MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2023/24
lecturer: Martin Klazar

LECTURE 3 (March 5, 2024) CONTINUITY AND COMPACTNESS. THE HEINE-BOREL THEOREM. CONNECTEDNESS. FTALG

- Compactness and continuity. In the next exercise you verify that restriction of a continuous function to a subspace is a continuous function.

Exercise $1 \operatorname{Let}(M, d)$ and (N, e) be $\mathrm{MSs}, X \subset M$ be a nonempty set and $f: M \rightarrow N$ be a continuous function. Then the restriction

$$
f \mid X: X \rightarrow N, X \ni a \mapsto f(a) \in N,
$$

defined on the subspace (X, d) is a continuous function.
In the last lecture, we met two equivalent versions of continuity of functions: (i) the classical $\varepsilon-\delta$ form and (ii) the Heine definition (based on limits of sequences). Now we introduce the third equivalent form of continuity, so called topological continuity.

Proposition 2 (topological continuity) Let $f: M \rightarrow N$ be a map between MSs (M, d) and (N, e). Then, with OS standing for "open set",

$$
\begin{aligned}
& f \text { is continuous } \Longleftrightarrow \\
& \forall \mathrm{OS} A \subset N\left(f^{-1}[A]=\{x \in M \mid f(x) \in A\} \subset M \text { is an } \mathrm{OS}\right) \text {. }
\end{aligned}
$$

Proof. The implication \Rightarrow. Let f be continuous in the $\varepsilon-\delta$ sense, $A \subset N$ be an open set and $a \in f^{-1}[A]$. So $f(a) \in A$ and there exists an $\varepsilon>0$ such that $B(f(a), \varepsilon) \subset A$. So there exists a $\delta>0$ that

$$
f[B(a, \delta)] \subset B(f(a), \varepsilon) \subset A
$$

Hence $B(a, \delta) \subset f^{-1}[A]$ and $f^{-1}[A]$ is an open set.
The implication \Leftarrow. Let f be continuous in the topological sense, $a \in M$ and $\varepsilon>0$. Since the ball $B(f(a), \varepsilon) \subset N$ is an open set, $f^{-1}[B(f(a), \varepsilon)]$ is an open set. Since $a \in f^{-1}[B(f(a), \varepsilon)]$, there exists a $\delta>0$ such that $B(a, \delta) \subset f^{-1}[B(f(a), \varepsilon)]$. Thus

$$
f[B(a, \delta)] \subset B(f(a), \varepsilon)
$$

and f is continuous in the $\varepsilon-\delta$ sense.
Exercise 3 Prove this equivalence with closed sets instead of open sets.

We generalize the topological definition of continuity to subspaces.
Exercise 4 Let (M, d) and (N, e) be MSs, $X \subset M$ and let $f: X \rightarrow N$. Then (OS is again an "open set")
f is a continuous map defined on the subspace $(X, d) \Longleftrightarrow$ $\Longleftrightarrow \forall \operatorname{OS} A \subset N \exists \operatorname{OS} B \subset M\left(f^{-1}[A]=X \cap B\right)$.

We show that the continuous image of a compact set is compact.
Proposition 5 (compact image) Let (M, d) and (N, e) be MSs, $X \subset M$ be a compact set and

$$
f: X \rightarrow N
$$

be a continuous function. Then the image $f[X] \subset N$ is a compact set.

Proof. Let $\left(a_{n}\right) \subset f[X]$ be an arbitrary sequence. We take the sequence $\left(b_{n}\right) \subset X$ with $f\left(b_{n}\right)=a_{n}$ and select a convergent subsequence $\left(b_{m_{n}}\right)$ with $\lim b_{m_{n}}=b \in X$. By Heine's definition of continuity,

$$
\lim a_{m_{n}}=\lim f\left(b_{m_{n}}\right)=f(b) \in f[X] .
$$

We have obtained a convergent subsequence of the sequence $\left(a_{n}\right)$ with limit in $f[X]$. So $f[X]$ is compact.

