
MATHEMATICAL STRUCTURES (NMAI064)
summer term 2024/25

lecturer: Martin Klazar

LECTURE 10 (April 23, 2025)
AXIOM OF CHOICE AND ITS CONSEQUENCES:

NON-MEASURABLE SETS, THE WELL ORDERING
THEOREM, THE PROPHET PARADOX

• The Axiom of Choice (AC) is the set-theoretic axiom that

∀A : ∅ 6∈ A⇒ ∃F : (F : A→
⋃
A) ∧ (B ∈ A⇒ F (B) ∈ B) .

As you certainly know, the sum
⋃
A of A, is the set

⋃
A such that

B ∈
⋃
A ⇐⇒ ∃C ∈ A : B ∈ C. The notation F : A→ B, i.e., F is

a function (map) from A to B, abbreviates the fact that F is a set of
ordered pairs (C,D) such that always C ∈ A, D ∈ B, and for every
C ∈ A there exists exactly one D ∈ B with (C,D) ∈ F .

Exercise 1 Show that the AC is equivalent with the claim that for
every surjection F : A→ B there is a map G : B → A such that

F (G) = F ◦G = idB .

Exercise 2 Show that the AC is equivalent with the claim that for
every set system {Ai : i ∈ I}, Ai 6= ∅, there is a map

F : I →
⋃
i∈I Ai

such that F (i) ∈ Ai for every i ∈ I.

• Equivalences and partitions. First let us review equivalence relations
and set partitions. R ⊆ A× A is an equivalence relation on A if it is

• reflexive − ∀ a ∈ A : aRa,

• symmetric − ∀ a, b ∈ A : aRb⇒ bRa, and

• transitive − ∀ a, b, c ∈ A : aRb ∧ bRc⇒ aRc

A set partition of a set A is a set B such that ∅ 6∈ B, the elements of
B are mutually disjoint and

⋃
B = A. For any equivalence relation

R on a set A we define the blocks of R to be the sets

[a]R = {b ∈ A : aRb}, a ∈ A .
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Exercise 3 For every set A and every equivalence relation R on A,

A/R := {[a]R : a ∈ A}

is a partition of A.

Exercise 4 For every set A and every partition P of A,

R(P ) := {(a, b) ∈ A2 : ∃B ∈ P : a, b ∈ B}

is an equivalence relation on A.

Exercise 5 For every set A, every equivalence relation S on A and
every partition P of A,

R(A/S) = S and A/R(P ) = P .

Exercise 6 For n ∈ N = {1, 2, . . . } let Bn, the Bell number1, be the
number of equivalence relations on an n-element set X. Why does Bn

depend only on the cardinality of X and not on the elements of X?
Prove that for every n,

Bn < Bn+1 .

• Non-measurable sets. Let

S = {(x, y) ∈ R2 : x2 + y2 = 1}

be the unit circle in the Euclidean plane R2. For any angle ϕ ∈ [0, 2π)
we denote by

Fϕ : S → S, (x, y) 7→ (?x, ?y) ,

the counter-clockwise rotation around the origin by the angle ϕ. It is
clearly a bijection. An angle ϕ ∈ [0, 2π) is rational if ϕ

π ∈ Q. We
denote the set of rational angles by [0, 2π)Q. Obviously, [0, 2π)Q is
a countable set.

Exercise 7 Define the additive Abelian group

([0, 2π)Q, +)

of addition modulo 2π. Find the above formulas ?x and ?y in the
definition of Fϕ and show that for any ϕ, ϕ′ ∈ [0, 2π)Q,

Fϕ ◦ Fϕ′ = Fϕ+ϕ′ .
1Named after Eric T. Bell (1883–1960).
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Show that for any fixed x ∈ S, the function Fϕ(x) is injective in the
variable ϕ ∈ [0, 2π).

For the unit circle S we denote by P(S) the set of subsets of S. For
a subset X ⊆ P(S) with S ∈ X, we say that a map

λ : X → [0, +∞)

is an arc length on X if the following three conditions hold.

1. λ(S) > 0 — the whole unit circle has positive arc length.

2. For every pairwise disjoint sets An ∈ X, n ∈ N, with
⋃∞
n=1An ∈ X

one has that
λ(
⋃∞
n=1An) =

∑∞
n=1 λ(An) .

We say that the arc length is σ-additive.

