
MATHEMATICAL STRUCTURES (NMAI064)
summer term 2021/22

lecturer: Martin Klazar

LECTURE 11 (May 2, 2022). TOPOLOGY: STANDARD
CONSTRUCTIONS AND SEPARATION AXIOMS

(based on the lecture notes of A. Pultr, Chapter V.4–V.5)

• Subspaces. Let (X, τ) be a topological space and let Y ⊆ X. We
easily check that

τ |Y := {U ∩ Y | U ∈ τ}
constitutes a topology on Y . This topology is referred to as the topol-
ogy of subspace, or the topology induced on the subset.

Exercise 1 Let Y ⊆ X and (X, τ) be a topology. Prove that (Y, τ |Y )
is a topological space. Give an example of sets Z ⊆ Y ⊆ X such that
Z is open in the space Y but not in the space X.

For the embedding mapping j : Y → X, j(y) = y, we have Y ∩U =
j−1[U ]. Thus, j : (Y, τ |Y ) → (X, τ) is a continuous map. Moreover,
this topology is extreme in the sense that τ |Y is the least system
of open sets necessary to make this map continuous. This has an
important consequence.

Proposition 2 (on subspaces) Let Y be a subspace of a space X,
j : Y → X be the embedding mapping, and g : Z → Y be a map. If
the map jg : Z → X is continuous, then g is continuous too.

Exercise 3 Prove this proposition.

We observe that for any space (X, τ) and Y ⊆ X, in the space
(Y, τ |Y ) the closed sets are precisely the sets of the form A ∩ Y
where A is closed in X, the closure of a set M is obtained from the
original one as M ∩Y , and the neighborhoods are the intersections of
the original neighborhoods with Y .

The embedding of a subspace. Slightly more generally, if (X, τ) and
(Y, θ) are topological spaces, if j : Y → X is a one-one mapping, and
if

θ := {j−1[U ] | U ∈ τ} ,
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we speak of the j as of an embedding of a subspace. Realize that this
is precisely the case in which the restriction (x 7→ j(x)) : Y → j[Y ]
of the mapping j is a homeomorphism.

• Products. Let us have a system (Xi, τi), i ∈ J , of topological spaces.
On the Cartesian product

∏
i∈J Xi we define a topology τ by the

subbasis
{p−1j [U ] | j ∈ J, U ∈ τj} ,

where pj :
∏

i∈J Xi → Xj are the standard projections (xi)i∈J 7→ xj.
The topological space thus obtained is called the product of the system
(Xi, τi), i ∈ J , and if we wish to emphasize that we speak of this space
and not just of its carrier

∏
i∈J Xi, we write∏
i∈J

(Xi, τi) .

For finite systems we write

(X1, τ1)× (X2, τ2), X × Y × Z, X1 × · · · ×Xn

etc.
Note that the subspaces and product are projectively generated.

The topology is determined by the requirement that the preferred
maps (in the first case the embedding, in the second one the projec-
tions) be continuous with the least possible systems of open sets. Sim-
ilarly below, the factor (quotient) space and the sum will be injectively
generated. Also note that for the finite systems of metric spaces we
obtain the topology in agreement with the products of metric spaces
as known from the course of mathematical analysis.

Theorem 4 (on products) Let

fi : (Y, θ)→ (Xi, τi), i ∈ J ,

be a system of continuous mappings. Then there is precisely one con-
tinuous mapping

f : (Y, θ)→
∏
i∈J

(Xi, τi)

such that pif = fi for all i ∈ J .
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Proof. The set-theoretic mapping f such that pif = fi for all i ∈ J
(namely, f(y) = (fi(y))i∈J) is continuous by Corollary 16 in the last
lecture (the subbasis criterion): we have

f−1[p−1i [U ]] = f−1i [U ] .

�

• Factor (quotient) space. Let (X, τ) be a topological space and let
q : X → Y be a mapping onto (in particular we have in mind the
situation where there is an equivalence E on X and q is the projection
(x 7→ Ex) : X → X/E). We define a topology

θ := {U ⊆ Y | q−1[U ] ∈ τ}

on Y . This is, again, an extreme topology (this time the largest one)
such that the particular mapping (here, q : X → Y ) is continuous. We
speak of the factor or quotient topology, and of the factor or quotient
space, or simply of the quotient. Analogically as Proposition 2 we
(you) easily prove the next one.

Proposition 5 (on quotients) Let Y be a quotient of a space X

under the mapping q : X → Y and g : Y → Z be a map. If gq : X → Z

is continuous, then also g is continuous.

Exercise 6 Prove this proposition.

