
Notation and conventions. Stan-
dard, but a mapping

f : X → Y

is not just a subset ofX×Y . We include
the information on X and Y (hence it
makes sense to distinguish the mappings
that are onto (that is, every y ∈ Y ap-
pears in (x, y) ∈ f . We write f (x) in
the obvious sense. It is useful to think
of f as a symbol for a formula (which
we may or may not have) for associating
values in Y with arguments in X .

IfX resp. Y are endowed with a structure
then the structures are included in the
information (thus for instance it makes
sense to ask whether f is continuous in
case of spatial structures).
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The X is referred to as the domain,
the Y as the range.

If one has a formula F for the map-
ping we often write f = (x 7→ F (X))
like for instance in f = (x 7→ x2) :
R→ R.

If f : X → Y and g : Y → Z we
have the composition

g ◦ f = (x 7→ g(f (x))) : X → Z.

We often write just g ·f or gf for g ◦f .

If f : X → Y is one-one and onto we
have the inverse

f−1 : Y →X determined by

ff−1 = idY and f−1f = idX

(The id’s are the identity mappings
(x 7→ x).)
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For f : X → Y , A ⊆ X and B ⊆ Y
we have

the image f [A] = {f (x) |x ∈ A} and

the preimage f−1[B] = {x | f (x) ∈ B}.
Note that obviously

f [f−1[B]] ⊆ B and f−1[f [A]] ⊇ A.

To observe.
1. When one has ∀B, f [f−1[B]] = B?
2. When one has ∀B, f−1[f [A]] = A?
3. f−1[B] is defined for any f . If there

exists the inverse map, the symbol can
be read in two ways. Can it create con-
fusion?

3



Binary relation R ⊆ X × X , and
homomorphisms f : (X,R) → (Y, S)
satisfying

(x1, x2) ∈ R ⇒ (f (x1), f (x2)) ∈ S.
More generally,
Unary, ternary, n-ary relations
R ⊆ X , R ⊆ X ×X ×X ,

R ⊆
n times︷ ︸︸ ︷

X × · · · ×X ,
homomorphisms following the rule

(x1, . . . , xn) ∈ R ⇒ (f (x1), . . . , f (xn)) ∈ S.

and infinitary ones.
The notation starts to be complicated.
More expedient: use the convention:

XA = {ξ | ξ : A→ X}
Then e.g.X×X is represented asX{1,2},
(x1, x2) is the symbol (in fact, table) of
the map (i 7→ xi).
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Thus we have A-nary relations

R ⊆ XA

and homomorphisms

f : (X,R)→ (Y, S)

satisfying the formula

ξ ∈ R ⇒ f ◦ α ∈ S.
Check that for binary, ternary, n-ary re-
lations this agrees with the previous and
realize how much easier it is to work
with!

Just a triviality: the proof of the fact
that the composition of homomorphisms
is a homomorphism is now expressed by
the associativity

(g ◦ f ) ◦ ξ = g ◦ (f ◦ ξ).
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Subobject. Consider an (X,R) with
an A-nary relation R ⊆ XA and a sub-
set Y ⊆ X . Denote by j : Y → X the
embedding map j = (x 7→ x). Set

RY = {β : A→ Y | jβ ∈ R}
Realize that

(1) RY is in a natural one-one corre-
spondence with {α ∈ R |α[A] ⊆ Y }

(2) RY is the largest A-nary relation
on Y such that j : Y ⊆ X is a homo-
morphism.

(3) Represent the edges in a graph as
a binary relation R on the set of ver-
tices X . Then (Y,RY ) represents the
induced subgraph on the set of vertices
Y .
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Proposition. In the following dia-
gram

(Y,RY )
j=⊆

// (X,R)

(Z, S)

g

OO

f

88

let f be a homomorphism and let jg =
f . Then g is a homomorphism.
Proof is straightforward: if α is in S
then fα = (jg)α = j(gα) is in R and
hence gα is in RY . �

The fact that j is an actual embedding
is inessential. We can consider any one-
one mapping j : Y → X and define
Rj = {β : A→ Y | jβ ∈ R}. One usu-
ally speaks on subobjects in thus gene-
ralized situation.
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Quotients, factorobjects. Dualy, for
(X,R) and an onto map q : X → Y
one defines Rq = {qα |α ∈ R} on
Y and obtains the smallest A-nary re-
lation on Y such that q is a homomor-
phism.

One has

Proposition. In the following dia-
gram

(X,R)
q

//

f
&&

(Y,Rq)

g

��

(Z, S)

let f be a homomorphism and let gq =
f . Then g is a homomorphism.