3. For every ϕ ∈ [0, 2π) and every A ∈ X, if Fϕ[A] ∈ X then

λ(Fϕ[A]) = λ(A) .

We say that the arc length is invariant under rotations.

Theorem 8 (a troublesome set) There exists a set X ⊆ S such
that the set

{Fϕ[X] : ϕ ∈ [0, 2π)Q}
is a partition of S.

Proof. By Exercise 9, the relation ∼ on S, defined by

a ∼ b ⇐⇒ ∃ϕ ∈ [0, 2π)Q : Fϕ(a) = b ,

is an equivalence relation. We define X ⊆ S by means of the AC
by taking one representative element from each block of ∼. We show
that for ϕ running in [0, 2π)Q the sets Fϕ[X] are disjoint and form
a partition of S. Their union is S because each s ∈ S lies in a block B
of ∼ and thus Fϕ(r) = s for some ϕ ∈ [0, 2π)Q for the representative
r ∈ X of B. If Fϕ[X] ∩ Fϕ′[X] 6= ∅ for two distinct rational angles ϕ
and ϕ′, then

Fϕ(r) = Fϕ′(r′) for some r, r′ ∈ X .
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Then r 6= r′ by the injectivity of Fϕ(x) in ϕ for fixed x (Exercise 7).
Also,

Fϕ−ϕ′(r) = r′ for ϕ− ϕ′ ∈ [0, 2π)Q

(again by Exercise 7) and therefore r ∼ r′. This is impossible for two
distinct elements of X. It is clear that always Fϕ[X] 6= ∅. �

Exercise 9 Prove that the relation ∼ on S defined in the previous
proof is an equivalence relation.

Corollary 10 (impossible arc length) There is no arc length λ on
the whole power set P(S).

Proof. Indeed, suppose in the way of contradiction that

λ : P(S)→ [0, +∞)

is an arc length and consider the set X ⊆ S of the previous theorem.
Then we get by the theorem and by the three properties of any arc
length that

λ(S) =
∑

ϕ∈[0, 2π)Q λ(Fϕ[X]) =
∑

ϕ∈[0, 2π)Q λ(X) = 0 or +∞ .

But this is a contradiction because λ(S) ∈ (0,+∞). �

Exercise 11 Show that if property 1 of arc length is not required,
then the previous corollary does not hold.

• Well orderings. Let X be a set. A relation

≤X ⊆ X2

is a linear order on X if it is reflexive, transitive, weakly asymmetric
(a ≤X b ∧ b ≤X a ⇒ a = b) and total (∀ a, b ∈ X : a ≤X b ∨ b ≤X
a). We say that a linear order ≤X on X is a well ordering if every
nonempty set Y ⊆ X has a minimum element y ∈ Y : for every z ∈ Y
we have y ≤X z.

Exercise 12 Prove that minimum elements are unique.

Exercise 13 A linear order (X,≤X) is a well ordering if and only if
there is no infinite strictly descending chain

x1 >X x2 >X . . . , xn ∈ X .

Here x >X y means that y ≤X x and y 6= x.

4



Exercise 14 Assume that there is a well ordering on every set and
deduce from this the AC.

Theorem 15 (Zermelo) The axiom of choice holds if and only if
every set has a well ordering.

Proof. The “if” part is proven in Exercise 14. We prove the other
implication: if AC holds then every set has a well ordering. Let X 6= ∅
and f : P(X)\{∅} → X be a selector on X, i.e., a function satisfying
f(A) ∈ A (it is guaranteed by AC). We consider the set

L = {R : R ⊆ D(R)2, D(R) ⊆ X, R is a linear order on D(R)}

of linear orders R on sets D(R) ⊆ X. For any R ∈ L we set

DR = {A ⊆ D(R) : x, y ∈ D(R), y ∈ A, xRy ⇒ x ∈ A} .

So DR is the set of downsets in the linear order R. Let further

C = {R ∈ L : A ∈ DR, A 6= D(R)⇒ f(X \ A) = min
R

(D(R) \ A)}

be those linear orders R on subsets D(R) of X, for which for every
proper downset A in R the selector f chooses from its complement to
X an element that is also the minimum element of the complement of
A to D(R). We show that C contains (as an element) a well ordering
on X. The set C 6= ∅, for example {(f(X), f(X))} ∈ C.

