MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2023/24
lecturer: Martin Klazar

LECTURE 7 (April 2, 2024) SOLVING THE BASEL PROBLEM BY FOURIER SERIES

- The Basel problem. What is the sum of the series

$$
B=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots ?
$$

According to Wikipedia (English mutation), this problem was presented by Pietro Mengoli in 1650 and solved by Leonard Euler in 1734:

$$
B=\frac{\pi^{2}}{6}
$$

The problem is named after Euler's hometown. It was the residence of the mathematical clan of Bernoulli's who also tried to solve the problem but did not succeed.

- Series. We review basic notions of the theory of (infinite) series so that the previous problem makes sense. A series $\sum a_{n}=\sum_{n=1}^{\infty} a_{n}$ is in fact a sequence $\left(a_{n}\right) \subset \mathbb{R}$, to which we assign the sequence of partial sums

$$
\left(s_{n}\right)=\left(a_{1}+a_{2}+\cdots+a_{n}\right) \subset \mathbb{R} .
$$

The limit of $\left(s_{n}\right)$ is the sum of the series. If this limit is finite $(\in \mathbb{R})$, the series converges, else (the sum is $\pm \infty$ or does not exist) it diverges. The sum of a series is denoted by the same symbol as
the series itself, so also

$$
\sum a_{n}=\sum_{n=1}^{\infty} a_{n}=\lim s_{n}=\lim \left(a_{1}+a_{2}+\cdots+a_{n}\right)
$$

In exercises we review a few basic results about series.
Exercise 1 (necessary condition for convergence) If the series $\sum a_{n}$ converges then $\lim a_{n}=0$.

Exercise 2 If the series $\sum a_{n}$ has almost all summands nonnegative, i.e. $n \geq n_{0} \Rightarrow a_{n} \geq 0$, then $\sum a_{n}$ converges or has the sum $+\infty$.

Exercise 3 (harmonic series) $\sum \frac{1}{n}=+\infty$.
Exercise $4 \sum \frac{1}{(n+1) n}=1$.
Exercise 5 Using the previous problem, prove that the series $\sum 1 / n^{2}$ in the Basel problem converges.

Exercise 6 (geometric series) For each $q \in(-1,1)$,

$$
\sum_{n=0}^{\infty} q^{n}=\frac{1}{1-q}
$$

Exercise 7 (the Leibniz Criterion) When $a_{1} \geq a_{2} \geq \cdots \geq$ 0 and $\lim a_{n}=0$, then the series $\sum(-1)^{n-1} a_{n}=a_{1}-a_{2}+a_{3}-\ldots$ converges.

Exercise 8 Derive in a simple way:

$$
\sum \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \Rightarrow \sum \frac{(-1)^{n-1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

- Riemannian series. A series $\sum a_{n}$ is Riemannian if (i) $\lim a_{n}=$ 0 , (ii) $\sum a_{k_{n}}=+\infty$ and (iii) $\sum a_{z_{n}}=-\infty$, where ($a_{k_{n}}$), resp. $\left(a_{z_{n}}\right)$, is the subsequence of nonnegative, resp. negative, summands in $\left(a_{n}\right)$.

Exercise 9 (harder) Fill in details in the sketch in the next proof.

Theorem 10 (Riemann) Let $\sum a_{n}$ be a Riemannian series. Then for every $S \in \mathbb{R}^{*}$ there is a permutation (bijection) $\pi: \mathbb{N} \rightarrow$ \mathbb{N} such that

$$
\sum_{n=1}^{\infty} a_{\pi(n)}=S
$$

Thus by reordering any Riemannian series we can get any sum. Proof. Suppose that $\sum a_{n}$ is a Riemannian series and that $\sum a_{k_{n}}$ and $\sum a_{z_{n}}$ are as in the definition. We define π for any given $S \in \mathbb{R}$ (i.e., S is a real number, not $\pm \infty$) as follows. We initialize three variables by $i=1, j=0$ and $\pi(1)=k_{1}$. Suppose that $\pi(1), \pi(2)$, $\ldots, \pi(n)$ have been already defined and $a=\sum_{k=1}^{n} a_{\pi(k)}$. If $a<S$ then $i:=i+1, j:=j$ and $\pi(n+1)=k_{i}$. If $a \geq S$ then $i:=i$, $j:=j+1$ and $\pi(n+1)=z_{j}$. In this way we define a $\operatorname{map} \pi: \mathbb{N} \rightarrow \mathbb{N}$. It follows that π is a bijection and

