Notation and conventions. Standard, but a mapping

 $f: X \to Y$

is not just a subset of $X \times Y$. We include the information on X and Y (hence it makes sense to distinguish the mappings that are *onto* (that is, every $y \in Y$ appears in $(x, y) \in f$. We write f(x) in the obvious sense. It is useful to think of f as a symbol for a formula (which we may or may not have) for associating values in Y with arguments in X.

If X resp. Y are endowed with a structure then the structures are included in the information (thus for instance it makes sense to ask whether f is continuous in case of spatial structures).

1

The X is referred to as the *domain*, the Y as the *range*.

If one has a formula F for the mapping we often write $f = (x \mapsto F(X))$ like for instance in $f = (x \mapsto x^2)$: $\mathbb{R} \to \mathbb{R}$.

If $f: X \to Y$ and $g: Y \to Z$ we have the *composition*

 $g \circ f = (x \mapsto g(f(x))) : X \to Z.$

We often write just $g \cdot f$ or gf for $g \circ f$.

If $f: X \to Y$ is one-one and onto we have the *inverse*

 $f^{-1}: Y \to X$ determined by $ff^{-1} = \operatorname{id}_Y$ and $f^{-1}f = \operatorname{id}_X$ (The id's are the identity mappings $(x \mapsto x).$) For $f: X \to Y$, $A \subseteq X$ and $B \subseteq Y$ we have

the image $f[A] = \{f(x) \mid x \in A\}$ and the preimage $f^{-1}[B] = \{x \mid f(x) \in B\}.$ **Note** that obviously

 $f[f^{-1}[B]] \subseteq B$ and $f^{-1}[f[A]] \supseteq A$.

To observe.

1. When one has $\forall B, f[f^{-1}[B]] = B$?

2. When one has $\forall B, f^{-1}[f[A]] = A$?

3. $f^{-1}[B]$ is defined for any f. If there exists the inverse map, the symbol can be read in two ways. Can it create confusion?

Binary relation $R \subseteq X \times X$, and homomorphisms $f : (X, R) \rightarrow (Y, S)$ satisfying

 $(x_1, x_2) \in R \implies (f(x_1), f(x_2)) \in S.$

More generally,

Unary, ternary, *n*-ary relations $R \subseteq X, R \subseteq X \times X \times X,$ *n* times

 $R \subseteq \overbrace{X \times \cdots \times X}^{K}$, homomorphisms following the rule

 $(x_1,\ldots,x_n) \in R \implies (f(x_1),\ldots,f(x_n)) \in S.$

and infinitary ones.

The notation starts to be complicated. More expedient: use the convention:

 $X^{A} = \{\xi \mid \xi : A \to X\}$ Then e.g. $X \times X$ is represented as $X^{\{1,2\}}$, (x_1, x_2) is the symbol (in fact, table) of the map $(i \mapsto x_i)$.

Thus we have A-nary relations $R \subseteq X^A$

and homomorphisms

 $f:(X,R)\to (Y,S)$

satisfying the formula

 $\xi \in R \implies f \circ \alpha \in S.$

Check that for binary, ternary, n-ary relations this agrees with the previous and realize how much easier it is to work with!

Just a triviality: the proof of the fact that the composition of homomorphisms is a homomorphism is now expressed by the associativity

$$(g \circ f) \circ \xi = g \circ (f \circ \xi).$$

Subobject. Consider an (X, R) with an A-nary relation $R \subseteq X^A$ and a subset $Y \subseteq X$. Denote by $j: Y \to X$ the embedding map $j = (x \mapsto x)$. Set

 $R_Y = \{\beta : A \to Y \mid j\beta \in R\}$

Realize that

(1) R_Y is in a natural one-one correspondence with $\{\alpha \in R \mid \alpha[A] \subseteq Y\}$

(2) R_Y is the largest A-nary relation on Y such that $j: Y \subseteq X$ is a homomorphism.