Firstly we show that every R ∈ C is a well ordering on D(R). Let
R ∈ C. For any nonempty B ⊆ D(R) we set

A = {y ∈ D(R) \B : x ∈ B ⇒ yRx} .

The set D(R) \ A contains B and is therefore nonempty. Clearly, A
is a downset in R. Thus

y = f(X \ A) = min
R

(D(R) \ A) .

From the facts that D(R)\A ⊃ B and that y is the minimum element
in D(R) \ A we get that yRx for every x ∈ B. If y 6∈ B, we would
have y ∈ A by the definition of A, which is impossible. Hence y is in
B and is the minimum element of B, even of the superset D(R) \ A.
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Secondly we show that for every two linear orders R, S ∈ C one of
them extends the other: D(R) ∈ DS ∧R ⊆ S or D(S) ∈ DR∧S ⊆ R.
Let R, S ∈ C be given; we set

A = {x ∈ D(R)∩D(S) | Rx = Sx∧R∩ (Rx×Rx) = S ∩ (Sx×Sx)}

(here Rx = {y ∈ D(R) | yRx} and similarly for Sx). The set A
consists exactly of the elements that determine the same downset in
R and in S, that is moreover ordered in R and in S in the same way.
We claim that A ∈ DR ∩DS —A is a downset both in R and in S).
Let

z, y, x ∈ X with x ∈ A and yRx .

Then ySx because Rx = Sx. If zRy then zSy and vice-versa (in both
cases y, z ∈ Rx = Sx and this set is ordered in the same way in R

and in S). Thus Ry = Sy. This set is contained in Rx = Sx, and
therefore it is ordered in the same way both in R and in S. Hence
y ∈ A and A is a downset in R. One shows in the same way that A
is a downset in S.

Now if both D(R) \ A and D(S) \ A are nonempty, y = f(X \ A)
is the minimum element of D(R) \ A with respect to R and it is
also the minimum element of D(S) \ A with respect to S, and so
Ry = A ∪ {y} = Sy. It is also clear that R and S give A ∪ {y} the
same order (they add a new element y at the end), and so y ∈ A,
which is a contradiction. Thus for example A = D(R), R ⊆ S and S

extends R.
Thirdly we show that

T =
⋃
C ∈ C ,

and therefore C has (unique) inclusion-wise maximum element. By
the previous paragraph, T is a linear order on D(T ) =

⋃
R∈C D(R)

and for x, y ∈ D(T ) we have xTy, if and only if xRy for some R ∈ C
with x, y ∈ D(R). We check that T has the property defining C.
Let A ⊆ D(T ) be a proper downset in T and let b ∈ D(T ) \ A be
arbitrary. Thus b ∈ D(R) for some R ∈ C. We show that A ⊆ D(R).
If a ∈ A is arbitrary, then a ∈ D(S) for some S ∈ C. If D(S) ∈ DR,
then a ∈ D(R). If D(R) ∈ DS and aSb, then again a ∈ D(R). The
case bSa does not occur (for then one would have b ∈ A). Hence
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A ⊆ D(R) and D(R) \A 6= ∅. Therefore the element y = f(X \A) is
the minimum element in D(R) \A and yRb. Since b was arbitrary, y
is the minimum element in D(T ) \ A and we see that T ∈ C.

In conclusion we show that D(T ) = X, and T is therefore the
sought-for well ordering of X. If D(T ) 6= X, then we could extend T
by the element x := f(X \D(T )) to R:

D(R) := D(T ) ∪ {x} and yRx for every y ∈ D(R) (1)

— we add to T a new maximum element. It is clear that R ∈ C
(Exercise 16). Since R properly extends T , we have a contradiction
with the maximality of T . �

The previous proof is taken from a manuscript of A. Pultr.

Exercise 16 Show that the linear order R defined in equation (1)
indeed belongs to C.

• The prophet paradox. Let (X,≤X) be a linear order. For any a ∈ X
and any map f : X → Y we denote by f|a the restriction of f to the
set

{b ∈ X : b <X a} .
For a linear order (X,≤X) and a family F of functions f : X → Y ,
an (X,F)-prophet is a map

P : {f|a : f ∈ F , a ∈ X} → Y .

The value P (f|a) ∈ Y is the guess of P for the value f(a). The prophet
tries to guess from the values f(b) for all b <X a the value of f at a.
If P (f|a) = f(a) then P succeeds for f at a, else P errs for f at a.

