
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2022/23

lecturer: Martin Klazar

LECTURE 5 (March 19, 2024) THE WEAK JORDAN

CIRCUIT THEOREM AFTER THOMASSEN

I show you a proof modeled after the remarkable proof Carsten

Thomassen (1948) gave in 1992 for the famous theorem of Camille

Jordan (1838–1922) in topology of the plane. We prove that any

topological circuit disconnects R2. We will follow the article The

Jordan Curve Theorem, Formally and Informally, Amer. Math.

Monthly 114 (2007), 882–894 by Thomas C. Hales (1958).

Exercise 1 Learn about achievements of these three excellent

mathematicians.

• Arcs, circuits, PL maps and two theorems. Let I = Ia,b = [a, b]

where a < b are in R. An arc is an injective continuous map

f : I → R2 .

Here I is a subspace of the MS (R, e1) and R2 is the MS (R2, e2).

The points f (a) and f (b) in R2 are the endpoints of f . We say

that f joins f (a) to f (b). If f [I ] ⊂ X ⊂ R2, we say that f joins

f (a) to f (b) in X . The set f 0 = f [I ]0 = f [(a, b)] is the interior

(of the arc f). The distance between two sets A,B ⊂ R2 is the

infimum

e2(A, B) = inf({e2(x, y) | x ∈ A, y ∈ B}) .

If A and B are disjoint and compact, their distance is positive.
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A circuit is any continuous map f : I = Ia,b → R2 such that

f (x) 6= f (y) for x 6= y, with the exception of f (a) = f (b). We

extend f to the (b− a)-periodic function fe : R→ R2.

A map f : I → R2 is PL (piece-wise linear) if there exist a par-

tition a = t0 < t1 < · · · < tn = b, n ∈ N, of I and 2n vectors

si, ci ∈ R2, i = 1, . . . , n, such that no si = (0, 0) and

∀ i ∈ [n] ∀ t ∈ [ti−1, ti]
(
f (t) = t · si + ci

)
.

The points f (ti) ∈ R2, i = 0, 1, . . . , n, are the corners (of f). The

plane straight segments f [ [ti−1, ti] ] are the segments (of f). For

any two points p, q ∈ R2 we denote by s(p, q) the straight segment

joining them. An axis of a corner f (ti) with 0 < i < n is the line

going through f (ti) that halves both angles at f (ti) (determined by

the two segments of f incident with the corner). If f (t0) = f (tn),

this corner also has an axis. An oriented PL circuit is one where

all segments are oriented consistently in one of the two ways.

Exercise 2 Show that any PL map is continuous.

Two famous theorems about images of arcs and circuits are

Theorem 3 (the Arc Theorem) For any arc f : I → R2 the

set R2 \ f [I ] is connected.

and (https://kam.mff.cuni.cz/~klazar/JordanPic1.pdf)

Theorem 4 (the Weak Jordan Theorem) For any circuit

f : I → R2 the set R2 \ f [I ] is disconnected.

We prove the latter theorem. We discuss the full Jordan Theorem

in the concluding remarks. Not completely convincing outline of

a proof of the Arc Theorem is given in [Hales], pp. 890–891.
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Exercise 5 In the two theorems, the complements are open

plane sets.

• Two results on connected sets. Recall that X ⊂ R2 is connected

if ¬∃ open (or closed) sets A,B ⊂ R2 cutting X , i.e., such that

X ⊂ A ∪ B, both intersections X ∩ A and X ∩ B are nonempty

and X ∩ A ∩ B = ∅. A set X ⊂ R2 is PL-connected if for any

x, y ∈ X , x 6= y, there is a PL arc f : I → R2 joining x to y in X .

Theorem 6 (conn. ↔ PL-conn.) Any open set X ⊂ R2 is

connected iff it is PL-connected.

