on October 30, 2024, the Wikipedia
page [18] still did not mention the Cass–Wildenberg proof. The proof of unique-
ness of prime factorizations in Theorem B.1.3 is taken from [19, Chapter II.2.11]
of the classical textbook authored by G. H. Hardy (1877–1947) and E. M. Wright
(1906–2005). In [19, Notes to Chapter II] they attribute it to several authors:
F. A. Lindemann in 1933, H. Davenport (date not given), E. Zermelo in 1934
and H. Hasse in 1928. The first mentioned person is not Ferdinand von Lin-
demann (1852–1939) who was the first to prove the transcendence of π, but
Frederick Alexander Lindemann (1886–1957), “a British physicist who was the
prime scientific adviser to Winston Churchill in World War II (. . . ) [and] pressed
the case for the strategic area bombing of cities.” ([16], see also [29]).
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Appendix C

Commutative algebra

In this appendix we collect and, more importantly, prove results in commuta-
tive algebra that were used in the previous pages in the solution of Catalan’s
conjecture.

Section C.1 is devoted to the theory of unique factorization (integral) do-
mains (UFD). We develop it differently compared to the standard approach, by
emphasizing the single operation of multiplication and starting from the begin-
ning, that is from monoids, and not from rings, as it is common. Main result
is Theorem C.1.11 that every Euclidean domain is UFD. In Section C.2 we ex-
plain why our Definition C.1.10 of Euclidean domains may be simpler than it is
common.

C.1 Unique factorization domains

Unique factorization monoids

We begin by describing unique factorization in monoids. These are algebraic
structures Mmo = (M, 1M , ·) such that M 6= ∅ is a set that is endowed with
a commutative and associative (binary) operation · that has the neutral element
1M ∈ M . For a ∈ M and k ∈ N we define ak = a · a · . . . · a, with k factors a
(and any bracketing); we set a0 = 1M . The product a · b is abbreviated by ab.

An element a ∈ M is invertible if there is a b ∈ M such that ab = 1M . We
denote the set of invertibles in Mmo by M×. Clearly, 1M ∈M× and (M×, 1M , ·)
is an Abelian group. If M× = M , we call the whole Mmo an Abelian group. If
a, b, c ∈M satisfy a = bc, we say that b divides a, or that b is a divisor of a, or
that a is a multiple of b (in Mmo) and write b | a. If two elements a, b ∈ M can
be divided simultaneously only by invertibles, we say that a and b are coprime
(in Mmo). An element a ∈ M is irreducible iff a ∈ M \M× and a = bc with
b, c ∈M is possible only if b or c is invertible. We denote the set of irreducible
elements in Mmo by M ir.

For a, b ∈M we write a ∼ b if a = bc for a c ∈M×. It is easy to see that ∼
is an equivalence relation. We denote the equivalence class of a ∈ M by [a]∼.
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Thus [1M ]∼ = M×. We define the associated monoid of Mmo = (M, 1M , ·) to
be the monoid

Mas
mo = (M/∼, [1M ]∼, ·) =: (N, 1N , ·) ,

with the multiplication defined via representatives: [a]∼ · [b]∼ = [a · b]∼. We
prove correctness of this definition. Let a ∼ a′ and b ∼ b′, so that a = a′c and
b = b′d for c, d ∈ M×. Then ab = a′b′(cd) with cd ∈ M× and ab ∼ a′b′. It
follows that N× = {1N} and N ir = {[a]∼ : a ∈ M ir}. In Mas

mo, an element
A ∈ N is irreducible iff A 6= 1N and A = BC with B,C ∈ N is possible only
for {B,C} = {1N , A}.

Let Mmo = (M, 1M , ·) be a monoid with M ir 6= ∅. We again consider the set
of maps f with finite supports

Q = Q(Mmo) = {f : N ir → N0 : f(P ) > 0 for only finitely many P ∈ N ir}

(⊂ (N0)(M/∼)ir), defined on irreducibles of the associated monoid, and view its
elements as finite multisets of irreducibles in Mas

mo. The map F : Q→ N ,

F (f) =
∏
P∈N ir P f(P )

(this is effectively a finite product), is the factorization map (of Mmo).

