Notation and conventions. Standard, but a mapping

$$
f: X \rightarrow Y
$$

is not just a subset of $X \times Y$. We include the information on X and Y (hence it makes sense to distinguish the mappings that are onto (that is, every $y \in Y$ appears in $(x, y) \in f$. We write $f(x)$ in the obvious sense. It is useful to think of f as a symbol for a formula (which we may or may not have) for associating values in Y with arguments in X.
If X resp. Y are endowed with a structure then the structures are included in the information (thus for instance it makes sense to ask whether f is continuous in case of spatial structures).

The X is referred to as the domain, the Y as the range.
If one has a formula F for the mapping we often write $f=(x \mapsto F(X))$ like for instance in $f=\left(x \mapsto x^{2}\right)$: $\mathbb{R} \rightarrow \mathbb{R}$.
If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ we have the composition

$$
g \circ f=(x \mapsto g(f(x))): X \rightarrow Z .
$$

We often write just $g \cdot f$ or $g f$ for $g \circ f$.
If $f: X \rightarrow Y$ is one-one and onto we have the inverse
$f^{-1}: Y \rightarrow X$ determined by

$$
f f^{-1}=\operatorname{id}_{Y} \text { and } f^{-1} f=\operatorname{id}_{X}
$$

(The id's are the identity mappings $(x \mapsto x)$.)

For $f: X \rightarrow Y, A \subseteq X$ and $B \subseteq Y$ we have
the image $f[A]=\{f(x) \mid x \in A\}$ and the preimage $f^{-1}[B]=\{x \mid f(x) \in B\}$.
Note that obviously
$f\left[f^{-1}[B]\right] \subseteq B \quad$ and $\quad f^{-1}[f[A]] \supseteq A$.

To observe.

1. When one has $\forall B, f\left[f^{-1}[B]\right]=B$?
2. When one has $\forall B, f^{-1}[f[A]]=A$?
3. $f^{-1}[B]$ is defined for any f. If there exists the inverse map, the symbol can be read in two ways. Can it create confusion?

Binary relation $R \subseteq X \times X$, and homomorphisms $f:(X, R) \rightarrow(Y, S)$ satisfying

$$
\left(x_{1}, x_{2}\right) \in R \Rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \in S
$$

More generally,
Unary, ternary, n-ary relations $R \subseteq X, R \subseteq X \times X \times X$,
n times
$R \subseteq \overbrace{X \times \cdots \times X}$,
homomorphisms following the rule

$$
\left(x_{1}, \ldots, x_{n}\right) \in R \Rightarrow\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \in S .
$$

and infinitary ones.
The notation starts to be complicated. More expedient: use the convention:

$$
X^{A}=\{\xi \mid \xi: A \rightarrow X\}
$$

Then e.g. $X \times X$ is represented as $X^{\{1,2\}}$, $\left(x_{1}, x_{2}\right)$ is the symbol (in fact, table) of the map $\left(i \mapsto x_{i}\right)$.

Thus we have A-nary relations

$$
R \subseteq X^{A}
$$

and homomorphisms

$$
f:(X, R) \rightarrow(Y, S)
$$

satisfying the formula

$$
\xi \in R \Rightarrow f \circ \alpha \in S
$$

Check that for binary, ternary, n-ary relations this agrees with the previous and realize how much easier it is to work with!
Just a triviality: the proof of the fact that the composition of homomorphisms is a homomorphism is now expressed by the associativity

$$
(g \circ f) \circ \xi=g \circ(f \circ \xi)
$$

Subobject. Consider an (X, R) with an A-nary relation $R \subseteq X^{A}$ and a subset $Y \subseteq X$. Denote by $j: Y \rightarrow X$ the embedding map $j=(x \mapsto x)$. Set

$$
R_{Y}=\{\beta: A \rightarrow Y \mid j \beta \in R\}
$$

Realize that
(1) R_{Y} is in a natural one-one correspondence with $\{\alpha \in R \mid \alpha[A] \subseteq Y\}$
(2) R_{Y} is the largest A-nary relation on Y such that $j: Y \subseteq X$ is a homomorphism.
(3) Represent the edges in a graph as a binary relation R on the set of vertices X. Then $\left(Y, R_{Y}\right)$ represents the induced subgraph on the set of vertices Y.

