MATHEMATICAL ANALYSIS 3 (NMAI056) summer term 2022/23 lecturer: Martin Klazar

LECTURE 5 (March 19, 2024) THE WEAK JORDAN CIRCUIT THEOREM AFTER THOMASSEN

I show you a proof modeled after the remarkable proof *Carsten Thomassen (1948)* gave in 1992 for the famous theorem of *Camille Jordan (1838–1922)* in topology of the plane. We prove that any topological circuit disconnects \mathbb{R}^2 . We will follow the article The Jordan Curve Theorem, Formally and Informally, *Amer. Math. Monthly* **114** (2007), 882–894 by *Thomas C. Hales (1958)*.

Exercise 1 Learn about achievements of these three excellent mathematicians.

• Arcs, circuits, PL maps and two theorems. Let $I = I_{a,b} = [a, b]$ where a < b are in \mathbb{R} . An arc is an injective continuous map

$$f\colon I\to \mathbb{R}^2$$

Here I is a subspace of the MS (\mathbb{R}, e_1) and \mathbb{R}^2 is the MS (\mathbb{R}^2, e_2) . The points f(a) and f(b) in \mathbb{R}^2 are the *endpoints of* f. We say that f joins f(a) to f(b). If $f[I] \subset X \subset \mathbb{R}^2$, we say that f joins f(a) to f(b) in X. The set $f^0 = f[I]^0 = f[(a, b)]$ is the *interior* (of the arc f). The distance between two sets $A, B \subset \mathbb{R}^2$ is the infimum

$$e_2(A, B) = \inf(\{e_2(\overline{x}, \overline{y}) \mid \overline{x} \in A, \overline{y} \in B\}).$$

If A and B are disjoint and compact, their distance is positive.

A *circuit* is any continuous map $f: I = I_{a,b} \to \mathbb{R}^2$ such that $f(x) \neq f(y)$ for $x \neq y$, with the exception of f(a) = f(b). We extend f to the (b-a)-periodic function $f_e: \mathbb{R} \to \mathbb{R}^2$.

A map $f: I \to \mathbb{R}^2$ is PL (*piece-wise linear*) if there exist a partition $a = t_0 < t_1 < \cdots < t_n = b, n \in \mathbb{N}$, of I and 2n vectors $\overline{s_i}, \overline{c_i} \in \mathbb{R}^2, i = 1, \ldots, n$, such that no $\overline{s_i} = (0, 0)$ and

$$\forall i \in [n] \ \forall t \in [t_{i-1}, t_i] \left(f(t) = t \cdot \overline{s_i} + \overline{c_i} \right)$$

The points $f(t_i) \in \mathbb{R}^2$, i = 0, 1, ..., n, are the corners (of f). The plane straight segments $f[[t_{i-1}, t_i]]$ are the segments (of f). For any two points $\overline{p}, \overline{q} \in \mathbb{R}^2$ we denote by $s(\overline{p}, \overline{q})$ the straight segment joining them. An axis of a corner $f(t_i)$ with 0 < i < n is the line going through $f(t_i)$ that halves both angles at $f(t_i)$ (determined by the two segments of f incident with the corner). If $f(t_0) = f(t_n)$, this corner also has an axis. An oriented PL circuit is one where all segments are oriented consistently in one of the two ways.

Exercise 2 Show that any PL map is continuous.

Two famous theorems about images of arcs and circuits are

Theorem 3 (the Arc Theorem) For any arc $f: I \to \mathbb{R}^2$ the set $\mathbb{R}^2 \setminus f[I]$ is connected.

and (https://kam.mff.cuni.cz/~klazar/JordanPic1.pdf)

Theorem 4 (the Weak Jordan Theorem) For any circuit $f: I \to \mathbb{R}^2$ the set $\mathbb{R}^2 \setminus f[I]$ is disconnected.

We prove the latter theorem. We discuss the full Jordan Theorem in the concluding remarks. Not completely convincing outline of a proof of the Arc Theorem is given in [Hales], pp. 890–891. **Exercise 5** In the two theorems, the complements are open plane sets.

