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lecturer: Martin Klazar

LECTURE 13 (5/16/2022). TOPOLOGY: CONNECTED AND
DISCONNECTED SPACES

(based on the lecture notes of A. Pultr, Chapter V.7)

• Connected and disconnected spaces. A set A ⊆ X in a topological
space (X, τ) is clopen if it is closed and open, i.e. both A ∈ τ and
X\A ∈ τ . Clearly, both ∅ and X are clopen. A space X is connected if
X 6= ∅ and the only clopen sets in it are just those two, ∅ and X. Else,
if there is a nontrivial clopen set A ⊆ X, A 6= ∅, X, in X, we say that
X is disconnected. (So we exclude X = ∅ from our considerations. We
omit checks of this case in the forthcoming proofs and leave them to
the reader as exercises.) A subset Y ⊆ X is connected if the subspace
induced on Y is connected.

Exercise 1 Let Y ⊆ X and (X, τ) be a topology. Show that the subset
Y is disconnected if and only if

∃A, B ∈ τ : (A ∩ Y, B ∩ Y 6= ∅) ∧ (Y ⊆ A ∪B) ∧
∧ (A ∩ Y ) ∩ (B ∩ Y ) = ∅ .

We say that A and B rip Y . The same equivalence holds with closed
sets A and B.

Exercise 2 Prove that a subset Y ⊆ R is connected (in the Euclidean
topology) if and only if Y is an interval, i.e. Y has the property that

(x, y, z ∈ R) ∧ (x < y < z) ∧ (x, z ∈ Y )⇒ y ∈ Y .

Theorem 3 (continuous images) All continuous images of connected
sets are connected.

Proof. Suppose that (X, τ) and (Z, σ) are topological spaces, that
Y ⊆ X and that f : X → Z is continuous. We show that if f [Y ] is
disconnected in Z then Y is disconnected in X. Thus we assume that
we have sets A,B ∈ σ ripping f [Y ] (as described in Exercise 1). It is
easy to check (we are lazy to write it down) that the sets

f−1[A], f−1[B] ∈ τ
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rip Y and so Y is disconnected. �

Theorem 4 (on closure) Closure of a connected set is connected.

Proof. Suppose that (X, τ) is a topological space, Y ⊆ X and that
Y is disconnected. We take closed sets A and B in X ripping Y
and claim that they also rip Y and so that Y is disconnected. The
required properties of A and B with respect to Y (see Exercise 1) are
all obviously satisfied from the relation that Y ⊆ Y , except maybe
for the property that both A and B should intersect Y . Suppose for
the contrary that, say, Y ⊆ A and Y ∩ B = ∅. But then since A is
closed, also Y ⊆ A and Y ∩B = ∅, contradicting the assumption that
A and B rip Y . �

• Connectedness and products. We show that any product of con-
nected spaces is connected. For the proof we need a basically combi-
natorial result.

Theorem 5 (combinatorial) Suppose that (X, τ) is a topology and
that Xi ⊆ X, i ∈ J , are connected subsets such that for every i, j ∈ J
there exist finitely many indices i0, i1, . . . , in ∈ J , n ∈ N such that

i0 = i ∧ in = j ∧ (∀ k = 0, 1, . . . , n− 1 : Xik ∩Xik+1
6= ∅) .

Then the set Y :=
⋃

i∈J Xi ⊆ X is connected.

Proof. As usual, we prove the reversal; we assume that the union Y
is disconnected and deduce a contradiction. Suppose that A,B ∈ τ
rip the union Y . It follows that for every i ∈ J , either Xi ⊆ A and
Xi ∩ B = ∅, or Xi ⊆ B and Xi ∩ A = ∅. Let J1 ⊆ J , resp. J2 ⊆ J ,
be the set of indices i ∈ J for which the former, resp. the latter, case
occurs. The sets J1 and J2 partition J and are nonempty. We take
a j1 ∈ J1 and a j2 ∈ J2 and apply to these two indices the hypothesis
on the set system Xi, i ∈ J . It follows that there exist indices j3 ∈ J1

and j4 ∈ J2 such that Xj3 ∩Xj4 6= ∅. But since Xj3 ⊆ A and Xj4 ⊆ B,
we see that the sets A ∩ Y and B ∩ Y intersect, contradicting the
assumption that A and B rip Y . �
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Theorem 6 (on products) The product X :=
∏

i∈J(Xi, τi) of any
system of connected topological spaces is connected.

