MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2022/23
lecturer: Martin Klazar

LECTURE 7 (March 29, 2023) SOLVING THE BASEL
PROBLEM BY FOURIER SERIES

e The Basel problem. What is the sum of the series
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According to Wikipedia (English mutation), this problem was pre-

sented by Pietro Mengoli in 1650 and solved by Leonard Euler in

1734:
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The problem is named after Euler's hometown. There resided the
mathematical clan of the Bernoulli family who were trying to solve
the problem but did not succeed.

e Series. We review basic notions of the theory of (infinite) series so
(0. 9]
n=1

is in fact a sequence (a,) C R, to which we assign the sequence of
partial sums

that the previous problem makes sense. A series Y a, =Y > a,

(sp) =(ay+as+---+a, CR.

The limit of (s,) is the sum of the series. If this limit is finite
(€ R), the series converges, else (the sum is 200 or does not exist)
it diverges. The sum of a series is denoted by the same symbol as



the series itself, so also
o
Zan: Zan =lim s, =lim(a;+as+---+a,) .
n=1

In exercises we review a few basic results about series.

Exercise 1 (necessary condition for convergence) If the
series Y a, converges then lim a, = 0.

Exercise 2 If the series > a, has almost all summands non-
negative, i.e. n. > ng = a, > 0, then Y a, converges or has the
Sum —+0o0.

Exercise 3 (harmonic series) >+ = +oo0.

Exercise 4 ) @ +11)n = 1.

Exercise 5 Using the previous problem, prove that the series
S~ 1/n? in the Basel problem converges.

Exercise 6 (geometric series) For each q € (—1,1),
St
n=>0 1- q

Exercise 7 (the Leibniz Criterion) When ay > ay > -+ >

0 and lim a, = 0, then the series > (—1)""ta, = aj—as+az—. ..
converges.

Exercise 8 Derive simply:
2
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e Riemannian series. A series Y  a,, is Riemannian if (i) lim a,, =
0, (ii) > ag, = +oo and (iii) > a., = —oo, where (ay,), resp.
(a,), is the subsequence of nonnegative, resp. negative, summands
in (ay,).

Exercise 9 (harder) Fill in details in the sketch in the next
proof.

Theorem 10 (Riemann) Let ) a, be a Riemannian series.
Then for every S € R* there is a permutation (bijection)

7 N — N

such that -
Z aﬂ(n) =5.
n=1

Thus by reordering any Riemannian series we can get any sum.

Proof. Suppose that ) a, is a Riemannian series and that > ay,,
and ) a, are as in the definition. We define 7 for any given S' € R
(i.e., S is a real number, not £00) as follows. We initialize three
variables by ¢ := 1, j := 0 and w(1) := ky. Suppose that w(1),
m(2), ..., m(n) have been already defined and a = ;| a(. If
a < Stheni:=i+1 j:=jandn(n+1):=k;. If a > S then
i:=1,7:=7+1and m(n+ 1) := z;. In this way we define a map
m: N — N. It follows that 7 is a bijection and

Zaﬂn) =S.

n=1



e Trigonometric series. These are the series

ao

5+ Z (an cos(nz) + by sin(nz)) |

n=1

where a,,b, € R are coefficients and * € R is a variable. Ef-
fectively it is a parametric system of series parameterized by the
variable . Our goal is to derive expressions for a wide class of
functions f: [—m, 7] — R as trigonometric series. Then we use it
to derive Euler’s solution to the Basel problem.

Let R(—m,m) be the set of all Riemann integrable functions
f:|-m,m] = R. For f,g € R(—m,m) we define

(f, 9) :—/_ngeR

(it follows from the theory of the Riemann integral that if f, g €
R(—m,m), then fg € R(—m, ) too). It looks like a scalar product:

Exercise 11 Prove that
(fr9) =19, f), (. /) =0
and, for a,b € R,
{af +bg, h) = a(f, h)+b(g, ) .
But it is not completely a scalar product:
Exercise 12 The equivalence
(f. /) =0 < f=0
does not hold.



A function f: R — R is 2m-periodic if for every x € R one has
that f(x + 2m) = f(x) .

Proposition 13 (orthogonality of sines and cosines) For
every two wntegers m,n > 0,
(sin(mx), cos(nx)) = 0.

For every two integers m,n > 0, except m = n = 0, one has
that

T ... m=mn and

0 ... m#n.