• Two results on connected sets. Recall that $X \subset \mathbb{R}^2$ is connected if $\neg \exists$ open (or closed) sets $A, B \subset \mathbb{R}^2$ cutting X, i.e., such that $X \subset A \cup B$, both intersections $X \cap A$ and $X \cap B$ are nonempty and $X \cap A \cap B = \emptyset$. A set $X \subset \mathbb{R}^2$ is PL-connected if for any $x, y \in X, x \neq y$, there is a PL arc $f: I \to \mathbb{R}^2$ joining x to y in X.

Theorem 6 (conn. \leftrightarrow **PL-conn.)** Any open set $X \subset \mathbb{R}^2$ is connected iff it is PL-connected.

Proof. $\neg \Rightarrow \neg$. Suppose that A and B cut X, $x \in X \cap A$, $y \in X \cap B$ and that the PL arc $f: I \to \mathbb{R}^2$ with $f[I] \subset X$ joins x to y. Then A and B cut f[I] and f[I] is disconnected. This is impossible because f[I] is connected as a continuous image of the connected interval I. Hence f does not exist.

 $\neg \Leftarrow \neg$. Consider the partition X/\sim of X by the equivalence relation \sim on X (Exercise 8) defined by $x \sim y$ iff a PL arc joins x to y in X. It is not hard to see that every block $A \in X/\sim$ is an open set. We assume that X is not PL-connected: $|X/\sim| \ge 2$. We take any block $A \in X/\sim$ and define B to be the union of all other blocks. Then A and B are open sets cutting X. Thus X is disconnected. \Box

Exercise 7 Describe a set $X \subset \mathbb{R}^2$ that is a countable union of plane segments and is connected but is not PL-connected.

Exercise 8 Show that the relation \sim in the previous proof is transitive. Or, better, prove this more general proposition.

Proposition 9 (PL maps and PL arcs) For every PL map $f: I = I_{a,b} \rightarrow \mathbb{R}^2$ there is a PL arc $g: I' \rightarrow \mathbb{R}^2$ such that $g[I'] \subset f[I]$ and g joins f(a) to f(b).

• (PL) configurations. A C-configuration, abbreviated C-conf, is any circuit $f: I \to \mathbb{R}^2$ such that $\mathbb{R}^2 \setminus f[I]$ is connected. Our goal is to prove that no C-conf exists, i.e., that Theorem 4 holds. A $K_{3,3}$ configuration, abbreviated $K_{3,3}$ -conf, is any nine-tuple of arcs $f_{i,j}$, $i, j \in [3]$, such that their endpoints form a six-element set

$$K = \{\overline{p_1}, \overline{p_2}, \overline{p_3}, \overline{q_1}, \overline{q_2}, \overline{q_3}\} \subset \mathbb{R}^2$$

for every pair $i, j \in [3]$ the arc $f_{i,j}$ joins $\overline{p_i}$ to $\overline{q_j}$, and the nine interiors $f_{i,j}^0$ are pairwise disjoint and disjoint to K. Graph-theoretically, a $K_{3,3}$ -conf is a plane drawing (i.e., without crossings) of the complete bipartite graph $K_{3,3}$.

Exercise 10 Explain why no $K_{3,3}$ -conf exists. Hint: recall the course Discrete Mathematics.

A PL *C-configuration*, abbreviated PL *C-conf*, is any *C*-conf in which the circuit f is a PL map. Similarly, a PL $K_{3,3}$ -configuration, abbreviated PL $K_{3,3}$ -conf, is any $K_{3,3}$ -conf in which all nine arcs $f_{i,j}$ are PL maps. Now we start the proof of Theorem 4.

- *Thomassen's reductions.* The proof is split in four reductions.
 - 1. $\exists C$ -conf $\Rightarrow \exists K_{3,3}$ -conf
 - 2. $\exists K_{3,3}$ -conf $\Rightarrow \exists PL K_{3,3}$ -conf
 - 3. $\exists PL K_{3,3}\text{-conf} \Rightarrow \exists PL C\text{-conf}$
 - 4. $\exists PL C$ -conf $\Rightarrow 0 = 1$

When we prove these four implications, Theorem 4 will follow. The main invention of Thomassen is the first reduction.

Exercise 11 Exercise 10 says that $\exists K_{3,3}\text{-}conf \Rightarrow 0 = 1$. Does not this simplify our proof?

