Notation and conventions. Stan-
dard, but a mapping

f.X-=Y

is not just a subset of X xY. We include
the information on X and Y (hence it
makes sense to distinguish the mappings
that are onto (that is, every y € Y ap-
pears in (z,y) € f. We write f(x) in
the obvious sense. It is useful to think
of f as a symbol for a formula (which
we may or may not have) for associating
values in Y with arguments in X.

If X resp. Y are endowed with a structure
then the structures are included in the
information (thus for instance it makes
sense to ask whether f is continuous in
case of spatial structures).



The X is referred to as the domain,
the Y as the range.

If one has a formula F' for the map-
ping we often write f = (z — F(X))
like for instance in f = (z — z?) :
R — R.

Iff: X —=Yandg:Y — Z we
have the composition

gof=(x— g(f(z): X > Z.
We often write just g- f or gf for go f.

If f:X — Y is one-one and onto we
have the inverse

f 1.y 5 X determined by
Ffl=idy and f71f =idy

(The id’s are the identity mappings
(x — x).)



For f: X Y, ACXand BCY

we have

the image fl|A] ={f(x)|xz € A} and
the preimage fV[B] = {z| f(z) € B}.
Note that obviously

fUTBIC B and fTUfIA] 2 A

To observe.
1. When one has VB, f[f~1[B]] = B?
2. When one has VB, f~1[f[A]] = A?
3. f~1[B] is defined for any f. If there
exists the inverse map, the symbol can
be read in two ways. Can it create con-
fusion?



Binary relation R € X x X, and
homomorphisms f : (X, R) — (Y, 5)
satisfying

(x1,22) € R = (f(x1), f(x2)) € S.

More generally,

Unary, ternary, n-ary relations
RCX RCXXxX xJX,

n times

RQTXX-J-\-XX,

homomorphisms following the rule
(x1,..., r,) € R = (f(x1),..., f(x,)) € S.
and infinitary ones.

The notation starts to be complicated.
More expedient: use the convention:

XA={elg:A— X}

Then e.g. X X X isrepresented as X{LZ}7
(21, z9) is the symbol (in fact, table) of
the map (i — x;).
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Thus we have A-nary relations
RC x4
and homomorphisms
f:(X,R)— (Y,9)
satistying the formula

EER = foaelb.

Check that for binary, ternary, n-ary re-
lations this agrees with the previous and
realize how much easier it is to work
with!

Just a triviality: the prootf of the fact
that the composition of homomorphisms
is & homomorphism is now expressed by
the associativity

(goflo&=go(fof)



Subobject. Consider an (X, R) with
an A-nary relation R C X** and a sub-
set Y C X. Denote by 5 : Y — X the
embedding map j = (z +— x). Set

Ry ={06:A—=Y|jB € R}

Realize that

(1) Ry is in a natural one-one corre-
spondence with {a € R|a|A] C Y}

(2) Ry is the largest A-nary relation
on Y such that 5 : Y C X is a homo-
morphism.

(3) Represent the edges in a graph as
a binary relation R on the set of ver-
tices X. Then (Y, Ry ) represents the
induced subgraph on the set of vertices

Y.



Proposition. In the following dia-

gram
(Y, Ry) == ~(X,R)
g /
(Z,5)

let f be a homomorphism and let jg =
f. Then g is a homomorphism.
Proof is straightforward: if o is in S
then fa = (jg)a = j(ga) is in R and
hence ga is in Ry. [

The fact that j is an actual embedding
is inessential. We can consider any one-
one mapping j : Y — X and define
R;j={8:A—=Y|jB € R} Oneusu-
ally speaks on subobjects in thus gene-
ralized situation.



Quotients, factorobjects. Dualy, for
(X, R) and an onto map ¢ : X — Y

one defines R; = {qa|a € R} on

Y and obtains the smallest A-nary re-

lation on Y such that ¢ is a homomor-

phism.

One has

Proposition. In the following dia-
gram,

(X,R)—" (Y, Ry)

.

(%,5)

let f be a homomorphism and let gq =
f. Then g is a homomorphism.