• Sums (coproducts). Let us have a system (Xi, τi), i ∈ J , of topolog-
ical spaces. On the disjoint union∐

i∈J

Xi :=
⋃
i∈J

Xi × {i}

we define a topology τ by the basis

{ιi[U ] | i ∈ J, U ∈ τi} ,

where ιj : Xj →
∐

i∈J Xi are the injections x 7→ (x, j). The obtained
topological space is referred to as the sum, or coproduct, of the system
(Xi, τi). If already the sets Xi are disjoint, we use for the carrier their
union

⋃
i∈J Xi.
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Theorem 7 (on sums) Let

fi : (Xi, τi)→ (Y, θ), i ∈ J ,

be a system of continuous mappings. Then there exists precisely one
continuous mapping

f :
∐
i∈J

(Xi, τi)→ (Y, θ)

such that fιi = fi for all i ∈ J .

Proof. Of course, it is the mapping defined by f((x, i)) = fi(x). �

And some more terminology: if τ and θ are topologies on the same
set and if τ ⊆ θ, we say that τ is weaker (coarser) than θ, and that θ
is stronger (finer) than τ .

• Separation axioms Ti. These are various conditions on a topology
(X, τ) ensuring sufficient richness of the set system τ of open sets.
Roughly speaking, with increasing index i these axioms define richer
and richer topologies.

• T0 topologies. We say that a space (X, τ) satisfies the axiom T0 (or
that it is a T0-space) if

∀x, y ∈ X, x 6= y ∃U ∈ τ : (x ∈ U 63 y) ∨ (y ∈ U 63 x) . (T0)

Exercise 8 X is a T0-space if and only if

∀x, y ∈ X : {x} = {y} ⇒ x = y .

• T1 topologies. We say that a space (X, τ) satisfies the axiom T1 (or
that it is a T1-space) if

∀x, y ∈ X, x 6= y ∃U ∈ τ : x ∈ U 63 y . (T1)

Exercise 9 X is a T1-space if and only if all finite sets in X are
closed. That is, if and only if each point {x}, x ∈ X, is a closed set.

• T2 topologies. We say that a space (X, τ) satisfies the axiom T2 (or
that it is a T2-space or that it is a Hausdorff space) if

∀x, y ∈ X, x 6= y ∃U, V ∈ τ : x ∈ U ∧ y ∈ V ∧ U ∩ V = ∅ . (T2)
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Proposition 10 (on continuous maps to T2-spaces) Let

f, g : X → Y

be continuous mappings and let Y be Hausdorff. Then the set

{x ∈ X | f(x) = g(x)}

is closed in the space X.

Proof. We show that the complementary set

M := {x ∈ X | f(x) 6= g(x)}

is open in X. For any x ∈M we take two disjoint open sets Ux 3 f(x)
and Vx 3 g(x) in Y . Then

M =
⋃
x∈M

f−1[Ux] ∩ g−1[Vx]

and therefore M is an open set in X. �

A subset M ⊆ X in a topological space is dense (in X) if M =
X. From the previous proposition we immediately obtain the next
corollary.

Corollary 11 Let
f, g : X → Y

be continuous mappings to a Hausdorff space Y and such that for
a dense set M ⊆ X one has that f |M = g |M . Then f = g.

The quasidiscrete topology of (X,≤) is T0 iff ≤ is a partial order
(and not just a preorder). With the exception of the discrete case,
and this also holds for the Scott topology, it is not T1. The cofinite
topology is T1 but if the underlying set is infinite, it is not Hausdorff.
Metrizable topologies (and also the Sorgenfrey line) are Hausdorff;
these are, however, much richer topologies that will be discussed in
the following paragraphs.

Exercise 12 Prove that the cofinite topology is T1 but that, if the
underlying set is infinite, it is not a Hausdorff topology.

5



• Zariski topology. This is an important kind of topology used in
algebraic geometry.

Theorem 13 (introducing Zariski topology) Let n ∈ N, K be
a field, and K[x1, . . . , xn] be the ring of polynomials in n variables xi
and with coefficients in K. For P ⊆ K[x1, . . . , xn] we define

Z(P ) := {a ∈ Kn | ∀ f ∈ P : f(a) = 0K} .

Then
(Kn, {Z(P ) | P ⊆ K[x1, . . . , xn]})

is a topology, defined by means of closed sets.

Proof. Clearly, ∅ and Kn are in the set system as ∅ = Z({1K}) and
Kn = Z({0K}); here 1K and 0K denote the corresponding constant
polynomials. If Pi, i ∈ J , are subsets of K[x1, . . . , xn] then it is easy
to see that ⋂

i∈J Z(Pi) = Z(
⋃

i∈J Pi) .

Thus the given set system is closed under arbitrary intersections. Fi-
nally, if P,Q ⊆ K[x1, . . . , xn] then it follows that

Z(P ) ∪ Z(Q) = Z({fg | f ∈ P, g ∈ Q}) .

Thus the given set system is closed under finite unions. �

Exercise 14 Prove the last two equalities.

Exercise 15 Prove that Zariski topology is T1.

