MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2022/23
lecturer: Martin Klazar

LECTURE 5 (March 15, 2023) A PROOF OF WEAK
JORDAN’S (CIRCUIT) THEOREM A LA THOMASSEN

[ show you a proof modeled after the remarkable proof Carsten
Thomassen (1948) gave in 1992 for the classical and famous the-
orem of Camille Jordan (1838-1922) in plane topology. Namely,
[ shall prove that any topological circuit disconnects the plane R2.
Instead of Thomassen’s original article I follow, to some extent,

the article The Jordan Curve Theorem, Formally and Informally,
Amer. Math. Monthly 114 (2007), 882-894 by Thomas C. Hales
(1958).

Exercise 1 Learn about achievements of these three excellent
mathematicians.

o Arcs, circuits, PL. maps and two theorems. Let I = 1,3 := |a, D]
where a < b are real numbers. An arc is an injective continuous
map
fiI—R.

Here I is a subspace of the MS (R, e1) and R? is the MS (R?, es).
We call the points f(a) and f(b) in R? the endpoints of f and say
that f joins f(a) to f(b). If f[I] C X C R? we say that f joins
f(a) to f(b) in X. The set fO = f[I]° := f[(a,b)] is the interior
(of the arc f).

We define the distance between two sets A, B C R? as the
infimum

es(A, B) :=inf({ex(Z, ) | T € A,y € B}) .
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If A and B are disjoint and compact, their distance is positive.
A circuit is any continuous map f: I = I, — R?

such that Vo <y in I (f(z)=f(y) <= z=aandy=0).

We extend f to the (b — a)-periodic function f,: R — R? which
coincides with f on [a, b].

A map f: I — R?is PL (piece-wise linear) if there exist a par-
titiona =t)g <ty < ---<t, =0 n €N, of [ and n constants
5,6 E€R? i=1,2,...,nand no 3; = (0,0), such that

Vie Vit e tio, t] (flt) =t -5 +7) .

The points f(t;) € R% i =0,1,...,n, are the corners (of f). The
plane straight segments f[[t;_1,t;]] are called segments (of f ). For
any two points P, ¢ € R? we denote by s(p, q) the straight segment
joining them. An azis of a corner f(t;) with 0 < i < n is the line
going through f(t;) that halves both angles at f(¢;) (determined by
the two segments of f incident with the corner). If f(ty) = f(t,),
this corner also has an axis. An oriented PL circuit is one where
all segments are oriented consistently in one of the two ways.

Exercise 2 Show that any PL map is continuous.

Two famous theorems about images of arcs and circuits are

Theorem 3 (Arc T.) For any arc f: I — R? the set R?\ f[I]
is connected.

and (https://kam.mff.cuni.cz/~klazar/JordanPicl.pdf)

Theorem 4 (Weak Jordan’s T.) For any circuit f: [ — R?
the set R?\ f[I] is disconnected.
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Our goal for this lecture is to prove the latter theorem. We discuss
the full Jordan’s Theorem in the concluding remarks. Not very con-
vincing outline of a proof of the Arc Theorem is given in the article
of Hales on pp. 890-891.

Exercise 5 Prove that the complements in the two theorems
are open sets in the plane.

o Two results on connected sets. Recall that X C R? is connected
if there do not exist two open (or closed) sets A, B C R? cutting
X, i.e., such that X C AU B, both intersections XN A and XNB
are nonempty and X N AN B = 0. We say that X C R? is PL-
connected if for every two distinct points x,y € X there is a PL
arc f: I — R? such that f joins x to y in X.

Theorem 6 (conn. <+ PL-conn.) Any open set X C R? is
connected if and only if it 1s PL-connected.

Proof. = = —. Suppose that A and B cut X, x € X N A,
y € X N B and that the PL arc f: I — R* with f[I] C X joins
x to y. Then A and B cut f[I| and f|I] is disconnected. This is
impossible because f[I] is connected as a continuous image of the
connected interval . Hence f does not exist.

— <« —. Consider the partition X/ ~ of X by the equivalence
relation ~ on X (Exercise 8) defined by x ~ y iff a PL arc joins x
to y in X. It is not hard to see that every block A € X/~ is open.
We assume that X is not PL-connected: | X/~ | > 2. We take any
block A € X/~ and define

B = J((X/~)\{4}).