Proof. ¬ ⇒ ¬. Suppose that A and B cut X , x ∈ X ∩ A,

y ∈ X ∩ B and that the PL arc f : I → R2 with f [I ] ⊂ X joins

x to y. Then A and B cut f [I ] and f [I ] is disconnected. This is

impossible because f [I ] is connected as a continuous image of the

connected interval I . Hence f does not exist.

¬ ⇐ ¬. Consider the partition X/∼ of X by the equivalence

relation ∼ on X (Exercise 8) defined by x ∼ y iff a PL arc joins

x to y in X . It is not hard to see that every block A ∈ X/∼ is

an open set. We assume that X is not PL-connected: |X/∼| ≥ 2.

We take any block A ∈ X/∼ and define B to be the union of all

other blocks. Then A and B are open sets cutting X . Thus X is

disconnected. 2

Exercise 7 Describe a set X ⊂ R2 that is a countable union

of plane segments and is connected but is not PL-connected.

Exercise 8 Show that the relation ∼ in the previous proof is

transitive. Or, better, prove this more general proposition.
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Proposition 9 (PL maps and PL arcs) For every PL map

f : I = Ia,b → R2 there is a PL arc g : I ′ → R2 such that

g[I ′] ⊂ f [I ] and g joins f (a) to f (b).

• (PL) configurations. A C-configuration, abbreviated C-conf, is

any circuit f : I → R2 such that R2 \ f [I ] is connected. Our goal is

to prove that no C-conf exists, i.e., that Theorem 4 holds. A K3,3-

configuration, abbreviated K3,3-conf, is any nine-tuple of arcs fi,j,

i, j ∈ [3], such that their endpoints form a six-element set

K = {p1, p2, p3, q1, q2, q3} ⊂ R2 ,

for every pair i, j ∈ [3] the arc fi,j joins pi to qj, and the nine interi-

ors f 0i,j are pairwise disjoint and disjoint to K. Graph-theoretically,

a K3,3-conf is a plane drawing (i.e., without crossings) of the com-

plete bipartite graph K3,3.

Exercise 10 Explain why no K3,3-conf exists. Hint: recall the

course Discrete Mathematics.

A PL C-configuration, abbreviated PL C-conf, is any C-conf in

which the circuit f is a PL map. Similarly, a PL K3,3-configuration,

abbreviated PL K3,3-conf, is any K3,3-conf in which all nine arcs

fi,j are PL maps. Now we start the proof of Theorem 4.

• Thomassen’s reductions. The proof is split in four reductions.

1. ∃ C-conf ⇒ ∃ K3,3-conf

2. ∃ K3,3-conf ⇒ ∃ PL K3,3-conf

3. ∃ PL K3,3-conf ⇒ ∃ PL C-conf

4. ∃ PL C-conf ⇒ 0 = 1
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When we prove these four implications, Theorem 4 will follow. The

main invention of Thomassen is the first reduction.

Exercise 11 Exercise 10 says that ∃ K3,3-conf ⇒ 0 = 1. Does

not this simplify our proof?

• The first reduction ∃ C-conf ⇒ ∃ K3,3-conf. See the picture

https://kam.mff.cuni.cz/~klazar/JordanPic2.pdf

Let f : I = Ia,b → R2 be a C-conf, i.e., f is a circuit such that

the open set R2 \ f [I ] is connected. We enclose f [I ] in a rectangle

R ⊃ f [I ] (Exercise 12) such that

∂R ∩ f [I ] = {p1, p2}

where ∂R is the (rectangular) boundary of R and p1 (resp. p2) is

an interior point of the bottom (resp. top) side of R. Let U be the

part of ∂R between p1 and p2 containing the right side of R. We

may assume that

a ≤ t = f−1(p1) < t′ = f−1(p2) ≤ b

where at least one ≤ is strict. We split f in two halves, the arcs

f1 = f | I ′ = [t, t′] and f2 = fe | I ′′ = [t′, t + b− a] .