• The first reduction $\exists C\text{-conf} \Rightarrow \exists K_{3,3}\text{-conf}$. See the picture https://kam.mff.cuni.cz/~klazar/JordanPic2.pdf Let $f: I = I_{a,b} \to \mathbb{R}^2$ be a C-conf, i.e., f is a circuit such that the open set $\mathbb{R}^2 \setminus f[I]$ is connected. We enclose f[I] in a rectangle $R \supset f[I]$ (Exercise 12) such that

$$\partial R \cap f[I] = \{\overline{p_1}, \overline{p_2}\}$$

where ∂R is the (rectangular) boundary of R and $\overline{p_1}$ (resp. $\overline{p_2}$) is an interior point of the bottom (resp. top) side of R. Let U be the part of ∂R between $\overline{p_1}$ and $\overline{p_2}$ containing the right side of R. We may assume that

$$a \le t = f^{-1}(\overline{p_1}) < t' = f^{-1}(\overline{p_2}) \le b$$

where at least one \leq is strict. We split f in two halves, the arcs

$$f_1 = f | I' = [t, t']$$
 and $f_2 = f_e | I'' = [t', t + b - a]$.

Let $S \subset R$ be any segment parallel to the bottom side of R and with endpoints in the interiors of the left and right sides of R. It follows (Exercise 13) that there exists a subsegment $T \subset S$ with endpoints $\overline{q_2} \in f_1[I']$ and $\overline{q_3} \in f_2[I'']$ and with interior disjoint to f[I]. From the assumption that $\mathbb{R}^2 \setminus f[I]$ is connected and from Theorem 6 it follows (Exercise 14) that there is a PL arc $f_{3,1}$ with image disjoint to f[I], interior disjoint to $T \cup U$ and joining a point $\overline{p_3}$ in the interior of T to a point $\overline{q_1}$ in the interior of U. We describe the nine arcs forming a $K_{3,3}$ -conf. The arc $f_{1,1}$ is the part of U from $\overline{p_1}$ to $\overline{q_1}$, $f_{1,2}$ is the initial part of f_1 from $\overline{p_1}$ to $\overline{q_2}$, $f_{1,3}$ is the reversed final part of f_2 from $\overline{q_3}$ to $\overline{p_1}$, $f_{2,1}$ is the the part of U from $\overline{p_2}$ to $\overline{q_1}$, $f_{2,2}$ is the reversed final part of f_1 from $\overline{q_2}$ to $\overline{p_2}$, $f_{2,3}$ is the initial part of f_2 from $\overline{p_2}$ to $\overline{q_3}$, $f_{3,1}$ was already defined above, and $f_{3,2}$ (resp. $f_{3,3}$) is the straight segment joining $\overline{p_3}$ to $\overline{q_2}$ (resp. $\overline{q_3}$). It follows from these definitions that the required disjointness conditions hold and we indeed have a $K_{3,3}$ -conf.

Exercise 12 Explain how to find the rectangle R.

Exercise 13 Show that the subsegment T exists. Hint: intermediate values of continuous functions.

Exercise 14 Show that the arc $f_{3,1}$ exists.

• The second reduction $\exists K_{3,3}\text{-}conf \Rightarrow \exists PL K_{3,3}\text{-}conf$. See https://kam.mff.cuni.cz/~klazar/JordanPic3.pdf Suppose that $f_{i,j}, i, j \in [3]$, is a $K_{3,3}\text{-}conf$ as obtained above, with the endpoints $\overline{p_i}$ and $\overline{q_j}$. Let $O_{i,j} \subset \mathbb{R}^2$ be the image of $f_{i,j}$ and d > 0 be the minimum of the distances between two of the six endpoints and between $O_{i,j}$ and an endpoint different from $\overline{p_i}$ and $\overline{q_j}$. We take the six closed discs

$$D(i) = \overline{B}(\overline{p_i}, d/3)$$
 and $E(j) = \overline{B}(\overline{q_j}, d/3), i, j \in [3]$

Any two discs have distance $\geq d/3$. It follows (Exercise 15) that for every $i, j \in [3]$ there exists the last time $t_{i,j} \in \mathbb{R}$ when $f_{i,j}$ exits D(i) and the first following time $u_{i,j} > t_{i,j}$ when $f_{i,j}$ enters E(j). It follows that for every $k, l \in [3]$,

$$f_{i,j}[(t_{i,j}, u_{i,j})] \cap (D(k) \cup E(l)) = \emptyset$$
.