$$
\sum_{n=1}^{\infty} a_{\pi(n)}=S
$$

- Trigonometric series. These are the series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

where $a_{n}, b_{n} \in \mathbb{R}$ are coefficients and $x \in \mathbb{R}$ is a variable. Effectively it is a parametric system of series parameterized by the variable x. Our goal is to derive expressions for a wide class of functions $f:[-\pi, \pi] \rightarrow \mathbb{R}$ as trigonometric series. Then we use it to solve the Basel problem.

Let $\mathcal{R}(-\pi, \pi)$ be the set of all Riemann integrable functions $f:[-\pi, \pi] \rightarrow \mathbb{R}$. For $f, g \in \mathcal{R}(-\pi, \pi)$ we define

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f g \in \mathbb{R}
$$

(it follows from the theory of the Riemann integral that if $f, g \in$ $\mathcal{R}(-\pi, \pi)$, then $f g \in \mathcal{R}(-\pi, \pi)$ too $)$. It looks like a scalar product:

Exercise 11 Prove that

$$
\langle f, g\rangle=\langle g, f\rangle,\langle f, f\rangle \geq 0
$$

and, for $a, b \in \mathbb{R}$,

$$
\langle a f+b g, h\rangle=a\langle f, h\rangle+b\langle g, h\rangle .
$$

But it is not completely a scalar product:
Exercise 12 The equivalence

$$
\langle f, f\rangle=0 \Longleftrightarrow f \equiv 0
$$

does not hold.
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is 2π-periodic if for every $x \in \mathbb{R}$ one has that $f(x+2 \pi)=f(x)$.

Proposition 13 (orthogonality of sines and cosines) For

 every two integers $m, n \geq 0$,$$
\langle\sin (m x), \cos (n x)\rangle=0
$$

For every two integers $m, n \geq 0$, except $m=n=0$, one has that
$\langle\sin (m x), \sin (n x)\rangle=\langle\cos (m x), \cos (n x)\rangle=\left\{\begin{array}{lll}\pi & \ldots & m=n \text { and } \\ 0 & \ldots & m \neq n .\end{array}\right.$
Finally,

$$
\langle\sin (0 x), \sin (0 x)\rangle=0 \text { and }\langle\cos (0 x), \cos (0 x)\rangle=2 \pi .
$$

Proof. Let $m, n \in \mathbb{N}_{0}$. We compute the values

$$
S_{m, n}=\langle\sin (m x), \sin (n x)\rangle, T_{m, n}=\langle\cos (m x), \cos (n x)\rangle
$$

and

$$
U_{m, n}=\langle\sin (m x), \cos (n x)\rangle .
$$

Clearly, $S_{0,0}=0, T_{0,0}=2 \pi$ and $U_{0,0}=0$. Let m or n be nonzero, say $m \neq 0$ (for $n \neq 0$ the calculation is similar). Integration by parts using that $\sin (m x)=(-\cos (m x) / m)^{\prime}$ and $\cos (m x)=$ $(\sin (m x) / m)^{\prime}$ yields

$$
S_{m, n}=\frac{n}{m} \cdot T_{m, n}, T_{m, n}=\frac{n}{m} \cdot S_{m, n} \text { and } U_{m, n}=-\frac{n}{m} \cdot U_{n, m}
$$