(sin(ma), sin(nz)) = (cos(ma), cos(nz)) = {

Finally,
(sin(0x), sin(0x)) =0 and (cos(0x), cos(0x)) = 27 .
Proof. Let m,n € Ny. We compute the values
Smn = (sin(ma), sin(nx)), T, = (cos(mz), cos(nx))
and
Up.n = (sin(mz), cos(nx)) .

Clearly, Spop = 0, Too = 27 and Upy = 0. Let m or n be non-
zero, say m # 0 (for n # 0 the calculation is similar). Integration
by parts using that sin(mz) = (—cos(mx)/m)" and cos(mz) =
(sin(max)/m)" yields

n n n
Sm,n - - Tm,na Tm,n - Sm,n and Um,n - - Un,m
m m m
— the first term [...]" _in the formula is always zero because ...

is a 2m-periodic function. The first two equations together give
(1— (n/m)z)Smm =0=(1- (n/m)Q)Tm,n -

bt



It n # m then Sy, , = T}, = 0. When n = m, then we know that
Smm = Lm.m. But from the identity sin?x + cos?x = 1 (holding
for every & € R) it follows that Sy, ., + T = f; 1 = 27. Thus,
Smm = Lmm = m. The third equation above for m = n gives
Unm = —Upm and so Uy, = 0. To calculate U, , for m # n,
we express U, ,, by integration by parts again using cos(mz) =
(sin(mz)/m)":
Upm = —(n/m)Up,

Together Uy, = (n/m)*U,,,, and again Uy, = 0. In summary:
Smm = Tm = mlorm € N, Spp = 0 and Ty g = 2, and all other
values of Sy, ., Tinp and U, for m,n € Ny are zero. O

e The Fourier series of a function. For any function f € R(—mr, )
we define its cosine Fourier coefficients

(f(x), cos(nx))

Ay = / f(x)cos(nx) dx, n =0, 1,

v

and its stne Fourter coeﬁ?cz’ents

(f(x), sin(nx))

by = / f(z) sin(nx) dx, n =1, 2,

T

The Fourier series of the function f (€ R(—m,m)) is the trigo-
nometric series
ao

Ff(.T) = ? —+

]2

(ay cos(nz) + b, sin(nz)) |

n=1

where a, and b, are, respectively, its cosine and sine Fourier coef-
ficients. Geometrically viewed, we work in an infinite-dimensional
vector space with the (almost) scalar product (-,-), in which the
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“coordinate axes” (elements of the orthogonal basis) are the functi-
ons

{cos(nz) | n € No} U {sin(nz) | n € N} .

Fourier coefficients of a given function f are its coordinates on these
infinitely many coordinate axes. In contrast with Cartesian coordi-
nates of points in R", not every function is equal to the sum of
its Fourier series. In a moment we present sufficient conditions (in
Dirichlet’s theorem and its corollary) for this to hold.

e Bessel’s inequality.

Theorem 14 (Bessel’s Inequality) Fourier coefficients a,, and
b, of any function f € 72(—7T,7r) satisfy the inequality

Proof. We denote by s, = s,(z), n = 1,2,..., the n-th partial
sum of the Fourier series of the function f:

n

Sp = % + Z (ax cos(kz) + by sin(kzx))
k=1

3

— (aj, cos(kx) + by, sin(kx)) |
k=0

ap =7 (f, cos(kx)), b =7 N[, sin(kx)), k=0,1,2, ...,

ay = ao/2, ap = ai for kK > 0, by = 0 and b, = b; for k > 0.
Due to the linearity of the (almost) scalar product (-, -), definition



of numbers a}, b}, ai, by and orthogonality of functions sin(kz)
and cos(kx) we have

n

(Spy Sp) = Z ((ap)*(cos(kz), cos(kx)) + (b),)*(sin(kx), sin(kz)))

k=0
+Z ak,—l—b2>

-

(sny £) = Y (apcos(kx), f) + bi(sin(kz), f))

k=0

=T (%%—Z(az%—bz)) .

k=1

Ol\')

and also

On the other hand,

0 <(f —sn, [—50)=(fs ) =250, [) + (S, 8n)
hence 2(s,,, f) — (s, sn) < {f, f). Thus for every n,

@ Z< vy = o) = sws) (L S)

s T
The series of squares of the Fourier coeflicients of the function f
converges and its sum is bounded by the stated value. O

Exercise 15 (Riemann—Lebesgue Lemma) Using Bessel’s
inequality, prove that for every function f € R(—m, )

lim/ f(z)sin(nz) dx-hm/ f(z)cos(nz) dx=0.