Proposition. In the following diagram

let f be a homomorphism and let $j g=$ f. Then g is a homomorphism. Proof is straightforward: if α is in S then $f \alpha=(j g) \alpha=j(g \alpha)$ is in R and hence $g \alpha$ is in $R_{Y} . \quad \square$

The fact that j is an actual embedding is inessential. We can consider any oneone mapping $j: Y \rightarrow X$ and define $R_{j}=\{\beta: A \rightarrow Y \mid j \beta \in R\}$. One usually speaks on subobjects in thus generalized situation.

Quotients, factorobjects. Dualy, for (X, R) and an onto map $q: X \rightarrow Y$ one defines $R_{q}=\{q \alpha \mid \alpha \in R\}$ on Y and obtains the smallest A-nary relation on Y such that q is a homomorphism.
One has
Proposition. In the following diagram

let f be a homomorphism and let $g q=$ f. Then g is a homomorphism.

We speak of such $\left(Y, R_{q}\right)$ as of quotients or factorobjects of (X, R).

Products. Let R_{i} be A-nary relation on $X_{i}, i \in J$. On the cartesian product $X=\prod_{J} X_{i}$ with projections $p_{j}: \prod X_{i} \rightarrow X_{j}$ define an A-nary relation

$$
R=\left\{\alpha: A \rightarrow X \mid \forall i, p_{i} \alpha \in R_{i}\right\}
$$

$\left(\prod X_{i}, R\right)$ is called the product of the system $\left(X_{i}, R_{i}\right), i \in J$ and denoted by

$$
\prod_{i \in J}\left(X_{i}, R_{i}\right) .
$$

Note that
R is the largest relation on the cartesian product $\prod_{J} X_{i}$ such that all the projections

$$
p_{j}:\left(\prod_{J} X_{i}, R\right) \rightarrow\left(X_{j}, R_{j}\right)
$$

are homomorphisms.

Proposition. For any system of homomorphisms $f_{i}:(Y, S) \rightarrow\left(X_{i}, R_{i}\right)$ there is a unique homomorphism f : $(Y, S) \rightarrow \prod_{J}\left(X_{i}, R_{i}\right)$ such that $\forall i$, $p_{i} f=f_{i}$.
Proof. Define $f: Y \rightarrow \prod_{i} X_{i}$ by $f(y)=\left(f_{i}(y)_{i}\right.$. Obviously this is the unique mapping such that $p_{i} f=f_{i}$. It is a homomorphism: if $\alpha: A \rightarrow Y$ is in S, each $f_{i} \alpha$, that is $\left(p_{i} f\right) \alpha=p_{i}(f \alpha)$, is in R_{i} and hence $f \alpha \in R$. Let us visualize the situation for a product of two:

Relational systems and objects. A type is a system

$$
\Delta=\left(A_{t}\right)_{t \in T}
$$

A relational system of the type Δ on a set X is a system
$R=\left(R_{t}\right)_{t \in T} \quad$ of $R_{t} A_{t}$-nary relations on X
Of the pair (X, R) we then speak of as of a relational object (of the type Δ).

Everything we have introduced for individual relations is extended to relational objects coordinatewise (e.g. a subobject on Y of (X, R) is endowed with $R_{Y}=\left(\left(R_{t}\right)_{Y}\right)_{t}$, etc. and we have the propositions extended in the obvious way.

Preorder and order

A preorder on X : a relation $R \subseteq X \times X$ that is

- reflexive, that is, $x R x$ for all $x \in X$,
- and transitive, that is, $x R y$ and $y R z$ implies $x R z$.

If $x R y$ and $y R x \quad \Rightarrow \quad x=y$, we speak of a (partial) order and of (X, \leq) as of a (p.) ordered set, briefly poset.
If for all x, y either $x R y$ or $y R x$ we speak of a linear order or a chain.

Out of a preordered set (X, R) we easily obtain an ordered one by introducing the equivalence

$$
x \sim y \equiv x R y \& y R x
$$

An unspecified order is usually denoted by \leq. Other symbols according to the situation e.g. $\leq_{1}, \leq^{\prime}, \preceq, ~ \sqsubseteq$ etc..
Further notation

$$
\begin{aligned}
& \downarrow x=\{y \mid y \leq x\}, \uparrow x=\{y \mid y \geq x\}, \\
& \downarrow M=\bigcup_{x \in M} \downarrow x, \uparrow M=\bigcup_{x \in M} \uparrow x .
\end{aligned}
$$

Examples abound, e.g.
(a) standard linear orderings of numbers
(b) divisibility of integers $(a \mid b$, " a divides $b "$) is a preorder,
(c) the inclusion is a (partial) order on the set $\mathfrak{P}(X)$ of all subsets of a set X.