Then A and B are open sets cutting X and X is disconnected. O



Exercise 7 Describe a set X C R? such that (i) X is a coun-
table union of plane segments, (ii) X is connected and (iii) X
15 not PL-connected.

Exercise 8 Show that the relation ~ in the previous proof is
transitive. Or, better, prove the next more general proposition.

Proposition 9 (PL maps and PL arcs) For every PL map
fil =1, — R? there is a PL arc g: I' — R? such that
gll'l C flI] and g joins f(a) to f(b).

e (PL) configurations. A C-configuration, abbreviated C'-conf, is
any circuit f: I — R? such that R?\ f[I] is connected. Our goal is
to prove that no C-cont exists, i.e., that Theorem 4 holds. A K3 3-
configuration, abbreviated K3 3-conf, is any nine-tuple of arcs f; ;,
i,7 € [3], such that their endpoints form a six-element set

for every pair 7, j € [3] the arc f; ; joins P; to g, and the nine interi-
0
ors fi ;

a K3 3-conf is a plane drawing (i.e., without crossings) of the com-

are pairwise disjoint and disjoint to K. Graph-theoretically,

plete bipartite graph K3 3.

Exercise 10 Ezplain why no Ks3-conf exists. Hint: recall the
course Discrete Mathematics.

A PL C-configuration, abbreviated PL C'-conf, is any C-conf in
which the circuit f is a PL map. Similarly, a PL. K3 3-configuration,
abbreviated PL K3 3-conf, is any K3 s-conf in which all nine arcs
fi; are PL maps. We begin our proof of Theorem 4.

e Thomassen’s reduction(s). We divide it in four reductions (im-
plications).



1. 3 C-conf = 3 K3 3-conf

2. 3 K33-conf = 3 PL K3 3-cont
3. 3 PL K3 3-cont = 3 PL C-cont
4. A PL C-conf = 0=1

When we prove these four implications, Theorem 4 will follow. The
main invention of Thomassen is the first reduction.

Exercise 11 Ezercise 10 says that 3 K3 3-conf = 0 = 1. Does
not this simplify our proof?

o The first reduction 3 C-conf = 3 K3 3-conf. See the picture
https://kam.mff.cuni.cz/~klazar/JordanPic2.pdf

Let f: I = I,;, — R? be a C-conf, i.e., f is a circuit such that
the open set R?\ f[I] is connected. We enclose f[I] in a rectangle
R D f[I] (Exercise 12) such that

ORN fI} = {p1, P2}

where OR is the (rectangular) boundary of R and py (resp. ps) is
an interior point of the bottom (resp. top) side of R. Let U be the
part of OR between p; and py containing the right side of R. We
may assume that

a<t:= f_l(p_l) <t .= f_l(p_g) <b
where at least one < is strict. We split f in two halves, the arcs
fi=f1T"=[tt] and fo:= fo|I" =[t',t+b—a].

Let S C R be any segment parallel to the bottom side of R and
with endpoints in the interiors of the left and right sides of R. It
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follows (Exercise 13) that there exists a subsegment T C S with
endpoints gz € fi|I'] and @3 € fo[I"] and with interior disjoint to
fII]. From the assumption that R?\ f[I] is connected and from
Theorem 6 it follows (Exercise 14) that there is a PL arc fs;; with
image disjoint to f|I], interior disjoint to T'UU and joining a point
P3 in the interior of T to a point g in the interior of U.

We describe the nine arcs forming a K3 s-conf. The arc fi; is
the part of U from py to @i, fi2 is the initial part of f; from Dy to
G2, f13 is the reversed final part of fy from gz to py, fa1 is the the
part of U from ps to @1, f2.2 is the reversed final part of f; from @
to D2, fos is the initial part of fy from Dy to g3, f31 was already
defined above, and f3o (resp. fs3) is the straight segment joining
D3 to @z (resp. @3). It follows from these definitions that the required
disjointness conditions hold and we indeed have a K3 3-cont.

Exercise 12 Ezplain how to find the rectangle R.

Exercise 13 Show that the subsegment T' exists. Hint: inter-
mediate values of continuous functions.

