MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2022/23
lecturer: Martin Klazar

LECTURE 6 (March 22, 2023) APPLICATIONS OF
BAIRE'S THEOREM: NON-DIFFERENTIABLE
CONTINUOUS FUNCTIONS, TRANSCENDENTAL GROWTH
RATES OF PERMUTATION CLASSES

e Non-differentiable continuous functions. Let I = [0,1]. By
C(I) we denote the set of all continuous functions from I to R.
Recall that for x € R and 6 > 0,

Pz,0)=(x—=0,z+0)\{z}=(r—9, z)U(z, x+ )

is the deleted d-neighborhood of x. In this lecture we prove the
following theorem.

Theorem 1 (wild functions) There exists a function f in
C'(I) such thatVx € IV§ >0,

sup ({‘f(y;:i;(x) 'yEP(aj, 5)m1}) — 100,

Recall that f: I — R is differentiable at x € I if there exists finite
derivative f'(z) € R.

Exercise 2 The function f in Theorem 1 is continuous on I
but 1s not differentiable at any point of I.

e [our [emmas. We prove Theorem 1 with the help of four lemmas.



Lemma 3 (1st lemma) If f € C(I) has the property that

Ve el,
sup ({|f(y;:£<x) y € I\{x}}) =

then f has the property in Theorem 1. Hence the parameter o

in Theorem 1 1s superfluous.

Proof. We assume that f € C(I) has for every x € I the stated
property. Vax € I Vo > 0 the set

Q(z, 8) == I\ U(x, §) = [0, ]\ (x — &, = + )

is compact (Exercise 4). Let M (x, ) be the minimum value of the
continuous function y ‘W‘ > 0on Q(z,d). For every given
x € I and § > 0 and every ¢ > M(x,d), by the assumption there
isay € I\ {z} such that
fly) — flx)
e

> C

But then y € Q(z,6), thus y € P(x,0) and wee see that f has the
property in Theorem 1. O
Exercise 4 Show that the set Q(x, ) is campact.

Exercise 5 Why is the function y — ’f } continuous?.

Recall that for any set X, the mﬁmty—norm

[flloo == sup({|f(@)| | v € X})
on the set B of bounded functions f: X — R makes B a MS

(B, |lf = gll)-
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Exercise 6 Show that this 1s a MS.

Lemma 7 (2nd lemma) Let (M,d) be a MS, (x,) C M be
a sequence with limx, = xog € M and let (f,), fo: M — R,
be a sequence of functions converging in the norm || - ||« to
a continuous function f: M — R. Then

lim f,(x,) = f(xo) .
Proof. By the triangle inequality,

| fo(@n) = f(o)| < [ fulzn) = flzn)] + | f(zn) — flzo)] -

For a given € > 0, we can make the first | - | on the right side
< ¢/2 for n > ny due to the assumption that ||f, — f|lec — 0.
The same holds for the second | - | on the right side if n > ny
due to Heine’s definition of continuity of f at the point zy. Hence
n > max({n07n1}> = |fn(xn) - f(:li‘())’ < %—i_ % = ¢&. [

A broken line going through the points (ag, by), (a1,b1), ...,
(ak, bg) in R? in this order, where ay < a; < --- < ag, is the
function f: [ag, ax] — R which is on every interval |a; 1, a;], i =
1,2,...,k, defined by
(bi — bi1)(x —a;_1)

flz) = v a

(thus f(a;—1) = b;—1 and f(a;) = b;). Its graph on the interval
la;_1, a;] is the segment joining the points (a;_1,b;—1) and (a;, b;).
We call these segments just segments (of the broken line).

+ 0,1

Exercise 8 Fvery broken line is a continuous function.



The slope of a plane line given by the equation y = ax + b is the
number a. The slope of a segment is the slope of the line extending
the segment. The secant (line) of a function f: M — R, M C R,
is a line going through two distinct points on the graph of f.

Lemma 9 (3rd lemma) [t is true that

Ve>0VfeC(l)IgeC)IM >0
If=glle<en(m,yel,z#y=
= |(g9(y) — g(2))/(y — )| < M)) .

In words, every function f € C(I) can be arbitrarily closely
approzimated by a function g € C(I) with bounded slopes of
secant lines.