The exit and entrance points (which lie on the boundaries of D(i)and E(j), respectively) are

$$\overline{l_{i,j}} = f_{i,j}(t_{i,j}) \in \partial D(i) \text{ and } \overline{e_{i,j}} = f_{i,j}(u_{i,j}) \in \partial E(j) .$$

For $i, j \in [3]$ we define the arc

$$f_{i,j}^{(1)}: J_{i,j} = [t'_{i,j}, u'_{i,j}] \to \mathbb{R}^2$$
, for some $t'_{i,j} < t_{i,j}$ and $u'_{i,j} > u_{i,j}$,

so that on $[t'_{i,j}, t_{i,j}]$ the arc $f_{i,j}^{(1)}$ is the segment $s(\overline{p_i}, \overline{l_{i,j}})$, on $I_{i,j} = [t_{i,j}, u_{i,j}]$ it coincides with $f_{i,j}$ and on $[u_{i,j}, u'_{i,j}]$ it is the segment $s(\overline{e_{i,j}}, \overline{q_j})$. We consider the minimum distance

$$e = \min\left(\{e_2(f_{i,j}[I_{i,j}], f_{k,l}^{(1)}[J_{k,l}]) \mid | i, j, k, l \in [3], (i, j) \neq (k, l)\}\right) > 0$$

(Exercise 16). The restricted arcs $f_{i,j} \colon I_{i,j} \to \mathbb{R}^2$ are uniformly continuous (Exercise 17) and therefore $\exists \delta > 0$ such that for every $i, j \in [3]$ and every $t, u \in I_{i,j}$,

$$|t - u| \le \delta \Rightarrow e_2(f_{i,j}(t) - f_{i,j}(u)) \le \min(\{e/6, d/6\}).$$

For any $i, j \in [3]$ we take a partition $t_{i,j} = v_0 < v_1 < \cdots < v_n = u_{i,j}$ of $I_{i,j}$ (its dependence on i, j is not marked) such that $v_k - v_{k-1} \leq \delta$ and define

$$f_{i,j}^{(2)} \colon J_{i,j} \to \mathbb{R}^2$$

as $f_{i,j}^{(2)} = f_{i,j}^{(1)}$ on $[t'_{i,j}, t_{i,j}] \cup [u_{i,j}, u'_{i,j}]$ and as the PL map with the segments $s(f_{i,j}(v_{r-1}), f_{i,j}(v_r)), r = 1, 2, ..., n,$ on $[t_{i,j}, u_{i,j}]$. It follows from the choice of δ that the interiors $f_{i,j}^{(2)}[I_{i,j}]^0$ are pairwise disjoint, because for every $i, j, k, l \in [3]$ with $(i, j) \neq (k, l)$ one has that

$$e_2(f_{i,j}^{(2)}[I_{i,j}], f_{k,l}^{(2)}[J_{k,l}]) \ge e/3,$$

and that they are also disjoint to all six endpoints (Exercise 18). Finally, using Proposition 9 we replace the PL maps $f_{i,j}^{(2)}$ with the PL arcs

$$f_{i,j}^{(3)} \colon J_{i,j} \to \mathbb{R}^2$$

such that $f_{i,j}^{(3)}[J_{i,j}] \subset f_{i,j}^{(2)}[J_{i,j}]$ and that $f_{i,j}^{(3)}$ joins $\overline{p_i}$ to $\overline{q_j}$. It follows that the PL arcs $f_{i,j}^{(3)}$, $i, j \in [3]$, form a PL $K_{3,3}$ configuration.

Exercise 15 Prove that the exit and entrance times for the arcs $f_{i,j}$ with respect to the discs D(i) and E(j) exist.

Exercise 16 Prove that the distance e is positive.

Exercise 17 Why are the restricted arcs $f_{i,j}: I_{i,j} \to \mathbb{R}^2$ uniformly continuous?

Exercise 18 Explain why are the interiors $f_{i,j}^{(2)}[I_{i,j}]^0$ pairwise disjoint and disjoint to the six endpoints.

• The third reduction $\exists PL K_{3,3}$ -conf $\Rightarrow \exists PL C$ -conf. See https://kam.mff.cuni.cz/~klazar/JordanPic4.pdf We show that any PL $K_{3,3}$ -conf contains as a subgraph a PL C-conf.