Exercise 14 Show that the arc f31 exists.

e The second reduction 3 Ks3-conf = 3 PL Kjz3-conf. See
https://kam.mff.cuni.cz/~klazar/JordanPic3.pdf
Suppose that f; ;, 4,7 € [3], is a K3 3-conf as obtained above, with
the endpoints p; and ;. Let O;; C R? be the image of f;; and
d > 0 be the minimum of the distances between two of the six
endpoints and between O; ; and an endpoint different from p; and
q;. We take the six closed discs

D(i) = B(Fi, d/3) and E(j) = B(@, d/3), i, j € [3] .
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Any two discs have distance > d/3. Tt follows (Exercise 15) that
for every i, j € [3] there exists the last time ¢, ; € R when f; ; exits
D(i) and the first following time w; ; > t; ; when f; ; enters E(j).
It follows that for every k, [ € [3],

fijl(tig, wig)] N (D(k)UE) =0 .

The exit and entrance points (which lie on the boundaries of D(7)
and FE(7), respectively) are

Lij = fij(ti;) € 0D(i) and &j = fi;(u;;) € OE(j) .
For i, j € [3] we define the arc

(1). [ / 2 / /
fiio Jig =1t ui ;] — R, for some t; ; < t;j and u; ; > u;j

so that on [t} ;,; ] the arc f;;) is the segment s(p;, l; ), on I ; =
Lij, wiy] it coincides with f;; and on [u;j, u; ] it is the segment

s(€i 7, q;). We consider the minimum distance

e = min ({ea2( fi (L], £ 10ed)) |
i, 4, k. Le 3], (4, 5) # (k, D)}) >0

(Exercise 16). The restricted arcs f;;: I;; — R? are uniformly
continuous (Exercise 17) and therefore 3 § > 0 such that for every
i,j € [3] and every t,u € I, ,

[t —ul <= ealfiy(t) = fij(u) < min({e/6, d/6}) .

For any 4,7 € [3] we take a partition ¢;; = vgp < v; < --+ <
vy, = u;; of I; ; (its dependence on 4,7 is not marked) such that
v — Vp—1 < 0 and define

fz(,i) Ji,j — RQ
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as 1(3) = Z(;) on [t} ;,t; ;] U lu;j,u; ;] and as the PL map with

the segments s(f; j(v,—1), fij(v)), r=1,2,. n on [t;;, u;,]. It
follows from the choice of § that the interiors f [ i.j]° are pairwise
disjoint, because for every i, j, k, 1 € [3] with (¢, j) # (k,[) one has

that
2 2
e (1) i) = ef3
and that they are also disjoint to all six endpoints (Exercise 18).

Finally, using Proposition 9 we replace the PL maps fﬁ) with the
PL arcs
f(g) Jij — RQ

such that f [ il C fZ y [ ;] and that f ;7 Joins p; to gj. It follows
that the PL arcs f , 1,7 € [3], form a PL K33 configuration.

Exercise 15 Prove that the exit and entrance times for the
arcs f; j with respect to the discs D(i) and E(j) exist.

Exercise 16 Prove that the distance e is positive.

Exercise 17 Why are the restricted arcs f;;: I; ; — R* unifor-
mly continuous?

Exercise 18 Ezplain why are the interiors fl-(? 11 j]° pairwise
disjoint and disjoint to the six endpoints.

o The third reduction 3 PL K3 3-conf = 3 PL C-conf. See

https://kam.mff.cuni.cz/~klazar/JordanPic4.pdf

We show that any PL K3 3-conf contains as a subgraph a PL C-conf.
Let f be an oriented PL circuit. Each segment s of f then deter-

mines the right open halfplane rp(s) C R? of points in R? lying to



the right of the line extending s. We similarly define the left open
halfplane 1Ip(s) C R? For n € N the right shadow r(s,n) of s
is the segment s’ C rp(s) whose endpoints are the two points in
rp(s) that lie on the two axes of the two endpoints (corners) of s
in distance 1/n from the endpoint of s. We define the left shadow
[(s,n), n € N, of s in the same way, only rp(s) is replaced with
Ip(s). For n € N we define the right shadow r(f,n) and the left
shadow I(f,n) of the oriented PL circuit f by

r(f,n)::Ur( n) and I(f, n Ulsn
seS(f) seS(f
where S(f) is the set of segments of f.

Proposition 19 (on shadows 1) V oriented PL circuit f and
V'n, both shadows r(f,n) and I(f,n) are images of PL. maps.