(3) Represent the edges in a graph as a binary relation R on the set of vertices X. Then (Y, R_Y) represents the induced subgraph on the set of vertices Y. **Proposition.** In the following diagram

let f be a homomorphism and let jg = f. Then g is a homomorphism. Proof is straightforward: if α is in Sthen $f\alpha = (jg)\alpha = j(g\alpha)$ is in R and hence $g\alpha$ is in R_Y . \Box

The fact that j is an actual embedding is inessential. We can consider any oneone mapping $j : Y \to X$ and define $R_j = \{\beta : A \to Y \mid j\beta \in R\}$. One usually speaks on subobjects in thus generalized situation. Quotients, factorobjects. Dualy, for (X, R) and an onto map $q : X \to Y$ one defines $R_q = \{q\alpha \mid \alpha \in R\}$ on Y and obtains the *smallest A*-nary relation on Y such that q is a homomorphism.

One has

Proposition. In the following diagram

let f be a homomorphism and let gq = f. Then g is a homomorphism.

We speak of such (Y, R_q) as of quotients or factorobjects of (X, R). **Products.** Let R_i be A-nary relations on X_i , $i \in J$. On the cartesian product $X = \prod_J X_i$ with projections $p_j : \prod X_i \to X_j$ define an A-nary relation

 $R = \{ \alpha : A \to X \, | \, \forall i, p_i \alpha \in R_i \}$

 $(\prod X_i, R)$ is called the *product* of the system $(X_i, R_i), i \in J$ and denoted by

$$\prod_{i \in J} (X_i, R_i).$$

Note that

R is the largest relation on the cartesian product $\prod_J X_i$ such that all the projections

$$p_j: (\prod_J X_i, R) \to (X_j, R_j)$$

are homomorphisms.

Proposition. For any system of homomorphisms $f_i : (Y, S) \to (X_i, R_i)$ there is a unique homomorphism f : $(Y, S) \to \prod_J (X_i, R_i)$ such that $\forall i$, $p_i f = f_i$.

Proof. Define $f: Y \to \prod_i X_i$ by $f(y) = (f_i(y))_i$. Obviously this is the unique mapping such that $p_i f = f_i$. It is a homomorphism: if $\alpha : A \to Y$ is in S, each $f_i \alpha$, that is $(p_i f)\alpha = p_i(f\alpha)$, is in R_i and hence $f\alpha \in R$.

Let us visualize the situation for a product of two:

Relational systems and objects.

A *type* is a system

 $\Delta = (A_t)_{t \in T}$

A relational system of the type Δ on a set X is a system

 $R = (R_t)_{t \in T}$ of $R_t A_t$ -nary relations on XOf the pair (X, R) we then speak of as of a relational object (of the type Δ).

Everything we have introduced for individual relations is extended to relational objects coordinatewise (e.g. a subobject on Y of (X, R) is endowed with $R_Y = ((R_t)_Y)_t$, etc. and we have the propositions extended in the obvious way.

Preorder and order

A preorder on X: a relation $R \subseteq X \times X$ that is

- reflexive, that is, xRx for all $x \in X$,
- and transitive, that is, xRy and yRz implies xRz.

If xRy and $yRx \Rightarrow x = y$, we speak of a *(partial) order* and of (X, \leq) as of a (p.) ordered set, briefly *poset*.

If for all x, y either xRy or yRx we speak of a *linear order* or a *chain*.

Out of a preordered set (X, R) we easily obtain an ordered one by introducing the equivalence

$$x \sim y \equiv xRy \& yRx.$$

An unspecified order is usually denoted by \leq . Other symbols according to the situation e.g. $\leq_1, \leq', \leq, \sqsubseteq$ etc..

Further notation

$$\downarrow x = \{ y \mid y \le x \}, \ \uparrow x = \{ y \mid y \ge x \},$$
$$\downarrow M = \bigcup_{x \in M} \downarrow x, \ \uparrow M = \bigcup_{x \in M} \uparrow x.$$

Examples abound, e.g.

