
MATHEMATICAL STRUCTURES (NMAI064)
summer term 2023/24

lecturer: Martin Klazar

LECTURE 10 (April 23, 2024)
TOPOLOGY: WAYS OF INTRODUCING IT, EXAMPLES, AND

CONTINUOUS MAPS
(based on the lecture notes of A. Pultr, Chapter V.1–V.3)

• Review of metric spaces. One may approach the concept of space in
several ways. The students usually encounter first the metric space.
A set of points X is endowed with a non-negative real function ρ on
the Cartesian product X ×X (the metric or distance function) such
that

ρ(x, y) = 0 if and only if x = y.

ρ(x, y) = ρ(y, x) (symmetry).

ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (the triangle inequality).

A mapping f : X → Y , written f : (X, ρ) → (Y, σ), between metric
spaces is continuous if

∀x ∈ X ∀ε > 0 ∃ δ > 0 : ρ(x, y) < δ ⇒ σ(f(x), f(y)) < ε .

Exercise 1 Show that one can deduce the nonnegativity of ρ from the
three axioms.

Exercise 2 Let X := R(a, b) (the Riemann-integrable functions f : [a, b]→
R) and

ρ(f, g) :=

∫ b

a

|f(t)− g(t)| dt .

Decide if (X, ρ) is a metric space.

On the other hand, students learn very soon that for many purposes
(for instance, for basic problems of mathematical analysis) a con-
cretely chosen metric is not all that important — for instance, in the
Euclidean plane we can take, instead of the geometrically intuitive
distance

ρ((x1, x2), (y1, y2)) =
√

(x1 − y1)2 + (x2 − y2)2
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a more convenient distance

max(|x1 − y1|, |x2 − y2|)

and everything that concerns continuity remains valid.

• Birth of neighborhoods. In 1914, Felix Hausdorff introduced a conti-
nuity structure based on the notion of neighborhood. It took hold (in
several variants — later we will prefer the approach using the so called
open sets). The intuition is very satisfactory: it models the concept
of being surrounded as opposed to be “just on the border”. For in-
stance, a point a in the Euclidean plane for which ρ(a, (0, 0)) < 1 is
surrounded by the set M = {x | ρ(x, (0, 0)) ≤ 1} while a point b such
that ρ(b, (0, 0)) = 1 is not, although it also belongs to the set M . The
continuity is then defined by requiring that

for every x ∈ X and for every neighborhood V of f(x) there
is a neighborhood U of x such that f [U ] ⊆ V .

Examples. 1. On the set of real numbers take an M for a neigh-
borhood of x if there exist numbers a, b such that a < x < b and
{y | a < y < b} ⊆M . Note that the mappings continuous in this sense
coincide with those continuous in the standard metric ε, δ-definition.

2. The notion of neighborhood simplifies the situation. For in-
stance, take the extended real line R ∪ {−∞,+∞}, define the neigh-
borhoods of the x ∈ R as before, and for +∞ (resp. ∞) take the
M for which there is a number K with {x | x > K} ⊆ M (resp.
{x | x < K} ⊆M). Then the formula

for every neighborhood U of b there is a neighborhood V of a
such that f [V \ {a}] ⊆ U

defines the limit of a function f in a as b for any a and b, finite or
infinite.

• Neighborhoods. A topology on a set X is defined by neighborhoods if
every element x ∈ X is assigned a non-empty set U(x) ⊆ P(X) such
that

(nb1) For every U ∈ U(x) one has that x ∈ U .

(nb2) If U, V ∈ U(x) then U ∩ V ∈ U(x).
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(nb3) If U ∈ U(x) and U ⊆ V ⊆ X then V ∈ U(x).

(nb4) For every U ∈ U(x) there exists a W ∈ U(x) with W ⊆ U and
such that for every y ∈ W one has that U ∈ U(y).

Exercise 3 If the conditions (nb1)–(nb4) hold, then we also have
a formally stronger

(nb5) For every U ∈ U(x) there exists a W ∈ U(x) with W ⊆ U and
such that for every y ∈ W one has that W ∈ U(y).

• Open sets. Now we will present another approach (shortly we will
see that it is equivalent with the previous one). We say that we have
a topology on a set X defined by open sets if there is given a set
τ ⊆ P(X) such that

(op1) ∅, X ∈ τ .