Let S ⊂ R be any segment parallel to the bottom side of R and

with endpoints in the interiors of the left and right sides of R. It

follows (Exercise 13) that there exists a subsegment T ⊂ S with

endpoints q2 ∈ f1[I ′] and q3 ∈ f2[I ′′] and with interior disjoint to

f [I ]. From the assumption that R2 \ f [I ] is connected and from

Theorem 6 it follows (Exercise 14) that there is a PL arc f3,1 with

image disjoint to f [I ], interior disjoint to T ∪U and joining a point

p3 in the interior of T to a point q1 in the interior of U .
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We describe the nine arcs forming a K3,3-conf. The arc f1,1 is

the part of U from p1 to q1, f1,2 is the initial part of f1 from p1 to

q2, f1,3 is the reversed final part of f2 from q3 to p1, f2,1 is the the

part of U from p2 to q1, f2,2 is the reversed final part of f1 from q2
to p2, f2,3 is the initial part of f2 from p2 to q3, f3,1 was already

defined above, and f3,2 (resp. f3,3) is the straight segment joining

p3 to q2 (resp. q3). It follows from these definitions that the required

disjointness conditions hold and we indeed have a K3,3-conf.

Exercise 12 Explain how to find the rectangle R.

Exercise 13 Show that the subsegment T exists. Hint: inter-

mediate values of continuous functions.

Exercise 14 Show that the arc f3,1 exists.

• The second reduction ∃ K3,3-conf ⇒ ∃ PL K3,3-conf. See

https://kam.mff.cuni.cz/~klazar/JordanPic3.pdf

Suppose that fi,j, i, j ∈ [3], is a K3,3-conf as obtained above, with

the endpoints pi and qj. Let Oi,j ⊂ R2 be the image of fi,j and

d > 0 be the minimum of the distances between two of the six

endpoints and between Oi,j and an endpoint different from pi and

qj. We take the six closed discs

D(i) = B(pi, d/3) and E(j) = B(qj, d/3), i, j ∈ [3] .

Any two discs have distance ≥ d/3. It follows (Exercise 15) that

for every i, j ∈ [3] there exists the last time ti,j ∈ R when fi,j exits

D(i) and the first following time ui,j > ti,j when fi,j enters E(j).

It follows that for every k, l ∈ [3],

fi,j[(ti,j, ui,j)] ∩ (D(k) ∪ E(l)) = ∅ .
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The exit and entrance points (which lie on the boundaries of D(i)

and E(j), respectively) are

li,j = fi,j(ti,j) ∈ ∂D(i) and ei,j = fi,j(ui,j) ∈ ∂E(j) .

For i, j ∈ [3] we define the arc

f
(1)
i,j : Ji,j = [t′i,j, u

′
i,j]→ R2, for some t′i,j < ti,j and u′i,j > ui,j ,

so that on [t′i,j, ti,j] the arc f
(1)
i,j is the segment s(pi, li,j), on Ii,j =

[ti,j, ui,j] it coincides with fi,j and on [ui,j, u
′
i,j] it is the segment

s(ei,j, qj). We consider the minimum distance

e = min
(
{e2(fi,j[Ii,j], f (1)k,l [Jk,l]) |

| i, j, k, l ∈ [3], (i, j) 6= (k, l)}
)
> 0

(Exercise 16). The restricted arcs fi,j : Ii,j → R2 are uniformly

continuous (Exercise 17) and therefore ∃ δ > 0 such that for every

i, j ∈ [3] and every t, u ∈ Ii,j,

|t− u| ≤ δ ⇒ e2(fi,j(t)− fi,j(u)) ≤ min({e/6, d/6}) .

For any i, j ∈ [3] we take a partition ti,j = v0 < v1 < · · · <
vn = ui,j of Ii,j (its dependence on i, j is not marked) such that

vk − vk−1 ≤ δ and define

f
(2)
i,j : Ji,j → R2

as f
(2)
i,j = f

(1)
i,j on [t′i,j, ti,j] ∪ [ui,j, u

′
i,j] and as the PL map with

the segments s(fi,j(vr−1), fi,j(vr)), r = 1, 2, . . . , n, on [ti,j, ui,j]. It

follows from the choice of δ that the interiors f
(2)
i,j [Ii,j]

0 are pairwise

disjoint, because for every i, j, k, l ∈ [3] with (i, j) 6= (k, l) one has

that

e2
(
f
(2)
i,j [Ii,j], f

(2)
k,l [Jk,l]

)
≥ e/3 ,
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and that they are also disjoint to all six endpoints (Exercise 18).