Definition C.1.1 (UFM) Let Mmo = (M, 1M , ·) be a monoid. We say that
Mmo is a unique factorization monoid, abbreviated UFM, if M ir 6= ∅ and the
factorization map F : Q(Mmo)→ N = M/∼ is a bijection.

If Mmo = (M, 1M , ·) is UFM and a ∈M , we call the map

F−1([a]∼) : (M/∼)ir → N0

the irreducible factorization of a.

Proposition C.1.2 The monoid of natural numbers N1 = (N, 1, ·) is isomor-
phic to its associated monoid. The associated monoid of the monoid of nonzero
integers Z1,0 = (Z \ {0}, 1, ·) is (isomorphic to) N1.

Proof. The first claim follows from the fact that N× = {1}. As for the second
claim, (Z \ {0})× = {−1, 1} and the the map

N 3 n 7→ ±n = {−n, n} ∈ (Z \ {0})/∼

is an isomorphism from N1 to Zas
1,0. 2

In this terminology Theorem B.1.3 takes the following form.

Corollary C.1.3 Both N1 and Z1,0 are UFM.

Proof. This follows from Theorem B.1.3 and Proposition C.1.2. 2

The following UFM is much simpler.
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Proposition C.1.4 The unary natural numbers N0 = (N0, 0,+) is UFM.

Proof. Like for N1 we have N×0 = {0} and Nas
0 is N0. But now Nir

0 = {1}.
For every n ∈ N the expression n = 1 + 1 + · · · + 1 with n summands is the
unique irreducible factorization of n; the unique irreducible factorization of the
number 0 is the empty sum, more precisely, the map f : {{1}} → N0 with the
value f({1}) = 0. 2

The monoid (Z, 1, ·) is not UFM because F is not surjective, [0]∼ = {0} is
not in the image of the factorization map. The monoid (Z, 0,+) is not UFM
because it is an Abelian group and has no irreducible element. We give as
an example irreducible factorizations f = F−1([12]∼) of the number 12 in the
monoids N1, Z1,0 and N0. In N1 it has the nonzero values f({2}) = 2 and
f({3}) = 1, in Z1,0 these are f({−2, 2}) = 2 and f({−3, 3}) = 1, and in N0 it
is just f({1}) = 12.

Let Mmo = (M, 1M , ·) be UFM and a, b ∈M . It follows that a, b are coprime
iff the irreducible factorizations f = F−1([a]∼) and g = F−1([b]∼) have disjoint
supports. The greatest common divisor of a, b is

GCD(a, b) =
∏
P∈(M/∼)ir P

min(f(P ), g(P )) (∈M/∼) .

We abuse notation in the standard way and write GCD(a, b) = c rather than
GCD(a, b) = [c]∼. Thus in Z1,0 we write GCD(4, 6) = 2, and not GCD(4, 6) =
{−2, 2}.

We leave the proof of the following UFM version of Corollaries B.1.5–B.1.8
to the interested reader.

Proposition C.1.5 Let Mmo = (M, 1M , ·) be UFM, a, b, c, d ∈ M and k ≥ 2
be an integer. Then the following hold.

1. If a | bc and a, b are coprime then a | c.

2. If a, b are coprime and ab ∼ ck, then there exist a0, b0 ∈ M such that
a ∼ ak0 and b ∼ bk0 .

3. If c ∈M ir, GCD(a, b) = c and ab ∼ dk, then there exist coprime a0, b0 in
M such that a ∼ cak0 , b ∼ ck−1bk0 or a ∼ ck−1ak0 , b ∼ cbk0 .

4. If a, b are coprime, c ∈ M ir and ab ∼ cdk, then there exist coprime a0, b0
in M such that a ∼ cak0 , b ∼ bk0 or a ∼ ak0 , b ∼ cbk0 .

Note that in part 3 for k = 2 the two cases coincide.

Unique factorization domains

A ring is an algebraic structure

Rri = (R, 0R, 1R, +, ·)

such that 0R 6= 1R, (R, 0R,+) is an Abelian group, Rmo = (R, 1R, ·) is a monoid
and · is distributive to +. We will work in the multiplicative monoid Rmo. Its
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invertibles R× are in the ring context called units of Rri. Divisibility, irreducibles
and coprimality in Rri are similarly understood to take place in Rmo.