Proof. Let f € C(I) and let an € > 0 be given. Since the interval
I is compact, the function f is uniformly continuous (Exercise 10).
Hence for every sufficiently large m and every ¢ = 0,1,...,m the
implication

Lo B o |f(E) - f@)], IFED) - f@)l < 5

holds. We draw the broken line g through the points (i/m, f(i/m)),
1 =20,1,...,m. For g the above implication holds too and with the
same m (Exercise 11). Thus

Ve el(|f(z)—glz) <e/2+¢e/2=¢)

(Exercise 12). This means that g has the first required property. By
Exercise 13 we have that for every two distinct numbers x,y € I,

<s

‘g(y) — g(x)
y—




where s is the largest, in absolute value, slope of a segment of the
broken line g. Hence ¢ has also the second required property. O

Exercise 10 Why is any f € C(I) uniformly continuous?

Exercise 11 Show that the displayed tmplication holds for the
broken line g.

Exercise 12 Prove the displayed inequality that V. .. .
Exercise 13 Prove the inequality - -- < s.
Lemma 14 (4th lemma) [t is true that

Ve>0VT >03g€C() (|lg]|le <eA(zel=
=3y e I\ {z}(l(9(y) — 9(2))/(y —2)| > T))) .

In words, there exist a continuous and || - ||s-small function g
defined on I such that one can lead through every point on its
graph a secant line with a large slope.

Proof. Let ¢ > 0 and T" > 0 be given. We take a large even m € N
such that 2me/3 > T, take the m + 1 points in the plane

(i/m, (¢/3)(1 = (-1)"), i=0,1...,m,

and draw the broken line g through them. It starts in (0, 0), finishes
in (1,0) and consists of m/2 hills with height 2¢/3 and bases of
width 2/m. Thus ||g||~ = 2¢/3 < €. Let a point u on the graph of
g be given. We lead through it the secant line extending the segment
containing u (if u lies in two segments, we choose any of them). In
absolute value it has the slope larger than T' because both sides of

any hill have in absolute value slope ?j—{j = 2?)&5 >T. O
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e Proof of Theorem 1. We prove that there exists a continuous
function f: I — R that is not differentiable at any point of I.

Proof of Theorem 1. For n € N we define the set
Ay={fec()|TuelVyel\{z} (ML) <n)}.
We show that every set A,, is a sparse subset of the MS

(CU), 1 = glloe)

and by this we will be done. Indeed, by Proposition 17 below this MS
is complete and therefore by Baire’s theorem there exists a function

fecu \UA

Thus f is continuous and has the property described in the first
Lemma 3 and therefore, by this lemma, has the property in Theo-
rem 1 and by Exercise 2 the function f is not differentiable at any
point of I.

We show that every set A, C C(I) is closed and contains no
ball, i.e., that for every ball B(f,r) in the MS, B(f,r) ¢ A,. It
follows from this that A,, is a sparse set (Exercise 15).

We prove that A, is closed by showing its closedness to limits.
Let (fi) C A, be asequence with limg o fr = f € C(I); we show
that f € A,. Since f,. € A, there is a number x;, € I such that
for every y € I'\ {x}},

fily) — )| _

Y — T -

We know from Mathematical Analysis 1that (x) has a convergent
subsequence with a limit in 1. To simplify notation, we assume that
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already limy o = xg € I. For every y € I\ {z} we have, by
the property of the point x; and the second Lemma 7, that

fely) — Julae)| | f(y) — f(@o)
Y — Tk Yy — o
(non-strict inequalities are preserved in limits). The number x( the-
refore witnesses that f € A,, and A, is a closed subset of the MS.

It remains to find in the given ball B(f,r) C C(I) a point (i.e.,
a function) g € B(f,r) \ A,. We define it as g = g1 + g2 where we
find the functions g; and g, using the third and fourth Lemma 9

n > lim
k—o0

and 14, respectively. First we use Lemma 9 and obtain a function
g1 € C(I) and a constant M > 0 such that ||f — g1]lcc < 7/2
and that all secants of the graph of g; have slope in absolute value
< M. Then we use Lemma 14 and obtain a function go € C(I)
such that ||g2||s < 7/2 and that through every point on the graph
of go there goes a secant line with slope in absolute value > M + n.
By the triangle inequality,

If = glloe < NIf = gilloe + llg2lloc <7/247/2=7

and g € B(f,r). Let x € I be arbitrary. By the property of the
function g, we take a y € I\ {x} such that |W\ > M +n.
Then

'g(y) —g() _ 92(y) — ga(z) X 91(y) — g1(x)
y—x y—x y—x
> |2W) — o)) |ay) - al@)
Yy—x Yy—x

> (M+n)—M=n

and g € A,,. On the first line we used the definition of g, on the se-
cond the inequality from Exercise 16 and on the third the properties
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of the functions ¢g; and g». O

Exercise 15 Prove that every closed set X (in a MS) with
empty interior (i.e., X contains no ball) is sparse.