Exercise 6 Find an example showing that the inverse image of a compact set by a continuous function need not be compact.

Another useful property of compact sets is the following.

Proposition 7 (continuity of inverses) Let

$$
f: X \rightarrow N
$$

be an injective continuous map from a compact set $X \subset M$ in $a \mathrm{MS}(M, d)$ to $a \operatorname{MS}(N, e)$. Then the inverse map

$$
f^{-1}: f[X] \rightarrow X
$$

is continuous.
Proof. We use the version of topological continuity in Exercise 3. We need to prove that for every set $A \subset X$ that is closed in the subspace (X, d), the inverse image $\left(f^{-1}\right)^{-1}[A]=f[A] \subset f[X]$ by the map f^{-1} is closed in the subspace $(f[X], e)$. By one of the exercises in the last lecture we know that A is compact (it is a closed
set in a compact space). By the previous proposition, we know that $f[A]$ is a compact set in the subspace $(f[X], e)$. By a proposition in the last lecture, $f[A]$ is closed in this subspace.

- Homeomorphisms of MSs. A map $f: M \rightarrow N$ between MSs (M, d) and (N, e) is their homeomorphism if f is a bijection and if both f and f^{-1} are continuous. If there is a homeomorphism between (M, d) and (N, e), these spaces are called homeomorphic.

Exercise 8 Describe the homeomorphism between the Euclidean spaces $(0,1) \subset \mathbb{R}$ and \mathbb{R}.

Exercise 9 Consider the Euclidean spaces $I=[0,2 \pi) \subset \mathbb{R}$ and the unit circle

$$
S=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{2}
$$

Is the mapping $I \ni t \mapsto(\cos t, \sin t) \in S$ a homeomorphism between them?

Exercise 10 Let (M, d) and (N, e) be homeomorphic MPs. Is it true that M is compact $\Longleftrightarrow N$ is compact, and that M is bounded $\Longleftrightarrow N$ is bounded?

- The Heine-Borel theorem. This theorem characterizes compact sets in MSs by means of open sets. We say that a subset $A \subset M$ of a MS (M, d) is topologically compact if for every system of open sets $\left\{X_{i} \mid i \in I\right\}$ in M it holds that

$$
\bigcup_{i \in I} X_{i} \supset A \Rightarrow \exists \text { finite set } J \subset I\left(\bigcup_{i \in J} X_{i} \subset A\right)
$$

One says that "every open covering of A has a finite subcovering". We prove that this definition of compactness is equivalent to the original definition.

Theorem 11 (Heine-Borel) A set $A \subset M$ in a metric space (M, d) is compact if and only if it is topologically compact.

Proof. Without loss of generality, $A=M$ (Exercise 12).
We prove the implication \Rightarrow. Let (M, d) be a compact MS and

$$
M=\bigcup_{i \in I} X_{i}
$$

be its open covering (so every set X_{i} is open). We find a finite subcovering in the system

$$
\left\{X_{i} \mid i \in I\right\}
$$

First we prove that

$$
\forall \delta>0 \exists \text { finite set } S_{\delta} \subset M\left(\bigcup_{a \in S_{\delta}} B(a, \delta)=M\right)
$$

If this were not the case, there would exist a $\delta_{0}>0$ and a sequence $\left(a_{n}\right) \subset M$ such that $m<n \Rightarrow d\left(a_{m}, a_{n}\right) \geq \delta_{0}$. In contrary with the assumed compactness of the set M this sequence has no convergent subsequence. Indeed, if (we negate the above statement about δ and S_{δ}) there exists a $\delta_{0}>0$ such that for every finite set $S \subset M$ one has that

$$
M \backslash \bigcup_{a \in S} B\left(a, \delta_{0}\right) \neq \emptyset
$$

then - if we already have defined points $a_{1}, a_{2}, \ldots, a_{n}$ satisfying that $d\left(a_{i}, a_{j}\right) \geq \delta_{0}$ for every $1 \leq i<j \leq n$-we take $a_{n+1} \in$
$M \backslash \bigcup_{i=1}^{n} B\left(a_{i}, \delta_{0}\right)$ and a_{n+1} has from each point $a_{1}, a_{2}, \ldots, a_{n}$ distance at least δ_{0}. Thus we define the whole sequence $\left(a_{n}\right)$.