- the first term $[\ldots]_{-\pi}^{\pi}$ in the formula is always zero because ... is a 2π-periodic function. The first two equations together give

$$
\left(1-(n / m)^{2}\right) S_{m, n}=0=\left(1-(n / m)^{2}\right) T_{m, n}
$$

If $n \neq m$ then $S_{m, n}=T_{m, n}=0$. When $n=m$, then we know that $S_{m, m}=T_{m, m}$. But from the identity $\sin ^{2} x+\cos ^{2} x=1$ (holding for every $x \in \mathbb{R}$) it follows that $S_{m, m}+T_{m, m}=\int_{-\pi}^{\pi} 1=2 \pi$. Thus, $S_{m, m}=T_{m, m}=\pi$. The third equation above for $m=n$ gives $U_{m, m}=-U_{m, m}$ and so $U_{m, m}=0$. To calculate $U_{m, n}$ for $m \neq n$,
we express $U_{n, m}$ by integration by parts again using $\cos (m x)=$ $(\sin (m x) / m)^{\prime}$:

$$
U_{n, m}=-(n / m) U_{m, n}
$$

Together $U_{m, n}=(n / m)^{2} U_{m, n}$ and again $U_{m, n}=0$. In summary: $S_{m, m}=T_{m, m}=\pi$ for $m \in \mathbb{N}, S_{0,0}=0$ and $T_{0,0}=2 \pi$, and all other values of $S_{m, n}, T_{m, n}$ and $U_{m, n}$ for $m, n \in \mathbb{N}_{0}$ are zero.

- The Fourier series of a function. For any function $f \in \mathcal{R}(-\pi, \pi)$ we define its cosine Fourier coefficients

$$
a_{n}=\frac{\langle f(x), \cos (n x)\rangle}{\pi}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{dx}, n=0,1, \ldots
$$

and its sine Fourier coefficients

$$
b_{n}=\frac{\langle f(x), \sin (n x)\rangle}{\pi}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{dx}, n=1,2, \ldots
$$

The Fourier series of the function $f(\in \mathcal{R}(-\pi, \pi))$ is the trigonometric series

$$
F_{f}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

where a_{n} and b_{n} are, respectively, its cosine and sine Fourier coefficients. Geometrically viewed, we work in an infinite-dimensional vector space with the (almost) scalar product $\langle\cdot, \cdot\rangle$, in which the "coordinate axes" (elements of the orthogonal basis) are the functions

$$
\left\{\cos (n x) \mid n \in \mathbb{N}_{0}\right\} \cup\{\sin (n x) \mid n \in \mathbb{N}\}
$$

Fourier coefficients of a given function f are its coordinates on these infinitely many coordinate axes. In contrast with Cartesian coordinates of points in \mathbb{R}^{n}, not every function is equal to the sum of
its Fourier series. In a moment we present sufficient conditions (in Dirichlet's theorem and its corollary) for this to hold.

- Bessel's inequality.

Theorem 14 (Bessel's Inequality) Fourier coefficients a_{n} and b_{n} of any function $f \in \mathcal{R}(-\pi, \pi)$ satisfy the inequality

$$
\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \leq \frac{\langle f, f\rangle}{\pi}=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}
$$

Proof. We denote by $s_{n}=s_{n}(x), n=1,2, \ldots$, the n-th partial sum of the Fourier series of the function f :

$$
\begin{aligned}
s_{n} & =\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right) \\
& =\sum_{k=0}^{n}\left(a_{k}^{\prime} \cos (k x)+b_{k}^{\prime} \sin (k x)\right),
\end{aligned}
$$

where

$$
a_{k}=\pi^{-1}\langle f, \cos (k x)\rangle, b_{k}=\pi^{-1}\langle f, \sin (k x)\rangle, k=0,1,2, \ldots
$$