We speak of such (Y, Rg) as of quoti-
ents or factorobjects of (X, R).
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Products. Let R; be A-nary relati-
ons on X;, ¢ € J. On the cartesian
product X = |[;X; with projections
p; - 11 X; — X define an A-nary re-
lation

R={a:A— X|Vi,pja € R;}

(11X, R) is called the product of the
system (X;, R;), ¢ € J and denoted by

[[(X:, Ry).
1eJ
Note that
R 1s the largest relation on the car-
tesian product || ;X; such that all
the projections

pj: (][ Xi R) = (X}, R))
J
are homomorphisms.
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Proposition. For any system of ho-
momorphisms f; : (Y, S) — (X;, R;)
there is a unique homomorphism f :
(Y, S) = 11,(X;, R;) such that Vi,
pif = fi-

Proof. Define f : Y — [, Xi by f(y) = (fi(y)):. Obvi-
ously this is the unique mapping such that p;f = f;. It
is a homomorphism: if & : A — Y isin S, each f;a, that
is (pif)a = pi(fa), is in R; and hence fa € R.

Let us visualize the situation for a pro-
duct of two:

(Y, S) / (Xl,Rl) X (XQ,RQ)

D2
J1 P1 fo

(X1, Ry) (X2, Ro)
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Relational systems and objects.
A type is a system

A = (At>teT

A relational system of the type A on a
set X 1s a system

R = (R¢)ier of Ry Apnary relations on X

Of the pair (X, R) we then speak of as
of a relational object (of the type A).

Everything we have introduced for in-
dividual relations is extended to relatio-
nal objects coordinatewise (e.g. a subob-
ject on Y of (X, R) is endowed with
Ry = ((Rt)y)t, etc. and we have the
propositions extended in the obvious way:.
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Preorder and order
A preorderon X: arelation R C X x X
that is

o reflexive, that is, v Rx for all x € X,

e and transitive, that is, r Ry and yRz
implies xRz.

If xRy and yRr = x = y, we
speak of a (partial) order and of (X, <)
as of a (p.) ordered set, briefly poset.
If for all z,y either xRy or yRx we
speak of a linear order or a chain.

Out of a preordered set (X, R) we easily
obtain an ordered one by introducing
the equivalence

r~y = xzRy&yRx.
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An unspecified order is usually denoted

by <. Other symbols according to the

situation e.g. <y, <’. <, C etc..
Further notation

e ={yly <z}, to={yly >z},
w = d=, M= | 1z

reM reM

Examples abound, e.g.

(a) standard linear orderings of num-
bers

(b) divisibility of integers (alb, “a di-
vides b") is a preorder,

(¢) the inclusion is a (partial) order on
the set P(X) of all subsets of a set X.
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Opposite (dual) order:
a<Phiff b<a
We often write
(X, R)Y for (X,R).
Monotone maps. If (X, <), (Y, <)
are posets (the two <, of course, do not
have to coincide) and if f : X — Y is

a mapping, we say that f is monotone
(or isotone ) if

<y = flx)<fy)

An monotone f is an isomorphism, if
there exits an monotone g : (Y, <) —

(X, <)suchthat f-g=idag-f =1d,
We immediately see that f is an isomor-
phism iff

e it is a mapping onto, and

ex<y <& flz)<fly)
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Suprema and infima
r € (X,<) is a lower (resp. upper)
bound of M C X if

M Ctx  (resp. M Clx).

The least upper bound of M (if it exists)
is called supremum of M, denoted

sup M,

the largest lower bound of M is called
infimum and denoted

inf M.
Thus, s =sup M if
(1) M Cls, and
2) M Clx = s<u.

Compare with the
(2) rx<s = dyeMuxz<y.
from analysis courses.
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Let (X, <) be a poset and let M C
N C X. We say that M is up- resp.
down-cofinal in N it for each element
n € N there is an m € M such that
m > n resp. m < n. One often uses the
following

Observation. If M is up- (resp.
down-) cofinal with N and sup N (resp.
inf N ) exists then sup M (resp. inf M)
exists as well and sup M = sup N (resp.

inf M = inf NV ).
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Proposition. We have
sup{sup M; | j € J} =sup(| ] M;),
jeJ
inf{inf M; | j € J} = inf(| ] M)
jeJ
whenever the left hand sides make sense.