One can show that if the field K is infinite then every two nonempty
open sets in Zariski topology intersect, and therefore it is not T2.

• T3 topologies. We say that a space (X, τ) satisfies the axiom T3 (or
that it is a T3-space or that it is a regular space) if

∀x ∈ X ∀ closed set A ⊆ X with x 6∈ A
∃U, V ∈ τ : x ∈ U ∧ A ⊆ V ∧ U ∩ V = ∅ . (T3)

Theorem 16 (on regular spaces) The following statements about
a topological space X = (X, τ) are equivalent.

1. X is regular.
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2. For every x ∈ X and every neighborhood M of x there is a closed
neighborhood N of x such that N ⊆M .

3. For every U ∈ τ ,

U =
⋃
{V | V ∈ τ ∧ V ⊆ U} .

Proof. (1) ⇒ (2). Let x ∈ X and M ⊆ X be a neighborhood of x:
there is a W ∈ τ such that x ∈ W ⊆ M . We have x 6∈ X \W and
hence, by (1), there exist U, V ∈ τ such that x ∈ U , X \W ⊆ V and
U ∩ V = ∅. Set N = U . Then indeed

x ∈ U ⊆ U = N ⊆ X \ V ⊆ W ⊆M .

(2) ⇒ (3). Let U ∈ τ . For every x ∈ U choose by (2) to the
neighborhood x ∈ U an open set Vx and a closed set Nx such that

x ∈ Vx ⊆ Nx ⊆ U .

Then Vx ⊆ U and we have that U =
⋃

x∈X Vx.
(3) ⇒ (1). Suppose that x ∈ X \ A, where A ⊆ X is a closed set.

Using (3), take a U ∈ τ such that x ∈ U and U ⊆ X \A. Then U 3 x
and X \ U ⊇ A are disjoint open sets. �

• T3.5 topologies. We say that a space (X, τ) satisfies the axiom T3.5
(or that it is a T3.5-space or that it is a completely regular space) if
([0, 1] is the real unit interval with the Euclidean topology)

∀x ∈ X ∀ closed set A ⊆ X with x 6∈ A
∃ a contin. map f : X → [0, 1] : f(x) = 0 ∧ f [A] ⊆ {1} . (T3.5)

We easily see that a subset D of the interval [0, 1] is dense iff for
any two a < b in [0, 1] there exists a d ∈ D such that a < d < b (that
is, iff it is dense in the sense used when speaking of order — and the
same holds in each interval topology). Let (X, τ) be a topology. For
open sets U, V ∈ τ we write

U <∗ V ⇐⇒ ∃ dense D ⊆ [0, 1] with 0, 1 ∈ D ∀ d ∈ D
∃Ud ∈ τ : U0 = U ∧ U1 = V ∧ (d, e ∈ D, d < e⇒ Ud ⊆ Ue) .

Theorem 17 (on completely regular spaces) The following state-
ments about a topological space X = (X, τ) are equivalent.
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1. X is completely regular.

2. For every x ∈ X and every open set U 3 x there exists an open
set V 3 x such that V <∗ U .

3. For every U ∈ τ ,

U =
⋃
{V ∈ τ | V <∗ U} .

Proof. (1) ⇒ (2). Let x ∈ U ∈ τ . Using (1), we take a continuous
map f : X → [0, 1] such that f(x) = 0 and f [X \ U ] ⊆ {1}. We set
D := [0, 1] and

Ua := f−1[ [0, (1 + a)/2) ], a ∈ [0, 1] .

Then U1 = U . Clearly, x ∈ U0 <
∗ U1 = U .

The implication (2)⇒ (1) follows from Proposition 17 about a con-
tinuous map in the last lecture.

That the equivalence (2) ⇐⇒ (3) holds is obvious.
�

• T4 topologies. We say that a space (X, τ) satisfies the axiom T4 (or
that it is a T4-space or that it is a normal space) if

∀ closed sets A,B ⊆ X with A ∩B = ∅
∃ U, V ∈ τ : A ⊆ U ∧B ⊆ V ∧ U ∩ V = ∅ . (T4)

Theorem 18 (Urysohn’s lemma) A space X is normal if and only
if for any two disjoint closed A,B ⊆ X there is a continuous mapping
f : X → [0, 1] such that f [A] ⊆ {0} and f [B] ⊆ {1}.

Proof. Implication ⇐. Let A,B ⊆ X be closed and disjoint. We
take the described map f . Then, for example, f−1[ [0, 1/3) ] ⊇ A and
f−1[ (2/3, 1] ] ⊇ B are disjoint open sets.