We extend the congruence notation from Z to any ring Rri. If a, b, c ∈ R
then we write a ≡ b (mod c) iff there is a d ∈ R such that a− b = c · d = cd, i.e.,
a = b+ cd. Recall that an ideal I in Rri is any set I ⊂ R such that (I, 0R,+) is
an Abelian group and always if r ∈ R and a ∈ I then ra ∈ I. We then have the
more general congruence relation a ≡ b (mod I) iff a− b ∈ I.

Rri is an (integral) domain if the set R∗ = R \ {0R} is closed to ·. Then

R6=0 = (R∗, 1R, ·)

is a monoid and R× ⊂ R∗. If R 6=0 is an Abelian group then Rri is a field.
We employ besides · also the other ring operation + and the distributive law.
A monoid Mmo = (M, 1M , ·) is cancellative if for every a, b, c ∈ M the equality
ac = bc implies that a = b. Monoids considered so far might not be cancellative,
but R 6=0 is cancellative and we use it in the proof of Theorem C.1.11.

Proposition C.1.6 For every integral domain Rri, the monoid R6=0 is can-
cellative.

Proof. Suppose that Rri = (R, 0R, 1R,+, ·) is an integral domain, a, b, c ∈ R∗
and ac = bc. Then (a − b)c = 0R and, since c 6= 0R, we have that a − b = 0R
and a = b. 2

Thus N1 = (N, 1, ·) is a cancellative monoid because it is a submonoid of the
monoid Z1,0 = Z6=0 and Z is an integral domain. The monoid N0 = (N0, 0,+)
is also cancellative because it is a submonoid of the Abelian group (Z, 0,+) and
every Abelian group is cancellative because all elements of it are invertible.

Proposition C.1.7 Suppose that Mmo = (M, 1M , ·) is a cancellative monoid
and a, b ∈M . Then a ∼ b iff a | b ∧ b | a.

Proof. If a ∼ b then a = bc for a c ∈ R×, and so also ac−1 = b and a | b ∧ b | a.
If a | b ∧ b | a then a = bc and b = ad for c, d ∈ R. Thus a1M = a(dc) and since
Mmo is cancellative, 1M = dc, c, d ∈ R× and a ∼ b. 2

In our approach the definition of UFM takes the following form.

Definition C.1.8 (UFD) An integral domain Rri is a unique factorization do-
main, abbreviated UFD, if the monoid R 6=0 is UFM by Definition C.1.1.

We have the following UFD version of Corollaries B.1.5–B.1.8.

Proposition C.1.9 Let Rri = (R, 0R, 1R,+, ·) be UFD, a, b, c, d ∈ R and k ≥ 2
be an integer. Then the following hold.

1. If a | bc and a, b are coprime then a | c.
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2. If a, b are coprime and ab ∼ ck then there exist a0, b0 ∈ R such that a ∼ ak0
and b ∼ bk0 .

3. If c is irreducible, GCD(a, b) = c and ab ∼ dk, then there exist coprime
a0, b0 ∈ R such that a ∼ cak0 , b ∼ ck−1bk0 or a ∼ ck−1ak0 , b ∼ cbk0 .

4. If a, b are coprime, c is irreducible and ab ∼ cdk, then there exist coprime
a0, b0 ∈ R such that a ∼ cak0 , b ∼ bk0 or a ∼ ak0 , b ∼ cbk0 .

Proof. If the elements involved are non-zero, it is just an instance of the corre-
sponding part of Proposition C.1.5. Zero elements in parts 1–3 were handled for
Rri = Z in the proofs of Corollaries B.1.5–B.1.7, and the general case is similar.
Suppose that in part 4 we have d = 0R. Then {a, b} = {0R, α} with α ∈ R×.
Thus the claim holds, with a = 0R = c · 0kR and b = α ∼ 1kR. 2

Again, in part 2 for k = 2 the two cases are identical.
A well ordering (X,≺) is a linear order ≺ on a set X such that every

nonempty set Y ⊂ X has the minimum element m ∈ Y , an element such
that m ≤ x for every x ∈ Y . Clearly, this minimum is unique.