Finally, using Proposition 9 we replace the PL maps f
(2)
i,j with the

PL arcs

f
(3)
i,j : Ji,j → R2

such that f
(3)
i,j [Ji,j] ⊂ f

(2)
i,j [Ji,j] and that f

(3)
i,j joins pi to qj. It follows

that the PL arcs f
(3)
i,j , i, j ∈ [3], form a PL K3,3 configuration.

Exercise 15 Prove that the exit and entrance times for the

arcs fi,j with respect to the discs D(i) and E(j) exist.

Exercise 16 Prove that the distance e is positive.

Exercise 17 Why are the restricted arcs fi,j : Ii,j → R2 unifor-

mly continuous?

Exercise 18 Explain why are the interiors f
(2)
i,j [Ii,j]

0 pairwise

disjoint and disjoint to the six endpoints.

• The third reduction ∃ PL K3,3-conf ⇒ ∃ PL C-conf. See

https://kam.mff.cuni.cz/~klazar/JordanPic4.pdf

We show that any PLK3,3-conf contains as a subgraph a PL C-conf.

Let f be an oriented PL circuit. Each segment s of f then deter-

mines the right open halfplane rp(s) ⊂ R2 of points in R2 lying to

the right of the line extending s. We similarly define the left open

halfplane lp(s) ⊂ R2. For n ∈ N the right shadow r(s, n) of s

is the segment s′ ⊂ rp(s) whose endpoints are the two points in

rp(s) that lie on the two axes of the two endpoints (corners) of s

in distance 1/n from the endpoint of s. We define the left shadow

l(s, n), n ∈ N, of s in the same way, only rp(s) is replaced with
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lp(s). For n ∈ N we define the right shadow r(f, n) and the left

shadow l(f, n) of the oriented PL circuit f by

r(f, n) =
⋃

s∈S(f)

r(s, n) and l(f, n) =
⋃

s∈S(f)

l(s, n)

where S(f ) is the set of segments of f .

Proposition 19 (on shadows 1) ∀ oriented PL circuit f and

∀n, both shadows r(f, n) and l(f, n) are images of PL maps.

Proof. This is immediate from their definitions. 2

Proposition 20 (on shadows 2) Let f : I → R2 be an ori-

ented PL circuit. There is an n0 such that for every n ≥ n0,

r(f, n) ∩ f [I ] = ∅ = l(f, n) ∩ f [I ] .

Proof. Let f be as stated and d = mins,s′ e2(s, s
′) > 0 where

s, s′ run through all pairs of segments of f with s ∩ s′ = ∅. Let s

be any segment of f . It suffices to prove that for n large enough,

r(s, n) ∩ f [I ] = ∅; for l(s, n) the arguments is similar. Let s′ and

s′′ be the two segments of f adjacent to s. It is easy to see that

r(s, n)∩s = ∅ for every n and that r(s, n)∩ (s′∪s′′) = ∅ for every

large n (Exercise 21). Also,

r(s, n) ⊂ {p ∈ R2 | e2({p}, s) ≤ 1/n} .

Thus it suffices to take n so large that r(s, n) ∩ (s′ ∪ s′′) = ∅ and

that 1/n ≤ d/3. 2

Exercise 21 Show that for n ≥ n0, neither r(s, n) nor l(s, n)

intersects the two segments of the PL circuit adjacent to s.
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Proposition 22 (on shadows 3) Let f : I → R2 be an ori-

ented PL circuit. Then for any point p ∈ R2 \ f [I ] one of two

cases occurs.