Proof. This is immediate from their definitions. O

Proposition 20 (on shadows 2) Let f: I — R? be an ori-
ented PL circuit. There 1s an ng such that for every n > ny,

r(fin) NI =0 =1(f, n) O flI] .

Proof. Let f be as stated and d := min, g es(s,s’) > 0 where
s, s run through all pairs of segments of f with sNs’ = 0. Let s
be any segment of f. It suffices to prove that for n large enough,
r(s,n) N flI] = 0; for I(s,n) the arguments is similar. Let s and

" be the two segments of f adjacent to s. It is easy to see that
r(s,n)Ns = for every n and that r(s,n)N(s'Us”) = 0 for every
large n (Exercise 21). Also,

r(s,n) C {p € R?| exs({p},s) < 1/n}.
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Thus it suffices to take n so large that r(s,n) N (s’ U s”) = () and
that 1/n < d/3. O

Exercise 21 Show that for n > ng, neither r(s,n) nor l(s,n)
intersects the two segments of the PL circuit adjacent to s.

Proposition 22 (on shadows 3) Let f: I — R? be an ori-
ented PL circuit. Then for any point p € R?\ f[I] one of two
CASES OCCUTS.

(L) For every n > ng a PL arc in R\ f[I] joins the point p to
a point in l(f,n).

(R) For every n > ng a PL arc in R?\ f[I] joins the point p to
a point in r(f,n).

Proof. Let f and p be as stated and let u be any segment realizing
the distance between p and f[I]. Then p is one endpoint of u, the
other one g € f[I] and u® C R?\ f[I]. Considering u near g, we
see that (L) or (R) occurs. O

For an oriented PL circuit f we define Ay p C R? (resp. Ay C R?)
as those points p in the complement of the image of f for which the

above case (R) (resp. (L)) holds.

Corollary 23 (left and right sides) Let f: I — R? be an
oriented PL circuit. Then

R\ flI] = AsrUAsL

and Ay r and Ay are connected open sets.
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Proof. It is clear that Afp and Ay are open sets. Indeed, let
D € Ay g, say, witnessed by a PL arc ¢ joining P in the complement
of f[I] to a point in 7(f,n). Let the ball B := B(p, r) have radius
r > 0 so small that B C R?\ f[I] and that B intersect only one
segment of g. Then for every ¢ € B we can easily modify g to a PL
arc joining g in the complement of f|I] to the same point in r(f, n).

Let p,g € Asr be two distinct points (for Ay the argument
is similar). We show that there is a PL arc g that joins p to g in
R?\ f[I]. Then Ay p is connected by Theorem 7. We use Propo-
sitions 20 and 22 and the definition of the set A;r and take large
enough n such that r(f,n) N f[I] = 0 and that there are PL arcs
joining, respectively, p and g in R*\ f[I] to points in 7(f,n). By
Propositions 9 and 19 there exists the required PL arc g. O

Now suppose that the nine arcs f; ;, 4,7 € [3], form a PL K3 3-
conf. Let k: I — R? be the oriented PL circuit formed by the six
arcs fl,l; f271, f2’2, f3’2, fg’g and f173. We denote the remaining three
arcs by e := f19, g = fo3 and h := f3;. We write R* \ k[I] =
A rU Ay 1 as in Corollary 23. It Ay p and Ay, intersect then £ is
a PL C-conf and we are done. Hence these sets are disjoint. Then
the interior of each of the arcs e, g and h lies completely in Ay g
or completely in Ay (else Ap g and A would cut the interior
of the arc, which is however a connected set). Thus two of these
interiors lie in the same set, for example (other cases are similar)
the interiors of e and h lie in Ay p. We consider the oriented PL
circuit [: I' — R? formed by the arcs f1 3, f33, f3.2 and e; we orient
the segments in e consistently with those in the other three PL arcs.
But we see that the interior A? of h intersects both Ajpand A;p
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(Exercise 24). By Corollary 23,
R\ [l = Ar UR U Ay g
is connected and [ is a PL, C-conf (Exercise 25).

Exercise 24 Why does h° intersect both the right and the left
side of the oriented PL circuit [ ¢

Exercise 25 Why is the set A;p U RO U A 1 connected?

e The fourth reduction 34 PL C-conf = 0 = 1. See the picture
https://kam.mff.cuni.cz/~klazar/JordanPich.pdf

We suppose that f: I — R? is a PL circuit with connected com-
plement R?\ f[I] and deduce a contradiction. It easily follows from
the next proposition.