Definition C.1.10 (Euclidean domain) A domain Rri = (R, 0R, 1R,+, ·) is
called Euclidean iff there exist a well ordering (X,≺) and a function f : R∗ =
R \ {0R} → X such that

∀ a, b ∈ R, b 6= 0R ∃ c, d ∈ R
(
a = b · c+ d ∧ (d = 0R ∨ f(d) ≺ f(b))

)
.

Note that the last disjunction is an exclusive or. If you miss some condition in
this definition, see the corresponding remark in Section C.2. For instance, the
domain of integers Z is Euclidean, (X,≺) is (N, <) and f(n) = |n|. One can
often prove that a domain is UFD by using the next classical theorem. Its proof
is more complicated than we originally thought. But with the help of [13, 30]
we have put it together.

Theorem C.1.11 Every Euclidean domain is UFD.

Proof. Let Rri = (R, 0R, 1R,+, ·) be a Euclidean domain, (X,≺) be a well
ordering and f : R∗ → X be as in Definition C.1.10. In the first step we prove
existence of irreducible factorizations: every element x ∈ R∗ \ R× is a product
of irreducibles. Recall that x ∈ R∗ \ R× is irreducible iff x = y · z = yz with
y, z ∈ R∗ always implies that y ∈ R× or z ∈ R×. Suppose for the contrary
that the set A ⊂ R∗ \ R× of elements that are not products of irreducibles is
nonempty. Let a ∈ R∗ be such that a has a divisor b ∈ A and the value f(a)
is minimum with respect to ≺ among all such values in X. Thus a = bc where
b ∈ A and c ∈ R∗. Since b is not irreducible, b = de with d, e ∈ R∗ \ R×. But
b ∈ A and hence d or e is in A. We assume that d ∈ A, the case with e ∈ A is
similar. Thus a = d(ec) where d ∈ A and ec ∈ R∗ \R× (because e ∈ R∗ \R×).
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This means by Propositions C.1.6 and C.1.7 that a does not divide d, and if we
divide d by a with a remainder we get

d = ag + h where g ∈ R, h ∈ R∗ and f(h) ≺ f(a) .

Since d divides a, it divides h too. So d divides h, d ∈ A and f(h) ≺ f(a), which
contradicts the choice of a.

In the second step we prove that if a, b ∈ R are coprime, then there exist
c, d ∈ R such that ca+ db = 1R. We consider the set

I = {ca+ db : c, d ∈ R} (⊂ R) ,

which is the ideal 〈a, b〉 in Rri generated by the elements a, b. Let e ∈ I \{0R} be
an element with the minimum value f(e) in X (I 6= ∅ and I 6= {0R}, we do not
have a = b = 0R because 0R is not a unit and hence 0R, 0R are not coprime).
We show that e divides every x ∈ I. Indeed, we express any x ∈ I as x = ec+ d
where c, d ∈ R and d = 0R or f(d) ≺ f(e), and due to d = x − ec ∈ I we have
d = 0R. Thus e divides every element of I and since a, b ∈ I and are coprime,
e ∈ R×. It follows that 1R ∈ I, there exist c, d ∈ R such that 1R = ca+ db.

In the third step we show that if a, b, c ∈ R, a | bc and a ∈ Rir, then a | b
or a | c. Suppose that a, b, c ∈ R and that a is irreducible, divides bc but does
not divide b. Then a, b are coprime and by the second step we have for some
d, e ∈ R equality

da+ eb = 1R .

We multiply it by c and get dac+ ebc = c. Hence a divides c.
In the final fourth step we prove that in Rri every a ∈ R∗ has only one

irreducible factorization. Suppose for the contrary that there are functions
g, h : (R∗/∼)ir → N0 with finite supports and such that g 6= h but F (g) = F (h).
We take a pair of these maps g, h such that in addition the sum of all involved
multiplicities ∑

P g(P ) +
∑
P h(P ) (∈ N0)

is minimum. Then in R6=0 we have an equality

p1p2 . . . pk = q1q2 . . . ql

where k, l ∈ N, pi, qi ∈ Rir, and for every i ∈ [k] and j ∈ [l] we have pi 6∼ qj ; else
the supports of g and h would intersect and we could get a pair of maps g′, h′

with g′ 6= h′, F (g′) = F (h′) and a smaller sum of multiplicities. In contrast,
applying repeatedly the third step we see that for every i ∈ [k] there is a j ∈ [l]
such that pi | qj , hence pi ∼ qj . This is a contradiction. 2