(L) For every n ≥ n0 a PL arc in R2 \ f [I ] joins the point p to

a point in l(f, n).

(R) For every n ≥ n0 a PL arc in R2 \ f [I ] joins the point p to

a point in r(f, n).

Proof. Let f and p be as stated and let u be any segment realizing

the distance between p and f [I ]. Then p is one endpoint of u, the

other one q ∈ f [I ] and u0 ⊂ R2 \ f [I ]. Considering u near q, we

see that (L) or (R) occurs. 2

For an oriented PL circuit f we define Af,R ⊂ R2 (resp. Af,L ⊂ R2)

as those points p in the complement of the image of f for which the

above case (R) (resp. (L)) holds.

Corollary 23 (left and right sides) Let f : I → R2 be an

oriented PL circuit. Then

R2 \ f [I ] = Af,R ∪ Af,L

and Af,R and Af,L are connected open sets.

Proof. It is clear that Af,R and Af,L are open sets. Indeed, let

p ∈ Af,R, say, witnessed by a PL arc g joining p in the complement

of f [I ] to a point in r(f, n). Let the ball B = B(p, r) have radius

r > 0 so small that B ⊂ R2 \ f [I ] and that B intersect only one

segment of g. Then for every q ∈ B we can easily modify g to a PL

arc joining q in the complement of f [I ] to the same point in r(f, n).
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Let p, q ∈ Af,R be two distinct points (for Af,L the argument

is similar). We show that there is a PL arc g that joins p to q in

R2 \ f [I ]. Then Af,R is connected by Theorem 7. We use Propo-

sitions 20 and 22 and the definition of the set Af,R and take large

enough n such that r(f, n) ∩ f [I ] = ∅ and that there are PL arcs

joining, respectively, p and q in R2 \ f [I ] to points in r(f, n). By

Propositions 9 and 19 there exists the required PL arc g. 2

Now suppose that the nine arcs fi,j, i, j ∈ [3], form a PL K3,3-

conf. Let k : I → R2 be the oriented PL circuit formed by the

six arcs f1,1, f2,1, f2,2, f3,2, f3,3 and f1,3. We denote the remaining

three arcs by e = f1,2, g = f2,3 and h = f3,1. We write R2 \ k[I ] =

Ak,R ∪Ak,L as in Corollary 23. If Ak,R and Ak,L intersect then k is

a PL C-conf and we are done. Hence these sets are disjoint. Then

the interior of each of the arcs e, g and h lies completely in Ak,R

or completely in Ak,L (else Ak,R and Ak,L would cut the interior

of the arc, which is however a connected set). Thus two of these

interiors lie in the same set, for example (other cases are similar)

the interiors of e and h lie in Ak,R. We consider the oriented PL

circuit l : I ′ → R2 formed by the arcs f2,2, f2,1, f1,1 and e; we orient

the segments in e consistently with those in the other three PL arcs.

But we see that the interior h0 of h intersects both Al,R and Al,L

(Exercise 24). By Corollary 23,

R2 \ l[I ′] = Al,R ∪ h0 ∪ Al,L

is connected and l is a PL C-conf (Exercise 25).

Exercise 24 Why does h0 intersect both the right and the left

side of the oriented PL circuit l?
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Exercise 25 Why is the set Al,R ∪ h0 ∪ Al,L connected?

• The fourth reduction ∃ PL C-conf ⇒ 0 = 1. See the picture

https://kam.mff.cuni.cz/~klazar/JordanPic5.pdf

We suppose that f : I → R2 is a PL circuit with connected com-

plement R2 \f [I ] and deduce a contradiction. It easily follows from

the next proposition.