Proof. We begin with the case J = {1, 2}. We fix a point x ∈ X1

and consider the subsets

{x} ×X2 and X1 × {y}, y ∈ X2 ,

in X1 × X2. Their union equals X1 × X2, the former set intersects
each of the latter sets, the former set is homeomorphic to X2 and
hence connected, and similarly for each of the latter sets. By the
previous theorem, the product X1 ×X2 is connected. Thus also any
finite product of connected spaces is connected.

We consider the case with a general index set J . For every i ∈ J
we fix a point ai ∈ Xi, and for every finite set of indices K ⊆ J set

XK := {(xi)i∈J | i ∈ J \K ⇒ xi = ai} ⊆ X .

The (sub)space XK is homeomorphic with
∏

i∈K Xi (Exercise 7) and
hence connected. Clearly, for any finite sets K,K ′ ⊆ J we have that
XK , XK ′ ⊆ XK∪K ′. Thus by Theorem 5, the set

M :=
⋃
K⊆J

K finite

XK ⊆ X

is connected. The set M is dense in X because any nonempty basis
set
⋂

i∈K p
−1
i [Ui], where K ⊆ J is finite and Ui ∈ τi, intersects the set

XK ⊆M . Thus, by Theorem 4, the set M = X is connected. �

Exercise 7 Prove that the space XK in the previous proof is homeo-
morphic with the corresponding finite product

∏
i∈K Xi.

Exercise 8 Prove that if the product
∏

i∈J(Xi, τi) is connected, then
every space (Xi, τi) is connected.

• Path-wise and arc-wise connected spaces. We say that a topological
space (X, τ) is path-wise connected if

∀x, y ∈ X ∃ a continuous map f : [0, 1]→ X : f(0) = x∧ f(1) = y .

Here the real interval [0, 1] has the Euclidean topology and f need not
be injective. We say that (X, τ) is arc-wise connected if in the above,
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the map f is additionally required to be injective and only points
x 6= y are considered. These maps f (or their images) are called paths
and arcs (joining the points x and y), respectively.

Exercise 9 Show that every arc-wise connected space is path-wise
connected.

Exercise 10 Show that every arc f : [0, 1] → X is in fact a homeo-
morphism from [0, 1] to the subspace f [ [0, 1] ] ⊆ X.

In graph theory, we call a walk what is a path in topology, and — in
the injective case — a path what is an arc in topology. The terminology
in graph theory is not completely standardized, though.

Exercise 11 Recall the argument that in graph theory both kinds of
connectedness coincide: a graph G = (V,E) is connected iff every two
vertices in V can be joined by a walk iff every two vertices in V can
be joined by a path.

It is different in topology: in the article Connected space in Wikipedia,
https://en.wikipedia.org/wiki/Connected_space, one can find
a simple example of a non-Hausdorff space that is path-wise connected
but is not arc-wise connected, and also the following claim.

Theorem 12 (paths versus arcs) Every Hausdorff space that is path-
wise connected is also arc-wise connected.

The proof — I found some remarks and hints concerning it on the
Internet but nothing really clear — seems to be nontrivial.

Proposition 13 (p.-w. conn. ⇒ conn.) Any path-wise connected
space (X, τ) is connected.

Proof. We suppose that (X, τ) is path-wise connected, fix a point
x ∈ X, and consider the sets

fy[ [0, 1] ] ⊆ X, y ∈ X ,

where each fy : [0, 1]→ X is a path joining x and y. These sets share
the point x = fy(0), each is connected by Theorem 3 and Exercise 2,
and their union is the wholeX (since fy(1) = y). Hence by Theorem 5,
the space X is connected. �
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Theorem 14 (on open sets in Rn) Every connected open set U ⊆
Rn (in the Euclidean topology) is arc-wise connected.