For contrary we assume that the above open covering of M by the sets X_{i} has no finite subcovering. We argue that it follows that (the finite sets S_{δ} are defined above)

$$
\forall n \in \mathbb{N} \exists b_{n} \in S_{1 / n} \forall i \in I\left(B\left(b_{n}, 1 / n\right) \not \subset X_{i}\right) .
$$

If this were not the case, then (negating the previous statement) there would exist an $n_{0} \in \mathbb{N}$ such that for every $b \in S_{1 / n_{0}}$ there exists a $i_{b} \in I$ such that $B\left(b, 1 / n_{0}\right) \subset X_{i_{b}}$. But then, since $M=$ $\bigcup_{b \in S_{1 / n_{0}}} B\left(b, 1 / n_{0}\right)$, the indices give $J=\left\{i_{b} \mid b \in S_{1 / n_{0}}\right\} \subset I$ in contrary with the assumption on finite subcovering of the set M.

The claim on n and b_{n} son the separate line is therefore valid and we have the sequence $\left(b_{n}\right) \subset M$. By the assumption it has a convergent subsequence $\left(b_{k_{n}}\right)$ with $b=\lim b_{k_{n}} \in M$. Since the X_{i} cover M, there exists a $j \in I$ such that $b \in X_{j}$. Due to the openness of X_{j} there exists an $r>0$ such that $B(b, r) \subset X_{j}$. We take $n \in \mathbb{N}$ so large that $1 / k_{n}<r / 2$ and $d\left(b, b_{k_{n}}\right)<r / 2$. For every $x \in B\left(b_{k_{n}}, 1 / k_{n}\right)$ then, by the triangle inequality, we have that $d(x, b) \leq d\left(x, b_{k_{n}}\right)+d\left(b_{k_{n}}, b\right)<r / 2+r / 2=r$. Hence

$$
B\left(b_{k_{n}}, 1 / k_{n}\right) \subset B(b, r) \subset X_{j},
$$

in contrary with the above property of points b_{n}. The assumption that finite subcovering does not exist leads to a contradiction. Hence the coverage of M by the sets $X_{i}, i \in I$, has a finite subcovering.

We prove the implication \Leftarrow, which is easier. We assume that every open covering of the set M has a finite subcovering, and we derive from this that that every sequence $\left(a_{n}\right) \subset M$ has a conver-
gent subsequence. We first assume that

$$
\forall b \in M \exists r_{b}>0\left(M_{b}=\left\{n \in \mathbb{N} \mid a_{n} \in B\left(b, r_{b}\right)\right\} \text { is finite }\right)
$$

and show that this assumption leads to a contradiction. Indeed, from the covering $M=\bigcup_{b \in M} B\left(b, r_{b}\right)$ we would choose a finite subcovering given by a finite set $N \subset M$ and we would deduce that there exists an n_{0} such that $n \geq n_{0} \Rightarrow a_{n} \notin \bigcup_{b \in N} B\left(b, r_{b}\right)$ because the set of indices $\bigcup_{b \in N} M_{b}$ is finite (it is a finite union of finite sets). But this is a contradiction because $\bigcup_{b \in N} B\left(b, r_{b}\right)=M$. So the assumption does not hold and on the contrary it is true that

$$
\exists b \in M \forall r>0\left(M_{r}=\left\{n \in N \mid a_{n} \in B(b, r)\right\} \text { is infinite }\right) .
$$