Let f be an oriented PL circuit. Each segment s of f then determines the *right open halfplane* $\operatorname{rp}(s) \subset \mathbb{R}^2$ of points in \mathbb{R}^2 lying to the right of the line extending s. We similarly define the *left open halfplane* $\operatorname{lp}(s) \subset \mathbb{R}^2$. For $n \in \mathbb{N}$ the *right shadow* r(s, n) of s is the segment $s' \subset \operatorname{rp}(s)$ whose endpoints are the two points in $\operatorname{rp}(s)$ that lie on the two axes of the two endpoints (corners) of s in distance 1/n from the endpoint of s. We define the *left shadow* $l(s, n), n \in \mathbb{N}$, of s in the same way, only $\operatorname{rp}(s)$ is replaced with

lp(s). For $n \in \mathbb{N}$ we define the *right shadow* r(f, n) and the *left shadow* l(f, n) of the oriented PL circuit f by

$$r(f, n) = \bigcup_{s \in S(f)} r(s, n)$$
 and $l(f, n) = \bigcup_{s \in S(f)} l(s, n)$

where S(f) is the set of segments of f.

Proposition 19 (on shadows 1) \forall oriented PL circuit f and $\forall n$, both shadows r(f, n) and l(f, n) are images of PL maps.

Proof. This is immediate from their definitions.

Proposition 20 (on shadows 2) Let $f: I \to \mathbb{R}^2$ be an oriented PL circuit. There is an n_0 such that for every $n \ge n_0$,

$$r(f, n) \cap f[I] = \emptyset = l(f, n) \cap f[I] .$$

Proof. Let f be as stated and $d = \min_{s,s'} e_2(s,s') > 0$ where s, s' run through all pairs of segments of f with $s \cap s' = \emptyset$. Let s be any segment of f. It suffices to prove that for n large enough, $r(s,n) \cap f[I] = \emptyset$; for l(s,n) the arguments is similar. Let s' and s'' be the two segments of f adjacent to s. It is easy to see that $r(s,n) \cap s = \emptyset$ for every n and that $r(s,n) \cap (s' \cup s'') = \emptyset$ for every large n (Exercise 21). Also,

$$r(s,n) \subset \{\overline{p} \in \mathbb{R}^2 \mid e_2(\{\overline{p}\},s) \le 1/n\}$$
.

Thus it suffices to take n so large that $r(s, n) \cap (s' \cup s'') = \emptyset$ and that $1/n \leq d/3$.

Exercise 21 Show that for $n \ge n_0$, neither r(s, n) nor l(s, n) intersects the two segments of the PL circuit adjacent to s.

Proposition 22 (on shadows 3) Let $f: I \to \mathbb{R}^2$ be an oriented PL circuit. Then for any point $\overline{p} \in \mathbb{R}^2 \setminus f[I]$ one of two cases occurs.

- (L) For every $n \ge n_0$ a PL arc in $\mathbb{R}^2 \setminus f[I]$ joins the point \overline{p} to a point in l(f, n).
- (R) For every $n \ge n_0$ a PL arc in $\mathbb{R}^2 \setminus f[I]$ joins the point \overline{p} to a point in r(f, n).

Proof. Let f and \overline{p} be as stated and let u be any segment realizing the distance between \overline{p} and f[I]. Then \overline{p} is one endpoint of u, the other one $\overline{q} \in f[I]$ and $u^0 \subset \mathbb{R}^2 \setminus f[I]$. Considering u near \overline{q} , we see that (L) or (R) occurs.

For an oriented PL circuit f we define $A_{f,R} \subset \mathbb{R}^2$ (resp. $A_{f,L} \subset \mathbb{R}^2$) as those points \overline{p} in the complement of the image of f for which the above case (R) (resp. (L)) holds.

Corollary 23 (left and right sides) Let $f: I \to \mathbb{R}^2$ be an oriented PL circuit. Then

$$\mathbb{R}^2 \setminus f[I] = A_{f,R} \cup A_{f,L}$$

and $A_{f,R}$ and $A_{f,L}$ are connected open sets.

Proof. It is clear that $A_{f,R}$ and $A_{f,L}$ are open sets. Indeed, let $\overline{p} \in A_{f,R}$, say, witnessed by a PL arc g joining \overline{p} in the complement of f[I] to a point in r(f, n). Let the ball $B = B(\overline{p}, r)$ have radius r > 0 so small that $B \subset \mathbb{R}^2 \setminus f[I]$ and that B intersect only one segment of g. Then for every $\overline{q} \in B$ we can easily modify g to a PL arc joining \overline{q} in the complement of f[I] to the same point in r(f, n).

