
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2022/23

lecturer: Martin Klazar

LECTURE 6 (March 22, 2023) APPLICATIONS OF

BAIRE’S THEOREM: NON-DIFFERENTIABLE

CONTINUOUS FUNCTIONS, TRANSCENDENTAL GROWTH

RATES OF PERMUTATION CLASSES

• Non-differentiable continuous functions. Let I := [0, 1]. By

C(I) we denote the set of all continuous functions from I to R.

Recall that for x ∈ R and δ > 0,

P (x, δ) = (x− δ, x + δ) \ {x} = (x− δ, x) ∪ (x, x + δ)

is the deleted δ-neighborhood of x. In this lecture we prove the

following theorem.

Theorem 1 (wild functions) There exists a function f in

C(I) such that ∀x ∈ I ∀ δ > 0,

sup

({∣∣∣∣f (y)− f (x)

y − x

∣∣∣∣ ∣∣∣∣ y ∈ P (x, δ) ∩ I
})

= +∞ .

Recall that f : I → R is differentiable at x ∈ I if there exists finite

derivative f ′(x) ∈ R.

Exercise 2 The function f in Theorem 1 is continuous on I

but is not differentiable at any point of I.

• Four lemmas. We prove Theorem 1 with the help of four lemmas.
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Lemma 3 (1st lemma) If f ∈ C(I) has the property that

∀x ∈ I,

sup

({∣∣∣∣f (y)− f (x)

y − x

∣∣∣∣ ∣∣∣∣ y ∈ I \ {x}}) = +∞

then f has the property in Theorem 1. Hence the parameter δ

in Theorem 1 is superfluous.

Proof. We assume that f ∈ C(I) has for every x ∈ I the stated

property. ∀x ∈ I ∀ δ > 0 the set

Q(x, δ) := I \ U(x, δ) = [0, 1] \ (x− δ, x + δ)

is compact (Exercise 4). Let M(x, δ) be the minimum value of the

continuous function y 7→
∣∣f(y)−f(x)

y−x

∣∣ ≥ 0 on Q(x, δ). For every given

x ∈ I and δ > 0 and every c > M(x, δ), by the assumption there

is a y ∈ I \ {x} such that∣∣∣∣f (y)− f (x)

y − x

∣∣∣∣ > c .

But then y 6∈ Q(x, δ), thus y ∈ P (x, δ) and wee see that f has the

property in Theorem 1. 2

Exercise 4 Show that the set Q(x, δ) is compact.

Exercise 5 Why is the function y 7→
∣∣f(y)−f(x)

y−x

∣∣ continuous?.

Recall that for any set X , the infinity-norm

‖f‖∞ := sup({|f (x)| | x ∈ X})

on the set B of bounded functions f : X → R makes B a MS

(B, ‖f − g‖∞).
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Exercise 6 Show that this is a MS.

Lemma 7 (2nd lemma) Let (M,d) be a MS, (xn) ⊂ M be

a sequence with limxn = x0 ∈ M and let (fn), fn : M → R,

be a sequence of functions converging in the norm ‖ · ‖∞ to

a continuous function f : M → R. Then

lim fn(xn) = f (x0) .

Proof. By the triangle inequality,

|fn(xn)− f (x0)| ≤ |fn(xn)− f (xn)| + |f (xn)− f (x0)| .

For a given ε > 0, we can make the first | · | on the right side

< ε/2 for n ≥ n0 due to the assumption that ‖fn − f‖∞ → 0.

The same holds for the second | · | on the right side if n ≥ n1
due to Heine’s definition of continuity of f at the point x0. Hence

n ≥ max({n0, n1}) ⇒ |fn(xn)− f (x0)| < ε
2 + ε

2 = ε. 2

A broken line going through the points (a0, b0), (a1, b1), . . . ,

(ak, bk) in R2 in this order, where a0 < a1 < · · · < ak, is the

function f : [a0, ak] → R which is on every interval [ai−1, ai], i =

1, 2, . . . , k, defined by

f (x) =
(bi − bi−1)(x− ai−1)

ai − ai−1
+ bi−1

(thus f (ai−1) = bi−1 and f (ai) = bi). Its graph on the interval

[ai−1, ai] is the segment joining the points (ai−1, bi−1) and (ai, bi).