Now we can easily select from $\left(a_{n}\right)$ a convergent subsequence $\left(a_{k_{n}}\right)$ with the limit b. Let the indices $1 \leq k_{1}<k_{2}<\cdots<k_{n}$ be already defined such that $d\left(b, a_{k_{i}}\right)<1 / i$ for $i=1,2, \ldots, n$. The set of indices $M_{1 /(n+1)}$ is infinite, so we can choose a $k_{n+1} \in \mathbb{N}$ such that $k_{n+1}>k_{n}$ and $k_{n+1} \in M_{1 /(n+1)}$. Then also $d\left(b, a_{k_{n+1}}\right)<1 /(n+1)$. This way we define a subsequence $\left(a_{k_{n}}\right)$ converging to b.

Exercise 12 Why can one take in the previous proof $A=M$?

- Connected sets and MSs. The subset $X \subset M$ in a MS (M, d) is clopen if it is at the same time open and closed. For example, the sets \emptyset and M clopen. The space M is connected if it has no nontrivial (different from \emptyset and M) clopen subset. Else, if M has a clopen subset $X \subset M$ with $X \neq \emptyset, M$, we say that M is disconnected. A subset $X \subset M$ is connected, or disconnected, if the subspace (X, d) is connected, or disconnected.

Exercise 13 Which finite sets $X \subset \mathbb{R}$ in the Euclidean space \mathbb{R} are connected?

Exercise 14 Is the set $X \subset \mathbb{R}^{2}$ in the Euclidean plane \mathbb{R}^{2}, given as

$$
X=(\{0\} \times[-1,1]) \cup\{(t, \sin (1 / t)) \mid 0<t \leq 1\}
$$

connected?
Let (M, d) be a MS and $X, A, B \subset M$. We say that the sets A and B cut the set X if A and B are open and

$$
(X \subset A \cup B) \wedge(X \cap A \neq \emptyset \neq X \cap B) \wedge(X \cap A \cap B=\emptyset)
$$

Exercise 15 Prove that $X \subset M$ is a disconnected set in a MS (M, d) if and only if there are sets $A, B \subset M$ that cut X.

Exercise 16 Let (M, d) be a MP and $A, B \subset M$ be connected sets such that $A \cap B \neq \emptyset$. Prove that then the set $A \cup B$ is connected.

- The Fundamental Theorem of Algebra (FTAlg). We prove it using compact and continuous sets in the MS \mathbb{C}.

Theorem 17 (FTAlg) Every non-constant complex polynomial has a root, that is,

$$
\begin{aligned}
& (n \geq 1) \wedge\left(a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}\right) \wedge\left(a_{n} \neq 0\right) \Rightarrow \\
& \Rightarrow \exists \alpha \in \mathbb{C}\left(\sum_{j=0}^{n} a_{j} \alpha^{j}=0\right)
\end{aligned}
$$

However, we still have to derive some results on connected sets. From the point of view of compact sets, we are ready: the MS $\mathbb{C}=(\mathbb{C},|u-v|)$ is actually the Euclidean space $\left(\mathbb{R}^{2}, e_{2}\right)$ and $X \subset \mathbb{C}$ is compact iff X is closed and bounded.

We regard the real axis \mathbb{R} as contained in \mathbb{C} and first we prove that every interval $[a, b] \subset \mathbb{R} \subset \mathbb{C}$ is a connected set in \mathbb{C}.

Theorem 18 (connectedness of intervals) Every interval $[a, b] \subset$ \mathbb{C}, where $a, b \in \mathbb{R}$ and $a \leq b$, is a connected set.

Proof. For contrary let $A, B \subset \mathbb{C}$ be open sets that cut the interval $[a, b]$ (Exercise 15). It can be assumed that $a<b$ and that $a \in A$ and $b \in B$ (Exercise 19). We consider the number

$$
c=\sup (\{x \in[a, b] \mid x \in A\}) \in[a, b] .
$$

Then $c \in A \cup B$. If $c \in A$, then $c<b$. It follows from the openness of A that every c^{\prime} with $c<c^{\prime}<b$ and sufficiently close to c lies in A. But this contradicts that c is an upper bound of the set $A \cap[a, b]$. If $c \in B$, then $a<c$. It follows from the openness of B that every c^{\prime} with $a<c^{\prime}<c$ and sufficiently close to c lies in B, that is, outside of A. But this contradicts the fact that c is the smallest upper bound of the set $A \cap[a, b]$.