Proof for suprema. Set
s;=supM;, s=sup{s;|je€ J}.

Then s is obviously an upper bound of

the set (J;e s M;. Now if (J;c; M; C
lz we have for each j, M; C¢aj and

hence s; < . Consequently {sj]j €
J} Clx and finally s < .
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Bottom and top. sup () (if it exists)
is the least element (notation: 1, 0) of
(X <) (0 Clx for every x). Similarly
inf () is the largest element (T,1)

Note the least element is minimal,
but a minimal element (such that im-
plication y < x = y = x) is not ne-
cessarily least. Similarly for maximal and
largest elements.

Examples. (a) Suprema and infima
in R as in analysis.
(b) In (P(X), C) we have

sup{A4;|j € J} = JA;, mf{A;]jeJ}=[)4.
jedJ jedJ
(¢) In Nwith a|b (“a divides "), sup{a, b}
is the least common multiple of a and
b and inf{a, b} is the largest common
divisor of a and b.
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Iff: (X <) — (Y,<) is monotone
then

flix) CLf(x) and  flta] CTf(x)

so that if x is an upper (lower) bound of
M then f(x) is an upper (lower) bound
of f{M]. Hence in particular

sup f[M] < f(sup M), inf f[M] > f(inf M)
(whenever the expressions make sense).

Some special orders

Semilattices. A lower (resp. upper)
semilattice hasinf{x, y} (resp. sup{z,y})
for any two elements x,y € X. One of-
ten writes x Ay, x V y.

Lattice. A poset that is simultaneously
a lower and an upper semilattice.

Complete lattice. Every subset has a
supremum and an infimum.
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Theorem. A poset is a complete lat-
tice iff each subset has a supremum.
Similarly with infima.

Proof. Let us have, in (X, <), all suprema. We will de-
termine the infimum of an M C X. Set

N ={x|M Ctz}, i =sup N.

For every y € M we have N Cly and hence 7 < y; thus,
1 is a lower bound of the set M. If M CtTx then x € N

and hence x < 7 so that 7+ = inf M.

Directed (sub)sets. D C (X, <) is
directed, it every finite K C D has an
upper bound in D. Note that in part. it
has to be non-void.

(More exactly, up-directed as opposed
to the down-directed defined with lower

bounds.)
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A note on notation. In complete
lattices one often uses for suprema resp.
infima the symbols \/ resp. A (and so-
metimes also other symbols like, | |, |
ete.), likein \{z |z € M}, Vicjzj,
ete..

The symbols like \/, A etc. are frequently
viewed as operational symbols (similarly
as the a Vb, a \b).

Further, the suprema \/, V are often
referred to as joins and the infima /\,
A are referred to as meets.

The symbols sup and inf are, typi-
cally, used in the case when they do not
have to exist generally. This convention
is fairly standard.
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Two fixed-point theorems

Theorem. (Bourbaki) Let (X, <) have
L and let every chain in X

1] <wg < <y < -

have a supremum. Let f : X — Y
preserve suprema of chains. Then f
has a fized point.

Proof. Start with xyp = L and define z, by setting
Tpo1 = f(x,). As xg = L < x1 we obtain inductively
that @41 = f(@) < f(@n41) = Tnyo s0 that zp < 27 <

o < x, < ---. Consider y = supx,. Then f(y) =

sup f(x,) =sup x,+1 = y and y is a fixed point.

Note that the y from the proof is the
least fized point of f. If f(z) = z we
have 1 <z, f(L) < f(2) = 2z, and by
induction f(zy) < z



Theorem. (Tarski — Knaster) Every
monotone mapping of a complete lat-

tice into itself has a fixed point.

Proof. Let L be a complete lattice and let f : L — L be
monotone. Set M = {x|z < f(z)} a s = sup M. For
r € M we have x < s and hence = < f(z) < f(s) so
that f(s) is an upper bound of the set M and we have

s < f(s),

and from the monotony, f(s) < f(f(s)) so that f(s) €
M. Therefore also

fs) <,
and hence finally f(s) = s.
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Details. in Text:

Chapter I: 2.3,5,6
Chapter II: 1,2,3,7(without examples)
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