(op2) If U, V ∈ τ then U ∩ V ∈ τ .

(op3) If Ui ∈ τ for every i ∈ I then
⋃

i∈I Ui ∈ τ .

The elements U ∈ τ are called open sets. The concept of an open
set is not quite as intuitive as that of a neighborhood, but it is much
easier to work with. Note, too, that there is no requirement similar
to the not very transparent (nb4).

The two approaches presented (and similarly further ones to be
mentioned later) are equivalent in the following sense: if we complete
the system by suitable definition of the other notion (as a derived
one), we will obtain the same, that is, the same system of (here two)
concepts. Let us discuss it in some more detail.

If we have a topology U on X in the sense of neighborhoods, define
τ ⊆ P(X) by setting

U ∈ τ iff U ∈ U(x) for all x ∈ U (*)

(that is, U is open if it is a neighborhood of each of its points).
The reader readily checks that such τ satisfies the requirements (op1)
through (op3).

If we have a topology τ ⊆ P(X) in the sense of open sets, define
neighborhoods U as follows:

U ∈ U(x) if there exists a V ∈ τ such that x ∈ V ⊆ U . (**)
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Again, it is easy to see that such U satisfies conditions (nb1) through
(nb4).

Start with U and construct τ by (*); now, take this τ and define
U ′ using (**). If U ∈ U(x) choose V by Exercise 3; then V ∈ τ and
hence U ∈ U ′(x). If U ∈ U ′(x) take the V from (**). This is in U(x)
and hence also U ∈ U(x). Thus, U ′ = U .

Start with a given τ and define U by (**), and then define τ ′ from
U by (*). If U ∈ τ then U ∈ U(x) for every x ∈ U (we can take U
itself for the V ) and hence U ∈ τ ′. If U ∈ τ ′ choose for each x ∈ U a
set Vx ∈ τ so that x ∈ Vx ⊆ U and obtain U =

⋃
x∈U Vx ∈ τ by (op3).

Hence τ = τ ′

• Closed sets. Let a topology on X be given as a system of open sets.
A subset A ⊆ X is said to be closed if X \ A is open. From the De
Morgan laws we immediately obtain that

a union of finitely many and an intersection of arbitrarily
many closed sets is closed.

We can, of course, start with a system that has this property and
define open sets as complements of the closed ones.

• Closure. Let (X, τ) be a topology. For M ⊆ X define the closure
of M by setting

M :=
⋂
{A |M ⊆ A ⊆ X and A is closed} .

Since the intersection of an arbitrary system of closed sets is closed,
we see that M is the inclusion-wise least closed set containing M .

Exercise 4 Prove the following properties of the closure operation.

1. M ⊆M and ∅ = ∅.

2. M ⊆ N ⇒M ⊆ N .

3. M ∪N = M ∪N .

4. M = M .

If we wish to define the closure out of the neighborhoods, we will
find useful the following formula:

M = {x ∈ X | ∀ neighborhood U of x one has that U ∩M 6= ∅} .
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Exercise 5 Prove it.

A topology can be defined by starting with the closure as well. We
take for the basic notion the closure as a mapping u from P(X) to
P(X), M 7→ M , satisfying the formulas from Exercise 4. Then we
can define open sets U as those for which u(X \ U) = X \ U , and
M ⊆ X is a neighborhood of x if x 6∈ u(X \M). It is a useful exercise
to check the equivalence similarly as in (*) and (**) above.

And one more definition: the interior of M ⊆ X is the largest
open set contained in M . The operation of interior has the properties
(dually) analogous to those of closure (precisely which?), and it can
be, again, taken as the basic notion for the topology.

Exercise 6 Describe in detail the dual properties of interiors.

Summary and definition. A topological space is a set together
with a topology defined by any of the ways described above. It does
not matter with which of the notions we start (neighborhoods, open
or closed sets, closure, interior); we work with all of them anyway.
In these lectures, because of the technical simplicity, we will usually
start with the open sets.