Often we can prove existence of irreducible factorizations by means of norm
maps which we now introduce; they generalize norm maps of algebraic number
theory. An ordered monoid is any structure

Momo = (M, 1M , ·, ≺)
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such that (M, 1M , ·) is a monoid and ≺ is a linear order on M satisfying that
always for x, y ∈ M if x divides y then x � y. Note that then 1M is the
minimum element of (M,≺) and M× = {1M}. Suppose that (M, 1M , ·) is
a monoid, (N, 1N ,�,≺) is an ordered cancellative monoid and f : M → N is
a multiplicative map, which means that always f(a · b) = f(a) � f(b). Then
f(1M ) = 1N : just cancel f(1M ) on both sides of f(1M )� f(1M ) = f(1M )� 1N .
Also, if a ∈M× then f(a) = 1N because f(a)� f(a−1) = f(1M ) = 1N .

We say that Momo is well ordered and cancellative, abbreviated WOCM, if
(M,≺) is a well ordering and the monoid (M, 1M , ·) is cancellative.

Definition C.1.12 (norm maps) We say that a monoid (M, 1M , ·) is normed
iff there exists a multiplicative map f : M → N to a WOCM (N, 1N ,�,≺),
called a norm, such that M× = f−1[{1N}]. We say that a domain Rri =
(R, 0R, 1R,+, ·) is normed iff the monoid R 6=0 = (R∗, 1R, ·) is normed.

Corollary C.1.13 Suppose that (M, 1M , ·) is a normed monoid with a norm
f : M → N and that a, b ∈M . Then the following hold.

1. If f(a) 6= 1N and there is no element x ∈M such that f(x) | f(a), f(x) 6=
1N and f(x) ≺ f(a), then a ∈M ir.

2. If a ∼ b then f(a) = f(b).

Proof. 1. Suppose that f(a) satisfies the stated condition. So a 6∈ M× and
if a = xy with x, y ∈ M , then f(x) and f(y) divide f(a) and both are � f(a).
Not both are 1N (else f(a) = 1N ), say f(x) 6= 1N . Then f(x) = f(a) and by
canceling in f(a)�1N = f(x)�f(y) we get that 1N = f(y) and y ∈M×. Thus
a is irreducible.

2. If a ∼ b then a = bx with x ∈ M×. But then f(a) = f(b) � f(x) =
f(b)� 1N = f(b). 2

Proposition C.1.14 Every normed domain Rri = (R, 0R, 1R,+, ·) has irre-
ducible factorizations, that is, the factorization map

F : Q→ R∗/∼ where Q = {f : (R∗/∼)ir → N0 : f has finite support}

and F (f) =
∏
P∈(R∗/∼)ir P

f(P ), is surjective.

Proof. Suppose that Rri = (R, 0R, 1R,+, ·) is a domain and that f : R∗ → N
is a norm. It suffices to show that if A ⊂ R∗ \ R× is the set of elements that
are not products of irreducibles, then A = ∅. Suppose for contrary that A 6= ∅
and take the a ∈ A that has the minimum value f(a) ∈ N with respect to ≺.
Since a is not irreducible, a = bc for some b, c ∈ R∗ \R×. Thus f(b) � f(a). If
f(b) = f(a) then by cancelling in f(a)�1N = f(b)�f(c) we get that 1N = f(c)
and c ∈ R×, which is not possible. Hence f(b), f(c) ≺ f(a). But b or c is in A
and we get a contradiction with the choice of a. 2
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We stated this result for domains because it is often used for them but it is clear
that we do not really need the ring operation + and that we actually proved
the following.

Proposition C.1.15 Every normed monoid Mmo = (M, 1M , ·) has irreducible
factorizations.

An important example of a UFD is the domain RGa = (Z[i], 0, 1,+, ·) of
Gaussian integers, where

Z[i] = {a+ bi : a, b ∈ Z} (⊂ C) .

We used the next result in the proof of Theorem 2.1.1.

Proposition C.1.16 The domain RGa has exactly four units {−i, i, −1, 1}
and is UFD. The conjugation map a+bi = α 7→ α = a−bi is its automorphism.