We speak of such (Y,Rq) as of quoti-
ents or factorobjects of (X,R).
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Products. Let Ri be A-nary relati-
ons on Xi, i ∈ J . On the cartesian
product X =

∏
J Xi with projections

pj :
∏
Xi → Xj define an A-nary re-

lation

R = {α : A→ X | ∀i, piα ∈ Ri}
(
∏
Xi, R) is called the product of the

system (Xi, Ri), i ∈ J and denoted by∏
i∈J

(Xi, Ri).

Note that
R is the largest relation on the car-

tesian product
∏
J Xi such that all

the projections

pj : (
∏
J

Xi, R)→ (Xj, Rj)

are homomorphisms.
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Proposition. For any system of ho-
momorphisms fi : (Y, S) → (Xi, Ri)
there is a unique homomorphism f :
(Y, S) →

∏
J(Xi, Ri) such that ∀i,

pif = fi.
Proof. Define f : Y →

∏
iXi by f (y) = (fi(y))i. Obvi-

ously this is the unique mapping such that pif = fi. It

is a homomorphism: if α : A→ Y is in S, each fiα, that

is (pif )α = pi(fα), is in Ri and hence fα ∈ R.

Let us visualize the situation for a pro-
duct of two:

(Y, S)
f

//

f1

��

f2

**

(X1, R1)× (X2, R2)

p1

{{

p2

##

(X1, R1) (X2, R2)
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Relational systems and objects.
A type is a system

∆ = (At)t∈T

A relational system of the type ∆ on a
set X is a system

R = (Rt)t∈T of Rt At-nary relations on X .

Of the pair (X,R) we then speak of as
of a relational object (of the type ∆).

Everything we have introduced for in-
dividual relations is extended to relatio-
nal objects coordinatewise (e.g. a subob-
ject on Y of (X,R) is endowed with
RY = ((Rt)Y )t, etc. and we have the
propositions extended in the obvious way.
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Preorder and order
A preorder onX : a relationR ⊆ X×X
that is

� reflexive, that is, xRx for all x ∈ X ,

� and transitive, that is, xRy and yRz
implies xRz.

If xRy and yRx ⇒ x = y, we
speak of a (partial) order and of (X,≤)
as of a (p.) ordered set, briefly poset.

If for all x, y either xRy or yRx we
speak of a linear order or a chain.

Out of a preordered set (X,R) we easily
obtain an ordered one by introducing
the equivalence

x ∼ y ≡ xRy & yRx.
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An unspecified order is usually denoted
by ≤. Other symbols according to the
situation e.g. ≤1, ≤′, �, v etc..

Further notation

↓x = {y | y ≤ x}, ↑x = {y | y ≥ x},
↓M =

⋃
x∈M

↓x, ↑M =
⋃
x∈M

↑x.

Examples abound, e.g.
(a) standard linear orderings of num-

bers
(b) divisibility of integers (a|b, “a di-

vides b”) is a preorder,
(c) the inclusion is a (partial) order on

the set P(X) of all subsets of a set X .
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Opposite (dual) order:
a ≤op b iff b ≤ a
We often write

(X,R)op for (X,Rop).

Monotone maps. If (X,≤), (Y,≤)
are posets (the two ≤, of course, do not
have to coincide) and if f : X → Y is
a mapping, we say that f is monotone
(or isotone ) if

x ≤ y ⇒ f (x) ≤ f (y).

An monotone f is an isomorphism, if
there exits an monotone g : (Y,≤) →
(X,≤) such that f · g = id a g · f = id,
We immediately see that f is an isomor-
phism iff

� it is a mapping onto, and

� x ≤ y ⇔ f (x) ≤ f (y).
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Suprema and infima
x ∈ (X,≤) is a lower (resp. upper)
bound of M ⊆ X if

M ⊆↑x (resp. M ⊆↓x).

The least upper bound ofM (if it exists)
is called supremum of M , denoted

supM,

the largest lower bound of M is called
infimum and denoted

inf M.

Thus, s = supM if

(1) M ⊆↓s, and

(2) M ⊆↓x ⇒ s ≤ x.

Compare with the
(2’) x < s ⇒ ∃y ∈M,x < y.

from analysis courses.
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Let (X,≤) be a poset and let M ⊆
N ⊆ X . We say that M is up- resp.
down-cofinal in N if for each element
n ∈ N there is an m ∈ M such that
m ≥ n resp. m ≤ n. One often uses the
following

Observation. If M is up- (resp.
down-) cofinal with N and supN (resp.
inf N) exists then supM (resp. inf M)
exists as well and supM = supN (resp.
inf M = inf N).
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Proposition. We have

sup{supMj | j ∈ J} = sup(
⋃
j∈J

Mj),

inf{inf Mj | j ∈ J} = inf(
⋃
j∈J

Mj)

whenever the left hand sides make sense.