Exercise 17 Let (X,≤X) = (R,≤) be the standard linear order of
real numbers and let

F = C(R) = {f : R→ R : f is continuous}

be the set of continuous real functions defined on R. The exercise is to
find an (R, C(R))-prophet that succeeds for f at a for every f ∈ C(R)
and every a ∈ R.

On the other hand we have the following equally simple result.
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Proposition 18 (all prophets err) For n ∈ N, let

(X, ≤X) = ([n], ≤) = ({1, 2, . . . , n}, ≤)

be the usual linear order on the first n natural numbers and let

F = Y [n] = {all maps from [n] to Y } ,

where Y is a set with at least two elements. Then it is true that for
every ([n], Y [n])-prophet P there exists a function f ∈ Y [n] such that

∀ a ∈ [n] : P (f|a) 6= f(a) .

Thus P errs for f at its every argument a ∈ [n].

Proof. Let

P : {g : g : [m]→ Y, m ∈ {0, 1, . . . , n− 1}} → Y

be an ([n], Y [n])-prophet. We set [0] = ∅. We define the values f(m)
of the required function f : [n] → Y by induction on m = 1, 2, . . . , n.
At the start we take f(1) ∈ Y so that f(1) 6= P (∅), which is possible
as |Y | ≥ 2. If m ∈ [n], m > 1 and f(1), f(2), . . . , f(m−1) are already
defined, we take

f(m) ∈ Y \ {P (f|m)} .
Again, this is possible as |Y | ≥ 2. It is clear that P errs for the
function f at its every argument. �

Exercise 19 What happens when |Y | ≤ 1?

One might think that when in Exercise 17 the family of continuous
functions is extended to the family F = RR of all real function, one
obtains a result similar to the previous proposition, namely that every
prophet has to err for a troublesome function very often. Surprisingly,
quite the opposite is the case under the assumption of AC. There exists
a prophet that for every real function almost never errs.

Theorem 20 (the prophet paradox) Let (X,≤X) = (R,≤) be the
usual linear order of real numbers and let

F = RR = {all functions from R to R} .

Then there exists an (R,RR)-prophet P such that

∀ f ∈ RR : the set {a ∈ R : P errs for f at a} is at most countable .
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Proof. We define P by means of the well ordering(
RR, �

)
that exists by Theorem 15 under the assumption of AC. For g ∈ RR

and a ∈ R we set

P (g|a) = g0(a) where g0 = min
�

({h ∈ RR : h|a = g|a}) .

Now let an f ∈ RR be given. We take the set

X = {a ∈ R : P (f|a) 6= f(a)}

of errors of P for f . Let a < b with a ∈ X be two real numbers,

ga = min
�

({g ∈ RR : g|a = f|a}︸ ︷︷ ︸
Ma

) and gb := min
�

({g ∈ RR : g|b = f|b}︸ ︷︷ ︸
Mb

) .

From a < b we get that Mb ⊆Ma and ga � gb. From

ga(a) = P (f|a) 6= f(a) = gb(a)

we see that ga 6= gb. Thus ga ≺ gb. We see that the linear order (X,≤)
(with the usual order ≤ of real numbers) is a well ordering. Else, by
Exercise 13, we would have in (X,≤) an infinite strictly descending
chain a1 > a2 > . . . , which would yield by the last argument an
infinite strictly descending chain ga1 � ga2 � . . . in (RR,�). But the
last chain does not exist because (RR,�) is a well ordering. Since
(X,≤) is a well ordering, by the next Exercise 21 the set X is at most
countable. �

Exercise 21 Let (R,≤) be the usual linear order of real numbers and
let X ⊆ R be such that the linear suborder (X, ≤) is a well ordering.
Show that then X is at most countable.

The last theorem is taken from the book

Ch. S. Hardin and A. D. Taylor, The Mathematics of Coordi-
nated Inference, Springer, 2013.

THANK YOU FOR YOUR ATTENTION!
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HOMEWORK: Exercises 6, 7, 13 and 21. Deadline is the end of
the coming Monday. Please, send me your solutions by e-mail to
klazar@kam.mff.cuni.cz. To get credits for the tutorial, you should
solve (or at least send in attempted solutions of) at least half of the
homework exercises.
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