(a) standard linear orderings of numbers

(b) divisibility of integers (a|b, a divides b'') is a preorder,

(c) the inclusion is a (partial) order on the set $\mathfrak{P}(X)$ of all subsets of a set X. **Opposite (dual) order**: $a <^{\text{op}} b \text{ iff } b < a$

We often write

 $(X, R)^{\mathrm{op}}$ for (X, R^{op}) .

Monotone maps. If $(X, \leq), (Y, \leq)$ are posets (the two \leq , of course, do not have to coincide) and if $f : X \to Y$ is a mapping, we say that f is *monotone* (or *isotone*) if

 $x \le y \quad \Rightarrow \quad f(x) \le f(y).$

An monotone f is an *isomorphism*, if there exits an monotone $g : (Y, \leq) \rightarrow$ (X, \leq) such that $f \cdot g = \text{id a } g \cdot f = \text{id}$, We immediately see that f is an isomorphism iff

• it is a mapping onto, and

 $\bullet \ x \leq y \quad \Leftrightarrow \quad f(x) \leq f(y).$

Suprema and infima

 $x \in (X, \leq)$ is a *lower* (resp. *upper*) bound of $M \subseteq X$ if

 $M \subseteq \uparrow x \pmod{x}$ (resp. $M \subseteq \downarrow x$).

The least upper bound of M (if it exists) is called *supremum* of M, denoted

$\sup M,$

the largest lower bound of M is called *infimum* and denoted

$\inf M.$

Thus, $s = \sup M$ if

(1) $M \subseteq \downarrow s$, and

(2) $M \subseteq \downarrow x \Rightarrow s \leq x$.

Compare with the

(2') $x < s \implies \exists y \in M, x < y.$ from analysis courses. Let (X, \leq) be a poset and let $M \subseteq N \subseteq X$. We say that M is *up*- resp. down-cofinal in N if for each element $n \in N$ there is an $m \in M$ such that $m \geq n$ resp. $m \leq n$. One often uses the following

Observation. If M is up- (resp. down-) cofinal with N and $\sup N$ (resp. inf N) exists then $\sup M$ (resp. inf M) exists as well and $\sup M = \sup N$ (resp. inf $M = \inf N$). **Proposition.** We have $\sup\{\sup M_j \mid j \in J\} = \sup(\bigcup_{j \in J} M_j),$ $\inf\{\inf M_j \mid j \in J\} = \inf(\bigcup_{j \in J} M_j)$

whenever the left hand sides make sense. Proof for suprema. Set

 $s_j = \sup M_j, \quad s = \sup\{s_j \mid j \in J\}.$

Then s is obviously an upper bound of the set $\bigcup_{j \in J} M_j$. Now if $\bigcup_{j \in J} M_j \subseteq \downarrow x$ we have for each $j, M_j \subseteq \downarrow x$ and hence $s_j \leq x$. Consequently $\{s_j \mid j \in J\} \subseteq \downarrow x$ and finally $s \leq x$. **Bottom and top.** $\sup \emptyset$ (if it exists) is the least element (notation: \bot , 0) of $(X \leq) (\emptyset \subseteq \downarrow x \text{ for every } x)$. Similarly inf \emptyset is the largest element $(\top, 1)$

Note the least element is minimal, but a *minimal* element (such that implication $y \leq x \Rightarrow y = x$) is not necessarily least. Similarly for maximal and largest elements.

Examples. (a) Suprema and infima in \mathbb{R} as in analysis.

(b) In $(\mathfrak{P}(X), \subseteq)$ we have $\sup\{A_j \mid j \in J\} = \bigcup_{j \in J} A_j, \quad \inf\{A_j \mid j \in J\} = \bigcap_{j \in J} A_j.$

(c) In \mathbb{N} with a|b ("a divides b"), $\sup\{a, b\}$ is the least common multiple of a and b and $\inf\{a, b\}$ is the largest common divisor of a and b.