Implication ⇒. Separate A and B by open and disjoint sets U and
V and set U(0) := U and U(1) := X \B. Suppose that the open sets
U(d) have been already defined for all d = k/2m with m = 0, 1, . . . , n,
0 ≤ k ≤ 2m, such that U(d) ⊆ U(e) whenever d < e. Take the
disjoint closed sets U(k/2n) and X \U((k+ 1)/2n), separate them by
disjoint open sets U ⊇ U(k/2n) and V ⊇ X \ U((k + 1)/2n), and set
U((k + 1)/2n+1) := U . This way we obtain inductively, for all dyadic
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rational numbers d ∈ [0, 1], open sets U(d) satisfying the assumption
of Proposition 17 on a continuous map of the last lecture, and using
it we get the required function separating A and B. �

Exercise 19 Prove that every metric space (M,ρ) yields a normal
topology (M, τ) (we defined it earlier). Hint: separate disjoint closed
sets A,B ⊆M by the function f : M → [0, 1] given as

f(x) =
ρ(x, A)

ρ(x, A) + ρ(x, B)
,

where ρ(x,A) is the distance of the point x from the set A.

Exercise 20 Show that this metrizable topology (M, τ) is T1.

• Separation axioms and standard constructions. The sequence

T0 ⇐ T1 ⇐ T2 ⇐ T3 ∧ T1 ⇐ T3.5 ∧ T1 ⇐ T4 ∧ T1

is heading from general spaces to spaces of an increasingly “geomet-
rical” nature (we will see shortly1 that the spaces satisfying T3.5 ∧ T1
look almost like subspaces of Euclidean spaces — with the difference
that they can have an “infinite dimension”).

None of the implications above can be inverted. For the first two
we have already presented examples. To prove that a Hausdorff space
is not necessarily regular is also very easy, and to see that complete
regularity does not imply normality is not very hard either. But the
relation of complete regularity and regularity had been a problem for
quite a long time before it was solved.

Further, note the added requirements of T1; without an extra as-
sumption, the “higher” separation axioms would not imply the “lower”
ones. In fact, to obtain T1 from (complete) regularity it would suffice
to add just T0; normality plus T0 does not imply T1, though.

None of the separation properties is preserved under factorization
(a trivial example: map R onto {0, 1} by sending the rational numbers
to 0 and the irrational ones to 1; then the quotient topology is not
even T0). On the other hand, the sums preserve all the Ti for trivial
reasons.

The subspaces and products are more interesting.
1See Chapter V.5.9.
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Theorem 21 (subspaces and products) The axioms Ti, i = 0, 1,
2, 3 and 3.5 are preserved in subspaces and products.

Proof. The cases of i = 0, 1, 2 are trivial. If (xi)i∈J 6= (yi)i∈J in
a product, we have for some k that xk 6= yk in the space Xk; separate
the points xk and yk by U , or by U and V , and use the sets p−1k [U ]
and p−1k [V ].

Regularity and complete regularity. If X is (completely) regular,
Y ⊆ X, A ⊆ Y is closed in Y , and if y ∈ Y is such that y 6∈ A, choose
B closed in X such that A = B∩Y . Then y 6∈ B and if we separate y
from B in X (by open sets U , V or by a real function f), then U ∩ Y
and V ∩ Y , resp. f |Y , separate y from the set A as required.

Now let Xi, i ∈ J , be regular (resp. completely regular), let A ⊆
X =

∏
i∈J Xi be closed and let x ∈ U := X \ A. As U is open in

X, there exist i1, . . . , in ∈ J such that x ∈
⋂n

j=1 p
−1
ij

[Uj] for some Uj

open in Xij . In the regular case choose (by Theorem 16) sets Vj open
in Xij and such that xij ∈ Vj ⊆ Vj ⊆ Uj. Set V =

⋂n
j=1 p

−1
ij

[Vj] and

W = X \
⋂n

j=1 p
−1
ij

[Vj]. Then x ∈ V ; if y ∈ A we have y 6∈
⋂n

j=1 p
−1
ij

[Uj]

and hence for some k we have yik 6∈ Uk, and hence yik 6∈ Vk and y ∈ W
and A ⊆ W . Obviously, V ∩W = ∅.

In the completely regular case choose continuous maps fj : Xij →
[0, 1], j = 1, . . . , n, such that fj(xij) = 0 and fj[Xij \Uj] ⊆ {1}. Define
f : X → [0, 1] by setting f(y) = max(f1(yi1), . . . , fn(yin)). Obviously,
f(x) = 0. If y ∈ A then there exists a j such that yij 6∈ Uj and hence
f(y) = 1. It is an easy exercise to prove that f is continuous. �

However, the normality is generally preserved neither in the subspaces
nor in the product. We are not yet prepared for presenting counterex-
amples; they are not hard, though.

THANK YOU!

HOMEWORK: Exercises 14, 15, 19 and 20. Deadline is (by the end
of the day) May 7, 2022. To get “zápočet” for the tutorial, you should
solve (or at least send in solutions of) at least half of the homework
exercises.
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