$a_{0}^{\prime}=a_{0} / 2, a_{k}^{\prime}=a_{k}$ for $k>0, b_{0}^{\prime}=0$ and $b_{k}^{\prime}=b_{k}$ for $k>0$. Due to the linearity of the (almost) scalar product $\langle\cdot, \cdot\rangle$, definition of numbers $a_{k}^{\prime}, b_{k}^{\prime}, a_{k}, b_{k}$ and orthogonality of functions $\sin (k x)$ and $\cos (k x)$ we have

$$
\begin{aligned}
\left\langle s_{n}, s_{n}\right\rangle & =\sum_{k=0}^{n}\left(\left(a_{k}^{\prime}\right)^{2}\langle\cos (k x), \cos (k x)\rangle+\left(b_{k}^{\prime}\right)^{2}\langle\sin (k x), \sin (k x)\rangle\right) \\
& =\pi\left(\frac{a_{0}^{2}}{2}+\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right)
\end{aligned}
$$

and also

$$
\begin{aligned}
\left\langle s_{n}, f\right\rangle & =\sum_{k=0}^{n}\left(a_{k}^{\prime}\langle\cos (k x), f\rangle+b_{k}^{\prime}\langle\sin (k x), f\rangle\right) \\
& =\pi\left(\frac{a_{0}^{2}}{2}+\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right)
\end{aligned}
$$

On the other hand,

$$
0 \leq\left\langle f-s_{n}, f-s_{n}\right\rangle=\langle f, f\rangle-2\left\langle s_{n}, f\right\rangle+\left\langle s_{n}, s_{n}\right\rangle
$$

hence $2\left\langle s_{n}, f\right\rangle-\left\langle s_{n}, s_{n}\right\rangle \leq\langle f, f\rangle$. Thus for every n,

$$
\frac{a_{0}^{2}}{2}+\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)=\frac{2\left\langle s_{n}, f\right\rangle-\left\langle s_{n}, s_{n}\right\rangle}{\pi} \leq \frac{\langle f, f\rangle}{\pi}
$$

The series of squares of the Fourier coefficients of the function f converges and its sum is bounded by the stated value.

Exercise 15 (Riemann-Lebesgue Lemma) Using Bessel's

 inequality, prove that for every function $f \in \mathcal{R}(-\pi, \pi)$$$
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{dx}=\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{dx}=0
$$

(Hint: see Exercise 1).

- Piece-wise smooth functions and Dirichlet's theorem. The function

$$
f:[a, b] \rightarrow \mathbb{R}
$$

where $a<b$ are real numbers, is piece-wise smooth if there is a partition

$$
a=a_{0}<a_{1}<a_{2}<\cdots<a_{k}=b, k \in \mathbb{N}
$$

of the interval $[a, b]$ such that on every interval $\left(a_{i-1}, a_{i}\right), i=$ $1,2, \ldots, k, f$ has continuous derivative f^{\prime}, for every $i=1,2, \ldots, k$ there exist finite one-sided limits

$$
f\left(a_{i}-0\right)=\lim _{x \rightarrow a_{i}^{-}} f(x) \text { and } f^{\prime}\left(a_{i}-0\right)=\lim _{x \rightarrow a_{i}^{-}} f^{\prime}(x)
$$

and for each $i=0,1, \ldots, k-1$ there exist finite one-sided limits

$$
f\left(a_{i}+0\right)=\lim _{x \rightarrow a_{i}^{+}} f(x) \text { and } f^{\prime}\left(a_{i}+0\right)=\lim _{x \rightarrow a_{i}^{+}} f^{\prime}(x)
$$

A piece-wise smooth function can be at several points in the interval $[a, b]$ discontinuous, but at the points of discontinuity it has finite one-sided limits and one-sided non-vertical tangents.

Exercise 16 Is the function $f:[-1,1] \rightarrow \mathbb{R}$, defined as $f(x)=$ $(-x)^{1 / 3}$ for $x \in[-1,0]$ and $f(x)=x^{1 / 3}$ for $x \in[0,1]$, piece-wise smooth?

Exercise 17 Is the signum function $\operatorname{sgn}:[-1,1] \rightarrow \mathbb{R}$, defined as $\operatorname{sgn}(x)=-1$ for $x \in[-1,0)$, $\operatorname{sgn}(0)=0$ and $\operatorname{sgn}(x)=1$ for $x \in(0,1]$, piece-wise smooth?