• Examples. We first consider metric spaces. In a metric space (X, ρ),
we define for x ∈ X and ε > 0 the set

Ω(x, ε) := {y ∈ X | ρ(x, y) < ε}

(the open ball with center x and radius ε). A neighborhood of an
x ∈ X is any M ⊆ X such that, for a sufficiently small ε, Ω(x, ε) ⊆M .
An open set is one that is in this sense a neighborhood of each of its
points (of course), that is, such a U that for every x ∈ U there is an
ε such that Ω(x, ε) ⊆ M . For a point x ∈ X and a subset A ⊆ X

define ρ(x,A) := inf({ρ(x, a) | a ∈ A}). Set

A := {x ∈ X | ρ(x, A) = 0}

and declare A to be closed if A = A. Check that the relations between
thus defined notions agree with the above definitions. A topological
space obtained in this way from a metric one is said to be metrizable.

Discrete space. On a set X take for τ the whole of P(X). Thus, all
the M ⊆ X are both open and closed, every set containing a point x
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is its neighborhood, M = M for any M ⊆ X. In this case we speak
of the discrete topology on X.

Indiscrete space. This is the opposite extreme: take for open (and
closed) sets the ∅ and X only. Then each point has one and only
neighborhood, namely the whole of X, and the closure of any non-
void set is the whole space as well.

Cofinite topology. This is only a little less primitive case: the open
sets are ∅ and the complements of finite sets. The closed sets are then
precisely the finite ones and the whole space, and the closure of an
infinite set is the whole space.

Exercise 7 Check that cofinite topology is indeed a topology.

Alexandroff (quasidiscrete) topology. Let (X,≤) be a preordered
set (the following definition is usually applied for posets, but a pre-
order suffices). Recall the previous notation ↑M and ↓M . In the
Alexandroff topology, the open sets are all the increasing sets (that
is, the U ⊆ X such that ↑U = U). The closed sets are then all the
decreasing ones (that is, the U ⊆ X with ↓U = U , and the closure is
given by M =↓M . Note that in this topology

(qd) all the intersections of open sets are open, all unions of closed
sets are closed, and

⋃
i∈J Mi =

⋃
i∈J Mi for any system of subsets.

This is why the Alexandroff spaces are often termed the quasidiscrete
spaces. As a simple exercise prove that for every space satisfying
condition (qd) there is a preorder such that the topology is given as
described (define x ≤ y by {y} ⊆ {x}).

Scott topology. Again, start with a partially ordered set (X,≤).
Now, declare a subset U ⊆ X for open

(Sc) if it is increasing and if for every directed set D, supD ∈ U
implies that U ∩D 6= ∅.

This topology plays an important role in theoretical computer science.

• Bases and subbases of a topology. A basis of a topology τ (presented
as the system of open sets) is any subset B ⊆ τ such that

∀U ∈ τ : U =
⋃
{B ∈ B | B ⊆ U} .
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Note that a basis can be much simpler and more transparent than the
whole of the topology: thus for instance we can take just the open
intervals as a basis of the topology of the real line (and we can do
just with the open intervals (a, b) with rational a, b); or, a basis of the
topology of the plane can be reduced just to the open squares.

A subbasis of a topology τ is any S ⊆ τ such that the set of all
finite intersections of the elements of S is a basis of τ . The subbases
can be, of course, again much simpler than bases. For the topology
of the real line, for instance, we can now do just with the subbasis
{(−∞, a), (a, +∞) | a ∈ Q}.

Exercise 8 Every subset S of P(X) is a subbasis of a topology, namely
of the smallest topology in which all the U ∈ S are open. This topology
is then said to be generated by the S.

Proposition 9 (on bases) A set system B ⊆ P(X) is a basis of
a topology (X, τ) if and only if the following two conditions hold.

1. X =
⋃
B.

2. If A,B ∈ B then A ∩B =
⋃
{C ∈ B | C ⊆ A ∩B}.

Exercise 10 Prove this proposition.

• Two more examples. The interval topology. Let (X,≤) be a linearly
ordered set such that there is in X neither minimum nor maximum
element. The set of all the intervals (a, b) := {x ∈ X | a < x < b},
a, b ∈ X, constitutes a basis of a topology; this topology is called the
interval topology on (X,≤).

Exercise 11 Check that the intervals (a, b) indeed form a basis of
a topology.

Sorgenfrey line. And one more, a little bizarre topology on the set
of real numbers (it can be used for the so called semicontinuity, but
also in theory to illustrate some weird phenomena). The Sorgenfrey
topology is generated by the half-closed intervals; more precisely, it has
the basis B := {[a, b) | a, b ∈ R} where [a, b) = {x ∈ R | a ≤ x < b}.