If $f : (X \leq) \rightarrow (Y, \leq)$ is monotone then

 $f[{\downarrow} x] \subseteq {\downarrow} f(x) \quad \text{and} \quad f[{\uparrow} x] \subseteq {\uparrow} f(x),$

so that if x is an upper (lower) bound of M then f(x) is an upper (lower) bound of f[M]. Hence in particular

 $\sup f[M] \le f(\sup M), \quad \inf f[M] \ge f(\inf M)$

(whenever the expressions make sense).

Some special orders

Semilattices. A lower (resp. upper) semilattice has $\inf\{x, y\}$ (resp. $\sup\{x, y\}$) for any two elements $x, y \in X$. One often writes $x \wedge y, x \vee y$.

Lattice. A poset that is simultaneously a lower and an upper semilattice.

Complete lattice. Every subset has a supremum and an infimum.

Theorem. A poset is a complete lattice iff each subset has a supremum. Similarly with infima.

Proof. Let us have, in (X, \leq) , all suprema. We will determine the infimum of an $M \subseteq X$. Set

$$N = \{ x \mid M \subseteq \uparrow x \}, \ i = \sup N.$$

For every $y \in M$ we have $N \subseteq \downarrow y$ and hence $i \leq y$; thus, i is a lower bound of the set M. If $M \subseteq \uparrow x$ then $x \in N$ and hence $x \leq i$ so that $i = \inf M$.

Directed (sub)sets. $D \subseteq (X, \leq)$ is *directed*, if every finite $K \subseteq D$ has an upper bound in D. Note that in part. it has to be non-void.

(More exactly, *up-directed* as opposed to the *down-directed* defined with lower bounds.) A note on notation. In complete lattices one often uses for suprema resp. infima the symbols \bigvee resp. \bigwedge (and sometimes also other symbols like, \bigsqcup , \bigcup etc.), like in $\bigvee \{x \mid x \in M\}, \quad \bigvee_{j \in J} x_j,$ etc..

The symbols like \bigvee , \bigwedge etc. are frequently viewed as operational symbols (similarly as the $a \lor b$, $a \land b$).

Further, the suprema \bigvee , \lor are often referred to as *joins* and the infima \bigwedge , \land are referred to as *meets*.

The symbols sup and inf are, typically, used in the case when they do not have to exist generally. This convention is fairly standard.

Two fixed-point theorems

Theorem. (Bourbaki) Let (X, \leq) have \perp and let every chain in X

 $x_1 \le x_2 \le \dots \le x_n \le \dots$

have a supremum. Let $f : X \to Y$ preserve suprema of chains. Then fhas a fixed point.

Proof. Start with $x_0 = \bot$ and define x_n by setting $x_{n+1} = f(x_n)$. As $x_0 = \bot \leq x_1$ we obtain inductively that $x_{n+1} = f(x_n) \leq f(x_{n+1}) = x_{n+2}$ so that $x_0 \leq x_1 \leq \cdots \leq x_n \leq \cdots$. Consider $y = \sup x_n$. Then $f(y) = \sup f(x_n) = \sup x_{n+1} = y$ and y is a fixed point.

Note that the y from the proof is the least fixed point of f. If f(z) = z we have $\bot \leq z$, $f(\bot) \leq f(z) = z$, and by induction $f(x_n) \leq z$.

Theorem. (Tarski – Knaster) *Every* monotone mapping of a complete lattice into itself has a fixed point.

Proof. Let L be a complete lattice and let $f: L \to L$ be monotone. Set $M = \{x \mid x \leq f(x)\}$ a $s = \sup M$. For $x \in M$ we have $x \leq s$ and hence $x \leq f(x) \leq f(s)$ so that f(s) is an upper bound of the set M and we have

$$s \le f(s),$$

and from the monotony, $f(s) \leq f(f(s))$ so that $f(s) \in M$. Therefore also

$$f(s) \le s,$$

and hence finally f(s) = s.

Details. in Text:

Chapter I: 2,3,5,6

Chapter II: 1,2,3,7(without examples)