Exercise 19 Why can one assume in the proof that $a \in A$ and $b \in B$?

Exercise 20 Prove the equivalence

$$
X \subset \mathbb{R} \text { is continuous } \Longleftrightarrow X \text { is an interval } .
$$

Like compact sets, also connected ones are preserved by continuous mappings.

Theorem 21 (continuity and connectedness) $f: X \rightarrow N$ is a continuous map from a connected set $X \subset M$ in a MS (M, d) to another MS (N, e). Then the image

$$
f[X]=\{f(x) \mid x \in X\} \subset N
$$

is connected.

Proof. We deduce from the disconnectedness of $f[X]$ the disconnectedness of X. Let the open sets $A, B \subset N$ cut the set $f[X]$. By Exercise 4 there exist open sets $A^{\prime}, B^{\prime} \subset M$ such that

$$
f^{-1}[A]=X \cap A^{\prime} \text { and } f^{-1}[B]=X \cap B^{\prime} .
$$

It is easy to see that the sets A^{\prime} and B^{\prime} cut the set X which is therefore disconnected.

Now we can easily prove that complex unit circle

$$
S=\{z \in \mathbb{C}| | z \mid=1\} \subset \mathbb{C}
$$

is connected. The simplest way (actually not quite) is to take the continuous function $f(t)=\cos t+i \sin t: I=[0,2 \pi] \rightarrow \mathbb{C}$. Then

$$
S=f[I]
$$

and S is connected by the two previous theorems. In fact, it is not so simple - we use the transcendental functions sin and cos. Derivation of their properties is not so simple. We can avoid them by taking instead of f two continuous functions $f^{+}, f^{-}: I=[-1,1] \rightarrow \mathbb{C}$ defined by

$$
f^{+}(t)=t+i \sqrt{1-t^{2}} \text { and } f^{-}(t)=t-i \sqrt{1-t^{2}}
$$

Then

$$
S=f^{+}[I] \cup f^{-}[I]
$$

and S is connected due to the two previous theorems and Exercise 16.

We now proceed to the first of the two steps in the proof of FTAlg. We prove in it that \mathbb{C} contains all n-th roots for $n \in \mathbb{N}$; again without using sine and cosine. I leave two special cases of this fact to you as exercises.

Exercise 22 Prove that for every nonnegative $x \in \mathbb{R}$ and every $n \in \mathbb{N}$ there exists a nonnegative $y \in \mathbb{R}$ such that $y^{n}=x$.

Exercise 23 (square roots in \mathbb{C}) $\forall a+b i \in \mathbb{C}$ we have for an appropriate choice of signs in the real numbers

$$
c= \pm \frac{\sqrt{\sqrt{a^{2}+b^{2}}+a}}{\sqrt{2}} \text { and } d= \pm \frac{\sqrt{\sqrt{a^{2}+b^{2}}-a}}{\sqrt{2}}
$$

that $(c+d i)^{2}=a+b i$. What exactly is this choice of signs? How would you derive these formulas? (Checking their correctness is easy.)

Theorem $24(n$th roots in $\mathbb{C})$ Complex numbers contain all n-th roots, that is

$$
\forall u \in \mathbb{C} \forall n \in \mathbb{N} \exists v \in \mathbb{C}\left(v^{n}=u\right)
$$

But we will prove this theorem only next time, when we also complete the proof of FTAlg with a second step based on compact sets.

THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send me (klazar@kam.mff.cuni.cz) by the end of the coming Sunday solutions to the Exercises 4, 9, 13, 14 and 23.