Proposition 26 (inside or outside?) Let f: I — R? be a PL
circuit and D := R?\ f[I]. There exists a continuous map

g:D = {0, 1} CR
such that g|D] = {0, 1}.

Proof. Let f and D be as stated. We may assume (Exercise 28)
that none of the finitely many segments of f[I] is vertical. For any
point p = (ps, py) € D we denote by

r(@) = (v = ps, y > p,) C R?

the vertical ray (half-line) emanating upwards from p. We define the
function g: D — {0, 1} as the parity of the finite sum (Exercise 29)

g(@) =) m(g) mod?2
ger(p)Nf]
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(for empty intersection the sum is 0), where the multiplicity m(g) €
{0,1} of the intersection g of the ray r(p) and the graph f|I] of
the circuit f is defined as follows. If § is transversal, meaning that
f1] lies locally near g on both sides of r(p), we set m(q) = 1.
Else, when f[I] lies locally near g only on one side of r(p), we set
m(q) := 0. It follows that m(gq) = 0 iff g is the common corner
of two consecutive segments of f[I] lying on the same side of r(p)
(Exercise 30).

We prove that g is continuous. Let p = (py,py) € D be an
arbitrary point and X C R be the finite set of the x-coordinates of
all corners of f, minus the number {p,}. Let

0 = min ({[p, —a| | a € X} U{e2({P}, fI])}) > 0.
We claim that
7€ B(p, d)=y@) =y .

To see it, compare for such g the finite intersections X := r(p)N f[{]
and Xy := r(q) N f[I]. By the choice of §, when we move the
point p to the position g every transversal intersection 7 € Xj
transforms in a transversal intersection 7 € X5, and every non-
transversal intersection 7 € X either disappears or remains the
same non-transversal intersection 7 € Xy or transforms in two dis-
tinct transversal intersections {r’, 7"} C Xy. Also, all intersections
in Xy arise in these ways, no new intersection can appear. Thus
9(q) = g(p) by the definition of g.

It remains to show that g[D] = {0,1}. Let § € f[I] be one of
the highest corners of f[I],
and let ¢ be the axis of . Then it is easy to see that g(p) = 0 for
every point p € £ lying above g and that g(p) = 1 for every point
p € ¢ lying below ¢ and sufficiently close to g. O

i.e., with the maximum y-coordinate,
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To obtain a contradiction for a PL circuit f possessing connected
complement D = R*\ f[I], we take the function g: D — {0,1}
guaranteed by the previous proposition and take two points p and
q in D such that g(p) = 0 and ¢g(q) = 1. By Theorem 6 there is
a PL arc h: J — R? with h[J] C D and joining p to g. But then
g(h): J — {0,1} is a continuous function that maps the connected
interval J to the disconnected set g(h)[J] = {0,1} C R, which is
indeed a contradiction.
This completes the proof of Theorem 4.

Exercise 27 Where do we run in difficulties when we attempt
to define the function g in the same way for a PL arc? By
Theorem 8, it has to fail somewhere.

Exercise 28 Why can we assume that none of the segments of
the PL circuit f is vertical?

Exercise 29 Why is the displayed sum in the proof finite?

Exercise 30 Prove the equivalence characterizing geometricly
the intersection points ¢ with multiplicity zero.

e Concluding and other remarks. The full Jordan’s theorem, which
Jordan published and basically correctly proved (see http://mizar.
org/trybulec65/4.pdf for detailed discussion by Hales of Jor-

dan’s proof) in his textbook Course d’analyse de I'Ecole Poly-

technique, Paris, 1893, is as follows.

Theorem 31 (Full Jordan’s T.) For any circuit f: [ — R,
R2 \ f[]] = Aint U Aex
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where Apy and Aoy are nonempty open connected sets that are
disjoint. Moreover, Ay 1s bounded and Ay 18 unbounded.

Exercise 32 How does the fact that R* \ f[I] is disconnected
(i.e., Theorem 4 we have just proven) follow from the theorem?

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to Mgr. J. Rondos, Ph.D. by the
end of the coming Monday by e-mail (jakub.rondos@gmail.com)
solutions to the Exercises 1, 5, 13, 16 and 27.
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