Theorem 18 (Dirichlet's) Let

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

be a 2π-periodic function such that its restriction to the interval $[-\pi, \pi]$ is piece-wise smooth. Then for every $a \in \mathbb{R}$ its Fourier series $F_{f}(x)$ sums to

$$
F_{f}(a)=\frac{f(a+0)+f(a-0)}{2}=\frac{\lim _{x \rightarrow a^{+}} f(x)+\lim _{x \rightarrow a^{-}} f(x)}{2}
$$

Thus, at each point of continuity $a \in \mathbb{R}$ of the function $f(x)$, its Fourier series sums to the functional value, $F_{f}(a)=f(a)$.

Proof. We will probably skip it.
We say that the function $f:[a, b] \rightarrow \mathbb{R}$ is smooth if it has on (a, b) continuous derivative f^{\prime} and at the ends a and b the functions $f(x)$ and $f^{\prime}(x)$ have finite limits.

Corollary 19 (on smooth function) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a 2π periodic and continuous function whose restriction to the interval $[-\pi, \pi]$ is smooth. Then for each $a \in \mathbb{R}$ is

$$
F_{f}(a)=f(a) .
$$

Any continuous and smooth function is therefore equal to the sum of its Fourier series.

Proof. This follows from the previous theorem: by the assumption f is continuous on \mathbb{R}.

- Back to the Basel problem. Let $I \subset \mathbb{R}$ be an interval symmetric with respect to the origin and $f: I \rightarrow \mathbb{R}$. We say that the function f is even (resp. odd) if for every $x \in I, f(-x)=f(x)$ (resp. $f(-x)=-f(x))$.

Exercise 20 Let $f \in \mathcal{R}(-\pi, \pi)$. Prove that all sine (or cosine) Fourier coefficients of an even (or odd) functions f are zero. How do you simplify cosine (or sine) Fourier coefficients of an even (or odd) function?

We calculate the Fourier series of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined on the interval $[-\pi, \pi]$ by $f(x)=x^{2}$ and 2π-periodically extended to the entire \mathbb{R} (which is possible due to the fact that $(-\pi)^{2}=\pi^{2}$). Its sine Fourier coefficients are zero according to the previous exercise. The first (actually zero) cosine Fourier coefficient is (according
to this exercise)

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \mathrm{dx}=\frac{2 \pi^{2}}{3}
$$

$\operatorname{Next}(n \in \mathbb{N})$

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} x^{2} \overbrace{\cos (n x)}^{(\sin (n x) / n)^{\prime}} \mathrm{dx} \\
& =\frac{2}{\pi n} \underbrace{\left.x^{2} \sin (n x)\right]_{0}^{\pi}}_{0-0=0}-\frac{4}{\pi n} \int_{0}^{\pi} x \overbrace{\sin (n x)}^{(-\cos (n x) / n)^{\prime}} \mathrm{dx} \\
& =\frac{4}{\pi n^{2}} \underbrace{[x \cos (n x)]_{0}^{\pi}}_{\pi(-1)^{n}}-\frac{4}{\pi n^{2}} \underbrace{\int_{0}^{\pi} \cos (n x) \mathrm{dx}}_{0-0=0} \\
& =(-1)^{n} \frac{4}{n^{2}}
\end{aligned}
$$

Since the function f is continuous and smooth on $[-\pi, \pi]$, by Corollary 19 one has for every $a \in \mathbb{R}$ that

$$
f(a)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n a)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos (n a)}{n^{2}} .
$$

For $a=\pi$ we get

$$
\pi^{2}=f(\pi)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{(-1)^{n}}{n^{2}}, \quad \text { so } \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Exercise 21 The function $f(x)$ is defined on the interval $[-\pi, \pi)$ as $f(x)=\pi-x$ and is 2π-periodically extended to \mathbb{R}. Expand it into Fourier series.

Exercise 22 What sum of the infinite series do we get from the previous expansion (using Dirichlet's theorem) for $x=\frac{\pi}{2}$?

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send me (klazar@kam.mff.cuni.cz) by the end of the coming Sunday solutions to the Exercises 1, 8, 9, 16 and 20 .