n—oo n—oo

(Hint: see Ezercise 1).



e Piece-wise smooth functions and Dirichlet’s theorem. The
function

fila, )] = R,
where a < b are real numbers, is piece-wise smooth if there is
a partition

a=ayp< a1 <ay<---<ap=b, keN,

of the interval [a,b] such that on every interval (a; 1,a;), i =
1,2,...,k, f has continuous derivative f’, for every i =1,2,... k
there exist finite one-sided limits

fla; —0):= lim f(z) and f'(a; —0):= lim f'(x)

r—a,; r—a;
and for each 1 = 0,1,...,k — 1 there exist finite one-sided limits
fla; +0):= lim f(x) and f'(a; +0):= lim f'(z).
r—a; z—a;

A piece-wise smooth function can be at several points in the interval
la, b] discontinuous, but at the points of discontinuity it has finite
one-sided limits and one-sided non-vertical tangents.

Exercise 16 Is the function f: |[—1,1] = R, defined as f(x) =
(=2)'3 forx € [—1,0] and f(x) = '/ for x € [0, 1], piece-wise
smooth?

Exercise 17 Is the signum function sgn: [—1,1] — R, defined
as sgn(x) = —1 for x € [—1,0), sgn(0) = 0 and sgn(z) = 1 for
x € (0,1], piece-wise smooth?

Theorem 18 (Dirichlet’s) Let
ffTR—=>R

9



be a 2m-pertodic function such that its restriction to the interval
|—7, 7| is piece-wise smooth. Then for every a € R its Fourier
series Fr(x) sums to

~ fla+0)+ fla—0) lim, .+ f(x) +lim, - f(2)

Fr(a) = > = >

Thus, at each point of continuity a € R of the function f(x),
its Fourier series sums to the functional value, Fr(a) = f(a).

Proof. We will probably skip it. O

We say that the function f: [a,b] — R is smooth if it has on
(a, b) continuous derivative f” and at the ends a and b the functions
f(z) and f'(x) have finite limits.

Corollary 19 (on smooth function) Let f: R — R be a 27-
pertodic and continuous function whose restriction to the inter-
val [—m, 7| is smooth. Then for each a € R is

Fy(a) = f(a) .

Any continuous and smooth function is therefore equal to the
sum of its Fourier series.

Proof. This follows from the previous theorem: by the assumption
f is continuous on R. O

e Back to the Basel problem. Let I C R be an interval symmetric
with respect to the origin and f: I — R. We say that the function
f is even (resp. odd) if for every x € I, f(—x) = f(x) (resp.
f(=z) = —f(z)).
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Exercise 20 Let f € R(—m, ). Prove that all sine (or cosine)
Fourier coefficients of an even (or odd) functions f are zero.
How do you simplify cosine (or sine) Fourier coefficients of an
even (or odd) function?

We calculate the Fourier series of the function f: R — R defined
on the interval [—m, 7] by f(z) = 2% and 2m-periodically extended
to the entire R (which is possible due to the fact that (—m)* = 7%).
[ts sine Fourier coefficients are zero according to the previous exer-
cise. The first (actually zero) cosine Fourier coefficient is (according

to this exercise)
2 [T 272
aoz—/ 2 dx == .
T 0 3

Next (n € N)

2 ™
a, = —/ r? cos(nx) dx
T Jo

2 4

= K Sm(nx)]oj—% r sin(nz) dx

0—0=0 0
™ 4 !

= 5l [:U cos(m:)}g—ﬁ cos(nz) dx

’/T(:rl)n ~ 0 v~ -
0—0=0
.

Since the function f is continuous and smooth on [—7, 7|, by Co-
rollary 19 one has for every a € R that

—%—F;ancos(na) —+4Z ncos(n

11




For a = m we get

2 o 1) 00 1 9
7T2:f(7r):%+42(—1)”( 2>, S0 Zﬁ:%

n=1 n=1

Exercise 21 The function f(x) is defined on the interval [—m, )
as f(x) = ™ —x and is 2m-periodically extended to R. Fxpand
it into Fourier series.

Exercise 22 What sum of the infinite series do we get from
the previous expansion (using Dirichlet’s theorem) for x = 5 ¢

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to Mgr. J. Rondos, Ph.D. by the

end of the coming Monday by e-mail (jakub.rondos@gmail.com)
solutions to the Exercises 1, 8, 9, 16 and 20.
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