Exercise 16 Prove that for every two real numbers a and b,
ja = b = |a] —b] .

o Completeness of the MS of continuous functions with the

infinity-norm metric.

Proposition 17 The metric space

(C), If = gll)

18 complete.

Proof. Let (f,) C C(I) be a Cauchy sequence in this MS, i.e.,
Ve>03m(n,n' >m=|f,— fulle <e).

Then for every x € I the sequence (f,,(x)) C R is Cauchy, therefore
convergent, and we can define

Fl) = tim f, ()
Thus we have a function f: I — R with the property that f, — f
pointwisely. Let us prove the uniform convergence, i.e., that || f —
follo = 0. Let & € T and € > 0 be given. We take an m (it is
independent of x) such that the above displayed Cauchy condition
holds with £/2. Then we take a k > m such that |fi(x) — f(z)| <
e/2 and get that n > m =

|fulz) — f(2)| < |ful@) = frl@)] + | filz) — flz)] < g + % —c.
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Thus lim f,, = f in this MS.
[t remains to show that f is continuous (i.e., is an element of this

MS). Let an zp € I and an € > 0 be given. We take an ng such
that
n>ng=||f = fullo <e/2.

We take a & > 0 such that
v € Ulwg, 8) NI = |funl®) = fuglwo)| < /2

(we are using continuity of f,,, at zg). Then Vo € U(x,0) NI,

£@) = F@o)l < 1£(@) = fugl@)] + | fuol) = Frglo)] < =+

and f is continuous at xg. ]

=&

Only now is the proof of Theorem 1 in fact complete.

o An application of Baire’s theorem in enumeration of permu-
tations. For m < nin N ={1,2,...} and two permutations (i.e.,
bijections) 7: [m] — [m] and p: [n] — [n] we write T < p, and say
that 7 is contained in p, if there exist numbers 11 < 1o < + -+ < 1y,
in [n] such that

Vi, ke [m](n(j) <n(k) <= pliz) < plir)) -

Let S be the set of all finite permutations 7: [n] — [n] for n running
in N and let S,, C S be the nl-element set of permutations of [n].

Exercise 18 Show that (S, =) is a non-strict partial order.

We say that a set X C § is a permutation class if for every two
permutations 7 and p,

TXpeX=>mecX.
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In the last roughly 20 years, many results on enumeration of per-
mutation classes X, i.e., on the counting functions of the form

n— | XNS,

(|A| denotes the cardinality of a finite set A), were obtained. One
of the basic ones is the next theorem.

Theorem 19 (A. Marcus and G. Tardos, 2004) Let X be
a permutation class. Then

X#S8S=3c>1Vn(|XnNnS,| <.

In words, any permutation class, with the exception of the class
of all permutations, grows only at most exponentially.

Exercise 20 Let m € Sy be the identical permutation (1) = 1,
7(2) =2 and let X be any permutation class such that T & X.
Show that then | X NS,| < 1 for every n.

By the Marcus—Tardos theorem, for every permutation class X
different from & one can define its finite growth rate

¢(X) = limsup | X NS, € [0, +00) .

n—oo

For example, it is known that c({p € S | p # 7w}) = 4 for any

m € S3. In fact,
1 /2
X NS, = ( n)
n+1\n

for every n for any of these six permutations classes X.

For some time there was a conjecture that every growth rate of
a permutation class is an algebraic number. It was refuted by the
following result.
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Theorem 21 (M. Albert and S. Linton, 2009) There is
a non-empty closed set A C |0, +00) such that A has no isolated
point and every element of A is the growth rate of a permutation
class.

As we saw in the lecture before the last lecture, by Baire’s theorem
such set A is uncountable. Consequently, there exist uncountably
many transcendental (i.e., non-algebraic) growth rates of permu-
tation classes.

Exercise 22 How does it exactly follow from Baire’s theorem
that the above set A is uncountable?

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to Mgr. J. Rondos, Ph.D. by the
end of the coming Monday by e-mail (jakub.rondos@gmail.com)
solutions to the Exercises 2, 4, 15, 20 and 22.
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