We call these segments just segments (of the broken line).

Exercise 8 Every broken line is a continuous function.
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The slope of a plane line given by the equation y = ax+ b is the

number a. The slope of a segment is the slope of the line extending

the segment. The secant (line) of a function f : M → R, M ⊂ R,

is a line going through two distinct points on the graph of f .

Lemma 9 (3rd lemma) It is true that

∀ ε > 0 ∀ f ∈ C(I) ∃ g ∈ C(I)∃M > 0(
‖f − g‖∞ < ε ∧ (x, y ∈ I, x 6= y ⇒
⇒ |(g(y)− g(x))/(y − x)| < M)

)
.

In words, every function f ∈ C(I) can be arbitrarily closely

approximated by a function g ∈ C(I) with bounded slopes of

secant lines.

Proof. Let f ∈ C(I) and let an ε > 0 be given. Since the interval

I is compact, the function f is uniformly continuous (Exercise 10).

Hence for every sufficiently large m and every i = 0, 1, . . . ,m the

implication

i
m ≤ x ≤ i+1

m ⇒ |f ( im)− f (x)|, |f (i+1
m )− f (x)| < ε

2

holds. We draw the broken line g through the points (i/m, f (i/m)),

i = 0, 1, . . . ,m. For g the above implication holds too and with the

same m (Exercise 11). Thus

∀x ∈ I
(
|f (x)− g(x)| < ε/2 + ε/2 = ε

)
(Exercise 12). This means that g has the first required property. By

Exercise 13 we have that for every two distinct numbers x, y ∈ I ,∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ ≤ s
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where s is the largest, in absolute value, slope of a segment of the

broken line g. Hence g has also the second required property. 2

Exercise 10 Why is any f ∈ C(I) uniformly continuous?

Exercise 11 Show that the displayed implication holds for the

broken line g.

Exercise 12 Prove the displayed inequality that ∀x . . . .

Exercise 13 Prove the inequality · · · ≤ s.

Lemma 14 (4th lemma) It is true that

∀ ε > 0 ∀T > 0 ∃ g ∈ C(I)
(
‖g‖∞ < ε ∧ (x ∈ I ⇒

⇒ ∃ y ∈ I \ {x} (|(g(y)− g(x))/(y − x)| > T ))
)
.

In words, there exist a continuous and ‖ · ‖∞-small function g

defined on I such that one can lead through every point on its

graph a secant line with a large slope.

Proof. Let ε > 0 and T > 0 be given. We take a large even m ∈ N
such that 2mε/3 > T , take the m + 1 points in the plane(

i/m, (ε/3)(1− (−1)i
)
, i = 0, 1 . . . , m ,

and draw the broken line g through them. It starts in (0, 0), finishes

in (1, 0) and consists of m/2 hills with height 2ε/3 and bases of

width 2/m. Thus ‖g‖∞ = 2ε/3 < ε. Let a point u on the graph of

g be given. We lead through it the secant line extending the segment

containing u (if u lies in two segments, we choose any of them). In

absolute value it has the slope larger than T because both sides of

any hill have in absolute value slope 2ε/3
1/m = 2mε

3 > T . 2
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• Proof of Theorem 1. We prove that there exists a continuous

function f : I → R that is not differentiable at any point of I .

Proof of Theorem 1. For n ∈ N we define the set

An :=
{
f ∈ C(I) | ∃x ∈ I ∀ y ∈ I \ {x}

(∣∣f(y)−f(x)
y−x

∣∣ ≤ n
)}

.

We show that every set An is a sparse subset of the MS

(C(I), ‖f − g‖∞)

and by this we will be done. Indeed, by Proposition 17 below this MS

is complete and therefore by Baire’s theorem there exists a function

f ∈ C(I) \
∞⋃
n=1

An .