Proof. Since the operations in RGa are restrictions of the operations in the
field C, the structure RGa is a domain. It is easy to check that α 7→ α is an
automorphism of this ring. We find its units, let α = a + bi and β = c + di in
Z[i] be such that αβ = 1. Then

(a2 + b2)(c2 + d2) = ααββ = αβαβ = 11 = 12 = 1 .

Thus a = ±1 ∧ b = 0 or a = 0 ∧ b = ±1 and Z[i]× = {−1, 1,−i, i}.
Using Theorem C.1.11 we show that RGa is UFD; we define on Z[i]∗ a map

f as in Definition C.1.10 and show that RGa is Euclidean. We take the well
ordering (X,≺) = (N, <) and the function f : Z[i]∗ → N, given by f(α) =
f(a + bi) = a2 + b2 = αα =: ‖α‖. Let α ∈ Z[i] and β ∈ Z[i]∗ be arbitrary.
For α

β = u0 + u1i with uj ∈ R let vj ∈ Z be the integer closest to uj , so that

|uj − vj | ≤ 1
2 . We define

γ = v0 + v1i and δ = α− βγ (∈ Z[i]) .

Then α = βγ + δ and

f(δ) = ‖δ‖ = ‖β‖ ·
∥∥α
β − γ

∥∥ = f(β) · ((u0 − v0)2 + (u1 − v1)2) ≤ f(β)
2 < f(β) .

2

We mention a well known example of failure of unique factorization.

Proposition C.1.17 The domain RNUFD = (Z[
√
−5], 0, 1,+, ·), where

Z[
√
−5] = {a+ b

√
−5 : a, b ∈ Z} (⊂ C) ,

is not UFD. More precisely, the factorization map F for this domain is surjective
but not injective.
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Proof. We prove existence of irreducible factorizations by means of Propo-
sition C.1.14; we take the WOCM (N, 1, ·, <) and easily check that the map
‖ · ‖ : Z[

√
−5]∗ → N, given by

‖a+ b
√
−5‖ = (a+ b

√
−5)(a− b

√
−5) = a2 + 5b2 ,

is a norm. Crucially, it is clear that Z[
√
−5]× = {−1, 1} = ‖ · ‖−1[{1}].

But the factorization map F is not injective. Consider the equality αβ = γδ,
where

α · β = (1 +
√
−5) · (1−

√
−5) = 6 = 2 · 3 = γ · δ .

Now we use Corollary C.1.13. We have ‖α‖ = ‖β‖ = 12 + 5 · 12 = 6, ‖γ‖ = 4
and ‖δ‖ = 9. No x ∈ Z[

√
−5] has norm ‖x‖ = 2 or 3, and therefore α, β, γ and

δ are irreducible. Because

{‖α‖, ‖β‖} ∩ {‖γ‖, ‖δ‖} = ∅ ,

we have α 6∼ γ, δ and β 6∼ γ, δ. Thus

6 = (1 +
√
−5) · (1−

√
−5) = 2 · 3

gives two different irreducible factorizations of 6 in the domain Z[
√
−5]. 2

C.2 Remarks

Algebra textbooks usually take the function f in Definition C.1.10 of Euclidean
domains with the range (N, <) and require that in addition to the condition
of division with a remainder, f satisfies some condition (C) like that for every
a, b ∈ R∗ one has f(a) � f(a · b). It is not clear to us what precise effect the
relaxation of (N, <) to any well ordering (X,≺) has. In the note [30] it is proven
that (C) is superfluous, thus we did not include it in Definition C.1.10.

Proposition C.2.1 ([30]) If in the situation of Definition C.1.10 we introduce
another function g : R∗ → X by (a ∈ R∗)

g(a) = min
�

({f(a · b) : b ∈ R∗}) ,

then g satisfies the condition in Definition C.1.10 and condition (C).

In the proof of Theorem C.1.11 we took the proof of existence of irreducible
factorizations also from [30]. The terminology of “abnormal” numbers used in
[30] reveals the inspiration by [19, Chapter II.2.11].
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Appendix D

Algebraic number theory

D.1 Unique factorizations in prime ideals

D.2 The class group

D.3 Remarks
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Appendix E

Cyclotomic fields
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