Let $\overline{p}, \overline{q} \in A_{f,R}$ be two distinct points (for $A_{f,L}$ the argument is similar). We show that there is a PL arc g that joins \overline{p} to \overline{q} in $\mathbb{R}^2 \setminus f[I]$. Then $A_{f,R}$ is connected by Theorem 7. We use Propositions 20 and 22 and the definition of the set $A_{f,R}$ and take large enough n such that $r(f,n) \cap f[I] = \emptyset$ and that there are PL arcs joining, respectively, \overline{p} and \overline{q} in $\mathbb{R}^2 \setminus f[I]$ to points in r(f,n). By Propositions 9 and 19 there exists the required PL arc g. \Box

Now suppose that the nine arcs $f_{i,j}$, $i, j \in [3]$, form a PL $K_{3,3}$ conf. Let $k: I \to \mathbb{R}^2$ be the oriented PL circuit formed by the six arcs $f_{1,1}, f_{2,1}, f_{2,2}, f_{3,2}, f_{3,3}$ and $f_{1,3}$. We denote the remaining three arcs by $e = f_{1,2}, g = f_{2,3}$ and $h = f_{3,1}$. We write $\mathbb{R}^2 \setminus k[I] =$ $A_{k,R} \cup A_{k,L}$ as in Corollary 23. If $A_{k,R}$ and $A_{k,L}$ intersect then k is a PL C-conf and we are done. Hence these sets are disjoint. Then the interior of each of the arcs e, g and h lies completely in $A_{k,R}$ or completely in $A_{k,L}$ (else $A_{k,R}$ and $A_{k,L}$ would cut the interior of the arc, which is however a connected set). Thus two of these interiors lie in the same set, for example (other cases are similar) the interiors of e and h lie in $A_{k,R}$. We consider the oriented PL circuit $l: I' \to \mathbb{R}^2$ formed by the arcs $f_{2,2}, f_{2,1}, f_{1,1}$ and e; we orient the segments in e consistently with those in the other three PL arcs. But we see that the interior h^0 of h intersects both $A_{l,R}$ and $A_{l,L}$ (Exercise 24). By Corollary 23,

$$\mathbb{R}^2 \setminus l[I'] = A_{l,R} \cup h^0 \cup A_{l,L}$$

is connected and l is a PL C-conf (Exercise 25).

Exercise 24 Why does h^0 intersect both the right and the left side of the oriented PL circuit l?

Exercise 25 Why is the set $A_{l,R} \cup h^0 \cup A_{l,L}$ connected?

• The fourth reduction $\exists PL C\text{-conf} \Rightarrow 0 = 1$. See the picture https://kam.mff.cuni.cz/~klazar/JordanPic5.pdfWe suppose that $f: I \to \mathbb{R}^2$ is a PL circuit with connected complement $\mathbb{R}^2 \setminus f[I]$ and deduce a contradiction. It easily follows from the next proposition.

Proposition 26 (in or out?) Let $f: I \to \mathbb{R}^2$ be a PL circuit and $D = \mathbb{R}^2 \setminus f[I]$. There exists a continuous map

$$g\colon D\to\{0,\,1\}\subset\mathbb{R}$$

such that $g[D] = \{0, 1\}.$

Proof. Let f and D be as stated. We may assume (Exercise 28) that none of the finitely many segments of f[I] is vertical. For any point $\overline{p} = (p_x, p_y) \in D$ we denote by

$$r(\overline{p}) = (x = p_x, y \ge p_y) \subset \mathbb{R}^2$$

the vertical ray (half-line) emanating upwards from \overline{p} . We define the function $g: D \to \{0, 1\}$ as the parity of the finite sum (Exercise 29)

$$g(\overline{p}) = \sum_{\overline{q} \in r(\overline{p}) \cap f[I]} m(\overline{q}) \mod 2$$

(for empty intersection the sum is 0), where the multiplicity $m(\overline{q}) \in \{0, 1\}$ of the intersection \overline{q} of the ray $r(\overline{p})$ and the graph f[I] of the circuit f is defined as follows. If \overline{q} is transversal, meaning that f[I] lies locally near \overline{q} on both sides of $r(\overline{p})$, we set $m(\overline{q}) = 1$. Else, when f[I] lies locally near \overline{q} only on one side of $r(\overline{p})$, we set $m(\overline{q}) = 0$. It follows that $m(\overline{q}) = 0$ iff \overline{q} is the common corner of two consecutive segments of f[I] lying on the same side of $r(\overline{p})$ (Exercise 30).

