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Here are the results needed for solving the first three HW problems.

Proposition 0.1 (Taylor polynomials) Let m,n ∈ N, a ∈ U ⊂ Rm where U
is an open set and let

f = f(x1, . . . , xm) : U → R

be a map that has on U continuous partial derivatives up to the order n. Then
for h = (h1, . . . , hm) ∈ Rm with ∥h∥ → 0 we have the expansion

f(a+ h) =
∑

i1, ..., im≥0
i1+···+im≤n

1

i1! . . . im!
· ∂i1+···+imf

∂xi1
1 . . . ∂xim

m

(a) · hi1
1 . . . him

m + o(∥h∥n) .

We call it the Taylor polynomial of f with center in a and order n.

The formal series ∑
i1, ..., im≥0

1

i1! . . . im!
· ∂i1+···+imf

∂xi1
1 . . . ∂xim

m

(a) · hi1
1 . . . him

m

— to define it it suffices that all partial derivatives of f are defined in a — is
called the Taylor expansion of f (with center in a).

For a function f = f(x1, . . . , xm) and b ∈ Rm, the gradient ∇f (b) is simply
the (row) vector of the values of its order 1 partial derivatives in b,

∇f (b) =
(
∂f/∂x1(b), ∂f/∂x2(b), . . . , ∂f/∂xm(b)

)
.

We define the m×m real matrix

Hf (b) =

(
∂2f

∂xi∂xj
(b)

)m

i, j=1

.

We know that in some situations, certainly in the following theorem, this matrix
is symmetric. If M ∈ Rm×m is a symmetric matrix, we define a quadratic form

PM (x1, . . . , xm) := (x1, . . . , xm) ·M · (x1, . . . , xm)T .
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For example, if

N :=

(
0 1
1 0

)
and N ′ :=

(
1 0
0 1

)
then PN (x, y) = yx+ xy = 2xy and PN ′(x, y) = x2 + y2. We say that M is

1. positively definite if PM (x1, . . . , xm) > 0 for every (x1, . . . , xm) ∈ Rm \
{(0, . . . , 0)},

2. negatively definite if PM (x1, . . . , xm) < 0 for every (x1, . . . , xm) ∈ Rm \
{(0, . . . , 0)} and

3. indefinite if PM (x1, . . . , xm) > 0 and PM (y1, . . . , ym) < 0 for some two
points (x1, . . . , xm) and (y1, . . . , ym) in Rm.

Definiteness of M can be determined by expressing the form PM (x1, . . . , xm)
as a linear combination of m squares. If all m coefficients in this combination
are > 0 (resp. < 0), M is positively (resp. negatively) definite. If there are
both positive and negative coefficients, M is indefinite. For example,

PN (x, y) = 2xy = 1
2 (x+ y)2 − 1

2 (x− y)2

and N is indefinite, but this is obvious already from PN (x, y) = 2xy. Of course,
PN ′(x, y) = x2+y2 is positively definite. If there are zeros among the coefficients
and M is not indefinite, then M is neither positively nor negatively definite.

Let b ∈ M ⊂ Rm and f : M → R. We say that f has in the point b local
minimum (resp. local maximum) if there is an r > 0 such that f(b) ≤ f(x)
(resp. f(b) ≥ f(x)) for every x ∈ B(b, r) ∩M . If the inequality holds as strict
(<, resp. >) for every x ∈ B(b, r) ∩M , x ̸= b, we say that the local extreme is
strict.

Theorem 0.2 (criteria for extremes) Let m ∈ N, b ∈ U ⊂ Rm where U is
an open set and let

f = f(x1, . . . , xm) : U → R

be a map that has on U continuous partial derivatives up to the order 2. Then
the following hold.

1. If the gradient ∇f (b) ̸= (0, 0, . . . , 0) then f does not have in the point b
local extreme.

2. If the gradient ∇f (b) = (0, 0, . . . , 0) and the matrix Hf (b) is positively
(resp. negatively) definite, then f has in the point b a strict local minimum
(resp. maximum).

3. If the gradient ∇f (b) = (0, 0, . . . , 0) and the matrix Hf (b) is indefinite,
then f does not have in the point b local extreme.
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