Proof for suprema. Set

sj = supMj, s = sup{sj | j ∈ J}.
Then s is obviously an upper bound of
the set

⋃
j∈JMj. Now if

⋃
j∈JMj ⊆

↓x we have for each j, Mj ⊆↓x and
hence sj ≤ x. Consequently {sj | j ∈
J} ⊆↓x and finally s ≤ x.
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Bottom and top. sup ∅ (if it exists)
is the least element (notation: ⊥, 0) of
(X ≤) (∅ ⊆↓x for every x). Similarly
inf ∅ is the largest element (>,1)

Note the least element is minimal,
but a minimal element (such that im-
plication y ≤ x ⇒ y = x) is not ne-
cessarily least. Similarly for maximal and
largest elements.

Examples. (a) Suprema and infima
in R as in analysis.

(b) In (P(X),⊆) we have

sup{Aj | j ∈ J} =
⋃
j∈J

Aj, inf{Aj | j ∈ J} =
⋂
j∈J

Aj.

(c) In N with a|b (“a divides b”), sup{a, b}
is the least common multiple of a and
b and inf{a, b} is the largest common
divisor of a and b.
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If f : (X ≤) → (Y,≤) is monotone
then

f [↓x] ⊆↓f (x) and f [↑x] ⊆↑f (x),

so that if x is an upper (lower) bound of
M then f (x) is an upper (lower) bound
of f [M ]. Hence in particular

sup f [M ] ≤ f (supM), inf f [M ] ≥ f (inf M)

(whenever the expressions make sense).

Some special orders
Semilattices. A lower (resp. upper)

semilattice has inf{x, y} (resp. sup{x, y})
for any two elements x, y ∈ X . One of-
ten writes x ∧ y, x ∨ y.

Lattice. A poset that is simultaneously
a lower and an upper semilattice.

Complete lattice. Every subset has a
supremum and an infimum.
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Theorem. A poset is a complete lat-
tice iff each subset has a supremum.
Similarly with infima.
Proof. Let us have, in (X,≤), all suprema. We will de-

termine the infimum of an M ⊆ X . Set

N = {x |M ⊆↑x}, i = supN.

For every y ∈M we have N ⊆↓y and hence i ≤ y; thus,

i is a lower bound of the set M . If M ⊆↑x then x ∈ N

and hence x ≤ i so that i = inf M .

Directed (sub)sets. D ⊆ (X,≤) is
directed, if every finite K ⊆ D has an
upper bound in D. Note that in part. it
has to be non-void.

(More exactly, up-directed as opposed
to the down-directed defined with lower
bounds.)
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A note on notation. In complete
lattices one often uses for suprema resp.
infima the symbols

∨
resp.

∧
(and so-

metimes also other symbols like,
⊔

,
⋃

etc.), like in
∨
{x |x ∈M},

∨
j∈J xj,

etc..
The symbols like

∨
,
∧

etc. are frequently
viewed as operational symbols (similarly
as the a ∨ b, a ∧ b).

Further, the suprema
∨

, ∨ are often
referred to as joins and the infima

∧
,

∧ are referred to as meets.
The symbols sup and inf are, typi-

cally, used in the case when they do not
have to exist generally. This convention
is fairly standard.
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Two fixed-point theorems

Theorem. (Bourbaki) Let (X,≤) have
⊥ and let every chain in X

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · ·
have a supremum. Let f : X → Y
preserve suprema of chains. Then f
has a fixed point.

Proof. Start with x0 = ⊥ and define xn by setting

xn+1 = f (xn). As x0 = ⊥ ≤ x1 we obtain inductively

that xn+1 = f (xn) ≤ f (xn+1) = xn+2 so that x0 ≤ x1 ≤

· · · ≤ xn ≤ · · · . Consider y = supxn. Then f (y) =

sup f (xn) = supxn+1 = y and y is a fixed point.

Note that the y from the proof is the
least fixed point of f . If f (z) = z we
have ⊥ ≤ z, f (⊥) ≤ f (z) = z, and by
induction f (xn) ≤ z.

22



Theorem. (Tarski – Knaster) Every
monotone mapping of a complete lat-
tice into itself has a fixed point.
Proof. Let L be a complete lattice and let f : L→ L be

monotone. Set M = {x |x ≤ f (x)} a s = supM . For

x ∈ M we have x ≤ s and hence x ≤ f (x) ≤ f (s) so

that f (s) is an upper bound of the set M and we have

s ≤ f (s),

and from the monotony, f (s) ≤ f (f (s)) so that f (s) ∈
M . Therefore also

f (s) ≤ s,

and hence finally f (s) = s.
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Details. in Text:

Chapter I: 2,3,5,6

Chapter II: 1,2,3,7(without examples)
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