Proposition 26 (in or out?) Let f : I → R2 be a PL circuit

and D = R2 \ f [I ]. There exists a continuous map

g : D → {0, 1} ⊂ R

such that g[D] = {0, 1}.
Proof. Let f and D be as stated. We may assume (Exercise 28)

that none of the finitely many segments of f [I ] is vertical. For any

point p = (px, py) ∈ D we denote by

r(p) = (x = px, y ≥ py) ⊂ R2

the vertical ray (half-line) emanating upwards from p. We define the

function g : D → {0, 1} as the parity of the finite sum (Exercise 29)

g(p) =
∑

q∈r(p)∩f [I]

m(q) mod 2

(for empty intersection the sum is 0), where the multiplicity m(q) ∈
{0, 1} of the intersection q of the ray r(p) and the graph f [I ] of the

circuit f is defined as follows. If q is transversal, meaning that f [I ]

lies locally near q on both sides of r(p), we set m(q) = 1. Else, when

f [I ] lies locally near q only on one side of r(p), we set m(q) = 0. It

follows that m(q) = 0 iff q is the common corner of two consecutive

segments of f [I ] lying on the same side of r(p) (Exercise 30).
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We prove that g is continuous. Let p = (px, py) ∈ D be an

arbitrary point and X ⊂ R be the finite set of the x-coordinates of

all corners of f , minus the number {px}. Let

δ = min
(
{|px − a| | a ∈ X} ∪ {e2({p}, f [I ])}

)
> 0 .

We claim that

q ∈ B(p, δ)⇒ g(q) = g(p) .

To see it, compare for such q the finite intersectionsX1 = r(p)∩f [I ]

and X2 = r(q) ∩ f [I ]. By the choice of δ, when we move the

point p to the position q every transversal intersection r ∈ X1

transforms in a transversal intersection r′ ∈ X2, and every non-

transversal intersection r ∈ X1 either disappears or remains the

same non-transversal intersection r ∈ X2 or transforms in two dis-

tinct transversal intersections {r′, r′′} ⊂ X2. Also, all intersections

in X2 arise in these ways, no new intersection can appear. Thus

g(q) = g(p) by the definition of g.

It remains to show that g[D] = {0, 1}. Let q ∈ f [I ] be one of

the highest corners of f [I ], i.e., with the maximum y-coordinate,

and let ` be the axis of q. Then it is easy to see that g(p) = 0 for

every point p ∈ ` lying above q and that g(p) = 1 for every point

p ∈ ` lying below q and sufficiently close to q. 2

To obtain a contradiction for a PL circuit f possessing connected

complement D = R2 \ f [I ], we take the function g : D → {0, 1}
guaranteed by the previous proposition and take two points p and

q in D such that g(p) = 0 and g(q) = 1. By Theorem 6 there is

a PL arc h : J → R2 with h[J ] ⊂ D and joining p to q. But then

g(h) : J → {0, 1} is a continuous function that maps the connected
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interval J to the disconnected set g(h)[J ] = {0, 1} ⊂ R, which is

indeed a contradiction.

This completes the proof of Theorem 4.

Exercise 27 Where do we run in difficulties when we attempt

to define the function g in the same way for a PL arc? By

Theorem 3, it has to fail somewhere.

Exercise 28 Why can we assume that none of the segments of

the PL circuit f is vertical?

Exercise 29 Why is the displayed sum in the proof finite?

Exercise 30 Prove the equivalence characterizing geometricly

the intersection points q with multiplicity zero.

• Concluding and other remarks. The full Jordan theorem, which

Jordan basically correctly proved (as discussed by Hales in http://

mizar.org/trybulec65/4.pdf) in the book Course d’analyse

de l’École Polytechnique, Paris, 1893, is as follows.

Theorem 31 (the Full Jordan Theorem) For every plane

circuit f : I → R2 it holds that

R2 \ f [I ] = Aint ∪ Aext

where Aint and Aext are nonempty open connected sets that are

disjoint. Moreover, Aint is bounded and Aext is unbounded.

Exercise 32 How does the fact that R2 \ f [I ] is disconnected

(i.e., Theorem 4 we have just proven) follow from the theorem?

THANK YOU FOR YOUR ATTENTION!
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Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz)

by the end of the coming Sunday solutions to the Exercises 1, 5, 13,

16 and 27.
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