Thus f is continuous and has the property described in the first

Lemma 3 and therefore, by this lemma, has the property in Theo-

rem 1 and by Exercise 2 the function f is not differentiable at any

point of I .

We show that every set An ⊂ C(I) is closed and contains no

ball, i.e., that for every ball B(f, r) in the MS, B(f, r) 6⊂ An. It

follows from this that An is a sparse set (Exercise 15).

We prove that An is closed by showing its closedness to limits.

Let (fk) ⊂ An be a sequence with limk→∞ fk = f ∈ C(I); we show

that f ∈ An. Since fk ∈ An, there is a number xk ∈ I such that

for every y ∈ I \ {xk},∣∣∣∣fk(y)− fk(xk)
y − xk

∣∣∣∣ ≤ n .

We know from Mathematical Analysis 1 that (xk) has a convergent

subsequence with a limit in I . To simplify notation, we assume that
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already limk→∞ xk = x0 ∈ I . For every y ∈ I \ {x0} we have, by

the property of the point xk and the second Lemma 7, that

n ≥ lim
k→∞

∣∣∣∣fk(y)− fk(xk)
y − xk

∣∣∣∣ =

∣∣∣∣f (y)− f (x0)

y − x0

∣∣∣∣
(non-strict inequalities are preserved in limits). The number x0 the-

refore witnesses that f ∈ An and An is a closed subset of the MS.

It remains to find in the given ball B(f, r) ⊂ C(I) a point (i.e.,

a function) g ∈ B(f, r) \An. We define it as g = g1 + g2 where we

find the functions g1 and g2 using the third and fourth Lemma 9

and 14, respectively. First we use Lemma 9 and obtain a function

g1 ∈ C(I) and a constant M > 0 such that ‖f − g1‖∞ < r/2

and that all secants of the graph of g1 have slope in absolute value

< M . Then we use Lemma 14 and obtain a function g2 ∈ C(I)

such that ‖g2‖∞ < r/2 and that through every point on the graph

of g2 there goes a secant line with slope in absolute value > M +n.

By the triangle inequality,

‖f − g‖∞ ≤ ‖f − g1‖∞ + ‖g2‖∞ < r/2 + r/2 = r

and g ∈ B(f, r). Let x ∈ I be arbitrary. By the property of the

function g2 we take a y ∈ I \ {x} such that |g2(y)−g2(x)y−x | > M + n.

Then ∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ =

∣∣∣∣g2(y)− g2(x)

y − x
+
g1(y)− g1(x)

y − x

∣∣∣∣
≥
∣∣∣∣g2(y)− g2(x)

y − x

∣∣∣∣− ∣∣∣∣g1(y)− g1(x)

y − x

∣∣∣∣
> (M + n)−M = n

and g 6∈ An. On the first line we used the definition of g, on the se-

cond the inequality from Exercise 16 and on the third the properties
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of the functions g1 and g2. 2

Exercise 15 Prove that every closed set X (in a MS) with

empty interior (i.e., X contains no ball) is sparse.

Exercise 16 Prove that for every two real numbers a and b,

|a− b| ≥ |a| − |b| .

• Completeness of the MS of continuous functions with the

infinity-norm metric.

Proposition 17 The metric space

(C(I), ‖f − g‖∞)

is complete.

Proof. Let (fn) ⊂ C(I) be a Cauchy sequence in this MS, i.e.,

∀ ε > 0 ∃m
(
n, n′ ≥ m⇒ ‖fn − fn′‖∞ < ε

)
.

Then for every x ∈ I the sequence (fn(x)) ⊂ R is Cauchy, therefore

convergent, and we can define

f (x) := lim fn(x) .