Proof. Consider the relation ∼ on a connected open set U ⊆ Rn,
defined for x, y ∈ U with x 6= y by

x ∼ y ⇐⇒ ∃ an arc in U joining x and y ,

and enlarged by all diagonal pairs x ∼ x, x ∈ U . It is not hard to
show (in Exercise 15) that ∼ is an equivalence relation and that every
block (of ∼)

[x] = {y ∈ U | x ∼ y}, x ∈ U ,

is an open set. If there were at least two blocks, we would have for U
a partition

U = V ∪W
in two disjoint nonempty open sets: V is an arbitrary block and W

is the union of the other blocks. But then U would be disconnected,
which is not the case. So there exists only one block of ∼ and U is
arc-wise connected. �

Exercise 15 Prove that the relation ∼ in the previous proof is an
equivalence relation and has open blocks.

Exercise 16 Prove that every connected set Y ⊆ R (in the Euclidean
topology) is arc-wise connected.

In two dimensions the situation is different.

Theorem 17 (a peculiar closed plane set) The closed set

P = A ∪B :=
(
{0} × [−1, 1]

)
∪ {(t, sin(1/t)) | 0 < t ≤ 1} ⊆ R2

is connected but is not path-wise connected.

Proof. Since P = B and B is connected (it is a continuous image of
an interval), by Theorem 4 the set P is connected.

We show that no path in P joins any a ∈ A and b := (1, sin 1) ∈ B.
Let a ∈ A be arbitrary and suppose for the contrary that

f = f(t) = (fx(t), fy(t)) : [0, 1]→ P
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is a continuous map such that f(0) = a and f(1) = b. We may assume
that f(t) ∈ B for every t ∈ (0, 1]; else we would replace [0, 1] with
the interval [α, 1], where α is the supremum of t ∈ [0, 1] such that
f(t) ∈ A. We claim that there are two sequences

1 ≥ u1 > u2 > · · · > 0 and 1 ≥ v1 > v2 > · · · > 0

that both go in limit to 0 and are such that for every i ∈ N,

fy(ui) = −1 and fy(vi) = 1 .

The claim on the uis follows from the fact that for every u ∈ (0, 1]
there exists a u′ ∈ (0, u) such that fy(u

′) = −1. Indeed, we take
a large enough k ∈ N such that

t1 :=
1

(2k − 1/2)π
< fx(u) .

Since limt→0 fx(t) = 0, we can find a t2 ∈ (0, u) such that fx(t2) < t1.
The function fx : [t2, u]→ R is continuous, and hence attains at some
u′ ∈ (t2, u) the intermediate value

fx(u′) = t1 .

But then
fy(u

′) = sin(1/t1) = −1 ,

as claimed. The claim on the vis follows by a similar argument. Thus
the limit

lim
t→0

fy(t)

does not exist, which contradicts the fact that it should be equal to
ay ∈ [−1, 1], where a = (0, ay). �

• Around Jordan’s theorem. There are several famous and difficult-
to-prove results on connected and disconnected sets in the Euclidean
plane R2. We mention two, without proofs (maybe we will say more
on them in the next year version of this course). After that we give,
with a proof, a shocking example.

Let (X, τ) be a topological space. A (connected) component of X
is any inclusion-wise maximal connected subset Y ⊆ X.
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Exercise 18 Prove that components partition the space (i.e., they are
disjoint and nonempty and their union is the whole space).

A (topological) circuit (or a loop) in X is any “closed arc” in X,
i.e., any continuous map

f : [0, 1]→ X

such that f(0) = f(1) but the restriction f | (0, 1] is injective.

Theorem 19 (C. Jordan, 1887) For every circuit f : [0, 1] → R2,
the subspace

R2 \ f [ [0, 1] ]

of the Euclidean plane R2 has exactly two components. They are both
open, one of them is bounded and is called the interior (of f), and the
other is unbounded and is called the exterior (of f).

Exercise 20 Prove that (i) every component of the complement of
a loop in R2 is open and (ii) exactly one of the components is un-
bounded.

Camile Jordan (1838–1922) proved his theorem in his textbook of
mathematical analysis Cours d’analyse de l’École Polytechnique. By
the interesting Wikipedia article Jordan curve theorem, https://en.
wikipedia.org/wiki/Jordan_curve_theorem, “For decades, math-
ematicians generally thought that this proof was flawed and that the
first rigorous proof was carried out by Oswald Veblen (1880–1960).
However, this notion has been overturned by Thomas C. Hales (1958)
and others.”