Opposite (dual) order:

$a \leq$ op b iff $b \leq a$
We often write

$$
(X, R)^{\mathrm{op}} \quad \text { for } \quad\left(X, R^{\mathrm{op}}\right)
$$

Monotone maps. If $(X, \leq),(Y, \leq)$ are posets (the two \leq, of course, do not have to coincide) and if $f: X \rightarrow Y$ is a mapping, we say that f is monotone (or isotone) if

$$
x \leq y \quad \Rightarrow \quad f(x) \leq f(y)
$$

An monotone f is an isomorphism, if there exits an monotone $g:(Y, \leq) \rightarrow$ (X, \leq) such that $f \cdot g=\mathrm{id}$ a $g \cdot f=\mathrm{id}$, We immediately see that f is an isomorphism iff

- it is a mapping onto, and
- $x \leq y \quad \Leftrightarrow \quad f(x) \leq f(y)$.

Suprema and infima
$x \in(X, \leq)$ is a lower (resp. upper) bound of $M \subseteq X$ if

$$
M \subseteq \uparrow x \quad(\text { resp. } M \subseteq \downarrow x)
$$

The least upper bound of M (if it exists) is called supremum of M, denoted $\sup M$,
the largest lower bound of M is called infimum and denoted

$\inf M$.

Thus, $s=\sup M$ if
(1) $M \subseteq \downarrow s$, and
(2) $M \subseteq \downarrow x \Rightarrow s \leq x$.

Compare with the
(2') $x<s \quad \Rightarrow \quad \exists y \in M, x<y$.
from analysis courses.

Let (X, \leq) be a poset and let $M \subseteq$ $N \subseteq X$. We say that M is up- resp. down-cofinal in N if for each element $n \in N$ there is an $m \in M$ such that $m \geq n$ resp. $m \leq n$. One often uses the following

Observation. If M is up- (resp. down-) cofinal with N and sup N (resp. $\inf N)$ exists then $\sup M(r e s p . \inf M)$ exists as well and sup $M=\sup N$ (resp. $\inf M=\inf N)$.

Proposition. We have

$$
\begin{aligned}
& \sup \left\{\sup M_{j} \mid j \in J\right\}=\sup \left(\bigcup_{j \in J} M_{j}\right), \\
& \inf \left\{\inf M_{j} \mid j \in J\right\}=\inf \left(\bigcup_{j \in J} M_{j}\right)
\end{aligned}
$$

whenever the left hand sides make sense. Proof for suprema. Set

$$
s_{j}=\sup M_{j}, \quad s=\sup \left\{s_{j} \mid j \in J\right\}
$$

Then s is obviously an upper bound of the set $\bigcup_{j \in J} M_{j}$. Now if $\bigcup_{j \in J} M_{j} \subseteq$ $\downarrow x$ we have for each $j, M_{j} \subseteq \downarrow x$ and hence $s_{j} \leq x$. Consequently $\left\{s_{j} \mid j \in\right.$ $J\} \subseteq \downarrow x$ and finally $s \leq x$.

Bottom and top. sup \emptyset (if it exists) is the least element (notation: $\perp, 0$) of $(X \leq)(\emptyset \subseteq \downarrow x$ for every $x)$. Similarly $\inf \emptyset$ is the largest element $(\top, 1)$
Note the least element is minimal, but a minimal element (such that implication $y \leq x \Rightarrow y=x)$ is not necessarily least. Similarly for maximal and largest elements.
Examples. (a) Suprema and infima in \mathbb{R} as in analysis.

> (b) In $(\mathfrak{P}(X), \subseteq)$ we have $\sup \left\{A_{j} \mid j \in J\right\}=\bigcup_{j \in J} A_{j}, \quad \inf \left\{A_{j} \mid j \in J\right\}=\bigcap_{j \in J} A_{j}$.
(c) In \mathbb{N} with $a \mid b$ (" a divides b "), $\sup \{a, b\}$ is the least common multiple of a and b and $\inf \{a, b\}$ is the largest common divisor of a and b.