We prove that g is continuous. Let $\overline{p} = (p_x, p_y) \in D$ be an arbitrary point and $X \subset \mathbb{R}$ be the finite set of the *x*-coordinates of all corners of f, minus the number $\{p_x\}$. Let

$$\delta = \min(\{|p_x - a| \mid a \in X\} \cup \{e_2(\{\overline{p}\}, f[I])\}) > 0$$

We claim that

$$\overline{q} \in B(\overline{p}, \, \delta) \Rightarrow g(\overline{q}) = g(\overline{p}) \; .$$

To see it, compare for such \overline{q} the finite intersections $X_1 = r(\overline{p}) \cap f[I]$ and $X_2 = r(\overline{q}) \cap f[I]$. By the choice of δ , when we move the point \overline{p} to the position \overline{q} every transversal intersection $\overline{r} \in X_1$ transforms in a transversal intersection $\overline{r'} \in X_2$, and every nontransversal intersection $\overline{r} \in X_1$ either disappears or remains the same non-transversal intersection $\overline{r} \in X_2$ or transforms in two distinct transversal intersections $\{\overline{r'}, \overline{r''}\} \subset X_2$. Also, all intersections in X_2 arise in these ways, no new intersection can appear. Thus $g(\overline{q}) = g(\overline{p})$ by the definition of g.

It remains to show that $g[D] = \{0, 1\}$. Let $\overline{q} \in f[I]$ be one of the highest corners of f[I], i.e., with the maximum y-coordinate, and let ℓ be the axis of \overline{q} . Then it is easy to see that $g(\overline{p}) = 0$ for every point $\overline{p} \in \ell$ lying above \overline{q} and that $g(\overline{p}) = 1$ for every point $\overline{p} \in \ell$ lying below \overline{q} and sufficiently close to \overline{q} .

To obtain a contradiction for a PL circuit f possessing connected complement $D = \mathbb{R}^2 \setminus f[I]$, we take the function $g: D \to \{0, 1\}$ guaranteed by the previous proposition and take two points \overline{p} and \overline{q} in D such that $g(\overline{p}) = 0$ and $g(\overline{q}) = 1$. By Theorem 6 there is a PL arc $h: J \to \mathbb{R}^2$ with $h[J] \subset D$ and joining \overline{p} to \overline{q} . But then $g(h): J \to \{0, 1\}$ is a continuous function that maps the connected interval J to the disconnected set $g(h)[J] = \{0, 1\} \subset \mathbb{R}$, which is indeed a contradiction.

This completes the proof of Theorem 4.

Exercise 27 Where do we run in difficulties when we attempt to define the function g in the same way for a PL arc? By Theorem 3, it has to fail somewhere.

Exercise 28 Why can we assume that none of the segments of the PL circuit f is vertical?

Exercise 29 Why is the displayed sum in the proof finite?

Exercise 30 Prove the equivalence characterizing geometricly the intersection points \overline{q} with multiplicity zero.

• Concluding and other remarks. The full Jordan theorem, which Jordan basically correctly proved (as discussed by Hales in http://mizar.org/trybulec65/4.pdf) in the book Course d'analyse de l'École Polytechnique, Paris, 1893, is as follows.

Theorem 31 (the Full Jordan Theorem) For every plane circuit $f: I \to \mathbb{R}^2$ it holds that

 $\mathbb{R}^2 \setminus f[I] = A_{\rm int} \cup A_{\rm ext}$

where A_{int} and A_{ext} are nonempty open connected sets that are disjoint. Moreover, A_{int} is bounded and A_{ext} is unbounded.

Exercise 32 How does the fact that $\mathbb{R}^2 \setminus f[I]$ is disconnected (i.e., Theorem 4 we have just proven) follow from the theorem?

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz) by the end of the coming Sunday solutions to the Exercises 1, 5, 13, 16 and 27.