Thus we have a function f : I → R with the property that fn → f

pointwisely. Let us prove the uniform convergence, i.e., that ‖f −
fn‖∞ → 0. Let x ∈ I and ε > 0 be given. We take an m (it is

independent of x) such that the above displayed Cauchy condition

holds with ε/2. Then we take a k ≥ m such that |fk(x)− f (x)| <
ε/2 and get that n ≥ m⇒

|fn(x)− f (x)| ≤ |fn(x)− fk(x)| + |fk(x)− f (x)| < ε

2
+
ε

2
= ε .
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Thus lim fn = f in this MS.

It remains to show that f is continuous (i.e., is an element of this

MS). Let an x0 ∈ I and an ε > 0 be given. We take an n0 such

that

n ≥ n0 ⇒ ‖f − fn‖∞ ≤ ε/2 .

We take a δ > 0 such that

x ∈ U(x0, δ) ∩ I ⇒ |fn0(x)− fn0(x0)| ≤ ε/2

(we are using continuity of fn0 at x0). Then ∀x ∈ U(x0, δ) ∩ I ,

|f (x)− f (x0)| ≤ |f (x)− fn0(x)|+ |fn0(x)− fn0(x0)| ≤
ε

2
+
ε

2
= ε

and f is continuous at x0. 2

Only now is the proof of Theorem 1 in fact complete.

• An application of Baire’s theorem in enumeration of permu-

tations. For m ≤ n in N = {1, 2, . . . } and two permutations (i.e.,

bijections) π : [m]→ [m] and ρ : [n]→ [n] we write π � ρ, and say

that π is contained in ρ, if there exist numbers i1 < i2 < · · · < im
in [n] such that

∀ j, k ∈ [m]
(
π(j) < π(k) ⇐⇒ ρ(ij) < ρ(ik)

)
.

Let S be the set of all finite permutations π : [n]→ [n] for n running

in N and let Sn ⊂ S be the n!-element set of permutations of [n].

Exercise 18 Show that (S,�) is a non-strict partial order.

We say that a set X ⊂ S is a permutation class if for every two

permutations π and ρ,

π � ρ ∈ X ⇒ π ∈ X .
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In the last roughly 20 years, many results on enumeration of per-

mutation classes X , i.e., on the counting functions of the form

n 7→ |X ∩ Sn|

(|A| denotes the cardinality of a finite set A), were obtained. One

of the basic ones is the next theorem.

Theorem 19 (A. Marcus and G. Tardos, 2004) Let X be

a permutation class. Then

X 6= S ⇒ ∃ c > 1 ∀n
(
|X ∩ Sn| ≤ cn

)
.

In words, any permutation class, with the exception of the class

of all permutations, grows only at most exponentially.

Exercise 20 Let π ∈ S2 be the identical permutation π(1) = 1,

π(2) = 2 and let X be any permutation class such that π 6∈ X.

Show that then |X ∩ Sn| ≤ 1 for every n.

By the Marcus–Tardos theorem, for every permutation class X

different from S one can define its finite growth rate

c(X) := lim sup
n→∞

|X ∩ Sn|1/n ∈ [0, +∞) .

For example, it is known that c({ρ ∈ S | ρ 6� π}) = 4 for any

π ∈ S3. In fact,

|X ∩ Sn| =
1

n + 1

(
2n

n

)
for every n for any of these six permutations classes X .

For some time there was a conjecture that every growth rate of

a permutation class is an algebraic number. It was refuted by the

following result.
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Theorem 21 (M. Albert and S. Linton, 2009) There is

a non-empty closed set A ⊂ [0,+∞) such that A has no isolated

point and every element of A is the growth rate of a permutation

class.

As we saw in the lecture before the last lecture, by Baire’s theorem

such set A is uncountable. Consequently, there exist uncountably

many transcendental (i.e., non-algebraic) growth rates of permu-

tation classes.

Exercise 22 How does it exactly follow from Baire’s theorem

that the above set A is uncountable?

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to Mgr. J. Rondoš, Ph.D. by the

end of the coming Monday by e-mail (jakub.rondos@gmail.com)

solutions to the Exercises 2, 4, 15, 20 and 22.
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