Many textbooks of discrete mathematics prove Euler’s formula

|V | − |E|+ |F | = 2 ,

which relates the numbers of vertices V , edges E, and faces F in
a drawing of any connected plane graph, and mention that the proof
relies on Jordan’s theorem. It seems that not so many people realize
that besides Jordan’s theorem, another fundamental result on arcs in
the plane is needed for Euler’s formula, namely the following.
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Theorem 21 (the arc theorem) For every arc f : [0, 1] → R2, the
subspace

R2 \ f [ [0, 1] ]

of the Euclidean plane R2 is connected.

Without this theorem you would not be able to show that the one-edge
plane graph has only one face.

Theorem 22 (a shocking example) Let

K := [0, 1]× [0, 1] ⊆ R2

be the Euclidean unit square and let A := {0}×[0, 1], B := [0, 1]×{0},
C := {1} × [0, 1] and D := [0, 1] × {1} be its left, bottom, right and
top side, respectively. There exists a partition

K = X ∪ Y

into connected sets X and Y such that X ∩ Y = ∅ and

X ∩ A 6= ∅ ∧ X ∩ C 6= ∅ ∧ Y ∩B 6= ∅ ∧ Y ∩D 6= ∅ .

Proof. We consider the partition

[0, 1] = I ∪ J := ([0, 1] ∩Q
)
∪
(
[0, 1] \Q

)
and set

X :=
(
I × [0, 1)

)
∪
(
J × {1}

)
and Y := K \X.

It is clear that X and Y partition K, that X intersects both A and
C, that Y intersects both B and D, and that both X and Y are
connected (Exercise 23). �

Exercise 23 Prove that the sets X and Y in the previous proof are
connected.

Thus it is possible to go in K, in a connected way, first from A to C
and then from B to D in such a way that the two journeys do not
intersect! However, we have of course the following result on journeys
in K that use arcs.
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Exercise 24 Suppose that

f, g : [0, 1]→ K

are two arcs such that f(0) ∈ A, f(1) ∈ C, g(0) ∈ B and g(1) ∈ D,
but these (at most) four points are the only intersections of the images
of f and g with the boundary of the square K. Prove that then these
images intersect,

f [ [0, 1] ] ∩ g[ [0, 1] ] 6= ∅ .
Hint: use Theorems 19 and 21 (maybe not even these suffice for the
proof).

• Locally connected spaces, totally and extremally disconnected spaces.
A space (X, τ) is locally connected if for every point x ∈ X and every
open set U 3 x there exist sets V ∈ τ and K ⊆ X such that K is
connected and

x ∈ V ⊆ K ⊆ U .

In words, every neighborhood of every point contains its connected
neighborhood.

Exercise 25 Show that the space P in Theorem 17 (which is con-
nected) is not locally connected.

A space (X, τ) is totally disconnected if every of its components is
a point. A space (X, τ) is extremally disconnected if the closure of
every open set in X is open and hence clopen).

Exercise 26 Prove that the Euclidean subspace Q ⊆ R is totally dis-
connected.

THANK YOU!

To get “zápočet” for the tutorial, you should solve (or at least send
in solutions of) at least half of the homework exercises.

Here are six questions for the exam. I will examine only these, i.e.
not the first part of the course taught by A. Pultr.

1. Show that AC implies the existence of a non-measurable set —
Cor. 11 in l. 9.
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2. Explain the prophet paradox — Thm. 21 in l. 9.

3. Explain ways to introduce topology on a set and prove that the
Sorgenfrey line has no countable basis — l. 11 and Prop. 13 in
l. 10.

4. Explain the hierarchy of separation axioms for topological spaces
and prove that metrizable topology is normal — l. 11 and Ex. 19
in l. 11.

5. Define compact spaces, prove Tikhonov’s theorem and give some
application of it — l. 13 and Thms. 8 and 10 in l. 12.

6. Define connected and path-wise connected spaces and give an ex-
ample of a space that is connected but not path-wise connected —
l. 14 and Thm. 17 in l. 13.
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