If $f:(X \leq) \rightarrow(Y, \leq)$ is monotone then

$$
f[\downarrow x] \subseteq \downarrow f(x) \quad \text { and } \quad f[\uparrow x] \subseteq \uparrow f(x)
$$

so that if x is an upper (lower) bound of M then $f(x)$ is an upper (lower) bound of $f[M]$. Hence in particular

$$
\sup f[M] \leq f(\sup M), \quad \inf f[M] \geq f(\inf M)
$$

(whenever the expressions make sense).

Some special orders

Semilattices. A lower (resp. upper) semilattice has $\inf \{x, y\}($ resp. $\sup \{x, y\})$ for any two elements $x, y \in X$. One often writes $x \wedge y, x \vee y$.

Lattice. A poset that is simultaneously a lower and an upper semilattice.

Complete lattice. Every subset has a supremum and an infimum.

Theorem. A poset is a complete lattice iff each subset has a supremum. Similarly with infima.
Proof. Let us have, in (X, \leq), all suprema. We will determine the infimum of an $M \subseteq X$. Set

$$
N=\{x \mid M \subseteq \uparrow x\}, i=\sup N .
$$

For every $y \in M$ we have $N \subseteq \downarrow y$ and hence $i \leq y$; thus, i is a lower bound of the set M. If $M \subseteq \uparrow x$ then $x \in N$ and hence $x \leq i$ so that $i=\inf M$.

Directed (sub)sets. $D \subseteq(X, \leq)$ is directed, if every finite $K \subseteq D$ has an upper bound in D. Note that in part. it has to be non-void.
(More exactly, up-directed as opposed to the down-directed defined with lower bounds.)

A note on notation. In complete lattices one often uses for suprema resp. infima the symbols \bigvee resp. \bigwedge (and sometimes also other symbols like, $\bigsqcup, ~ \bigcup$ etc.), like in $\bigvee\{x \mid x \in M\}, \quad \bigvee_{j \in J} x_{j}$, etc.
The symbols like \bigvee, \bigwedge etc. are frequently viewed as operational symbols (similarly as the $a \vee b, a \wedge b)$.
Further, the suprema \bigvee, \vee are often referred to as joins and the infima Λ, \wedge are referred to as meets.
The symbols sup and inf are, typically, used in the case when they do not have to exist generally. This convention is fairly standard.

Two fixed-point theorems

Theorem. (Bourbaki) Let (X, \leq) have \perp and let every chain in X

$$
x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq \cdots
$$

have a supremum. Let $f: X \rightarrow Y$ preserve suprema of chains. Then f has a fixed point.

Proof. Start with $x_{0}=\perp$ and define x_{n} by setting $x_{n+1}=f\left(x_{n}\right)$. As $x_{0}=\perp \leq x_{1}$ we obtain inductively that $x_{n+1}=f\left(x_{n}\right) \leq f\left(x_{n+1}\right)=x_{n+2}$ so that $x_{0} \leq x_{1} \leq$ $\cdots \leq x_{n} \leq \cdots$. Consider $y=\sup x_{n}$. Then $f(y)=$ $\sup f\left(x_{n}\right)=\sup x_{n+1}=y$ and y is a fixed point.

Note that the y from the proof is the least fixed point of f. If $f(z)=z$ we have $\perp \leq z, f(\perp) \leq f(z)=z$, and by induction $f\left(x_{n}\right) \leq z$.

Theorem. (Tarski - Knaster) Every monotone mapping of a complete lattice into itself has a fixed point.
Proof. Let L be a complete lattice and let $f: L \rightarrow L$ be monotone. Set $M=\{x \mid x \leq f(x)\}$ a $s=\sup M$. For $x \in M$ we have $x \leq s$ and hence $x \leq f(x) \leq f(s)$ so that $f(s)$ is an upper bound of the set M and we have

$$
s \leq f(s)
$$

and from the monotony, $f(s) \leq f(f(s))$ so that $f(s) \in$ M. Therefore also

$$
f(s) \leq s,
$$

and hence finally $f(s)=s$.

Details. in Text:

Chapter I: 2,3,5,6
 Chapter II: 1,2,3,7(without examples)