Exercise 12 Prove that B is indeed a basis of a topology on R.

7



Proposition 13 (on Sorgenfrey line) In contrast to the standard
Euclidean topology on R, the Sorgenfrey topology on R has no finite
or countable basis.

Proof. Let Ui ⊆ R, i ∈ I, be a system of open sets in the Sorgenfrey
topology that forms its basis. Thus each Ui is a union of several
intervals of the form [a, b) and each interval [a, b), a < b, is the union

[a, b) =
⋃

i∈J Ui

for some J ⊆ I. The key observation is that then there exists a real
number c with c > a (and, in fact, c ≤ b) and an index j ∈ J such that
[a, c) ⊆ Uj. Therefore we may define a map f : R → I by f(a) := j,
where j ∈ J is that index for the interval [a, b) = [a, a + 1). It is not
possible that

f(a) = f(a′) = j ∈ I
for some real numbers a < a′, because it would mean that for some
real numbers c > a and c′ > a′ we have that

[a, c) ⊆ Uj ⊆ [a, a+ 1) ∧ [a′, c′) ⊆ Uj ⊆ [a′, a′ + 1)

and a ∈ [a′, a′+ 1), which is not the case. Thus f is injective and I is
uncountable. �

• Continuous mappings. We say that a mapping f : X → Y is a con-
tinuous mapping from a topology (X, τ) to another topology (Y, σ),
written also as f : (X, τ)→ (Y, σ), if for every x ∈ X and every neigh-
borhood V of f(x) in the topology σ there exists a neighborhood U
of x in the topology τ such that f [U ] ⊆ V .

Exercise 14 Prove that f is continuous if and only if

∀V ∈ σ : f−1[V ] ∈ τ .

Prove this equivalence for closed sets.

Exercise 15 Prove that the composition of two continuous maps be-
tween topological spaces is a continuous map.

If X is endowed with the discrete topology or if Y is endowed with
the indiscrete one, then every mapping f : X → Y is continuous.
From the previous we also see the following.
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Corollary 16 Let S be a subbasis of a topology σ. Then f : (X, τ)→
(Y, σ) is continuous if and only if for every U ∈ S one has f−1[U ] ∈ τ .

Proposition 17 (a continuous map) Let D be a subset of the in-
terval I = [0, 1] (which we assume endowed with the topology induced
by the standard metric) such that for any two numbers a < b in I
there exists a d ∈ D, such that a < d < b. Let Ud, d ∈ D, be open
sets in a topological space X such that

d < e⇒ Ud ⊆ Ue .

Then the mapping f : X → I defined by

f(x) := inf({d ∈ D | x ∈ Ud})

is continuous.

Proof. For a ∈ (0, 1) we have that

f(x) > a ⇐⇒ x 6∈
⋂
{Ud | a < d} ⇐⇒ x ∈ X \

⋂
{Ud | a < d} .

Also,
f(x) < a ⇐⇒ x ∈

⋃
{Ud | a > d} .

Thus f−1[(a, 1]] and f−1[[0, a)] are open sets in X. Since

{(a, 1], [0, a) | a ∈ I}

constitutes a subbasis of the space I, the statement follows. �

We will need this proposition later on.

• Homeomorphisms. If for a continuous mapping f : (X, τ) → (Y, σ)
between topological spaces there exists an inverse mapping g : (Y, σ)→
(X, τ) that is also continuous, we say that f is a homeomorphism and
that the spaces (X, τ) and (Y, σ) are homeomorphic.

Exercise 18 Let S = {(x, y) ∈ R2 | x2 + y2 = 1} be the unit circle in
the plane and the map f : [0, 2π)→ S be given by

f(t) = (cos t, sin t) .

Is f a homeomorphism between the Euclidean topological spaces [0, 2π)
and S?
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THANK YOU!

HOMEWORK: Exercises 2, 4, 10 and 18. Deadline is the end of
the coming Sunday. Please, send me your solutions by e-mail to
klazar@kam.mff.cuni.cz. To get credits for the tutorial, you should
solve (or at least send in attempted solutions of) at least half of the
homework exercises.
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