
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2022/23

lecturer: Martin Klazar

LECTURE 3 (March 1, 2023) CONTINUITY AND

COMPACTNESS. THE HEINE–BOREL THEOREM.

CONNECTEDNESS. FTALG

• Compactness and continuity. In the next exercise you verify that

restriction of a continuous function to a subspace is a continuous

function.

Exercise 1. Let (M,d) and (N, e) be MSs, X ⊂ M be a non-

empty set and f : M → N be a continuous function. Then the

restriction

f |X : X → N, X 3 a 7→ f (a) ∈ N ,

defined on the subspace (X, d) is a continuous function.

In the last lecture, we met two equivalent versions of continuity of

functions, (i) the classical one in ε-δ form and (ii) the Heine de-

finition based on limits of sequence. Now we introduce the third

equivalent definition of continuity, the so-called topological conti-

nuity.

Proposition 2 (topological continuity). Let f : M → N be

a map between MSs (M,d) and (N, e). Then, with OS standing

for “open set”,

f is continuous ⇐⇒
∀OS A ⊂ N

(
f−1[A] := {x ∈M | f (x) ∈ A} ⊂M is an OS

)
.
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Proof. The implication⇒. Let f be continuous in the ε-δ sense,

A ⊂ N be an open set and a ∈ f−1[A]. So f (a) ∈ A and there

exists an ε > 0 such that B(f (a), ε) ⊂ A. So there exists a δ > 0

that

f [B(a, δ)] ⊂ B(f (a), ε) ⊂ A .

Hence B(a, δ) ⊂ f−1[A] and f−1[A] is an open set.

The implication⇐. Let f be continuous in the topological sense,

a ∈ M and ε > 0. Since the ball B(f (a), ε) ⊂ N is an open set,

f−1[B(f (a), ε)] is an open set. Since a ∈ f−1[B(f (a), ε)], there

exists a δ > 0 such that B(a, δ) ⊂ f−1[B(f (a), ε)]. Thus

f [B(a, δ)] ⊂ B(f (a), ε)

and f is continuous in the ε-δ sense. 2

Exercise 3. Prove this equivalence with closed sets instead of

open sets.

We generalize the topological definition of continuity to subspaces.

Exercise 4. Let (M,d) and (N, e) be MSs, X ⊂ M and let

f : X → N . Then (OS is again an “open set”)

f is a continuous map defined on the subspace (X, d) ⇐⇒
⇐⇒ ∀OS A ⊂ N ∃OS B ⊂M

(
f−1[A] = X ∩B

)
.

We show that the continuous image of a compact set is compact.

Proposition 5 (compact image). Let (M,d) and (N, e) be

MSs, X ⊂M be a compact set and

f : X → N
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be a continuous function. Then the image f [X ] ⊂ N is a com-

pact set.

Proof. Let (an) ⊂ f [X ] be an arbitrary sequence. We take the

sequence (bn) ⊂ X with f (bn) = an and select a convergent sub-

sequence (bmn) with lim bmn = b ∈ X . By Heine’s definition of

continuity,

lim amn = lim f (bmn) = f (b) ∈ f [X ] .

We have obtained a convergent subsequence of the sequence (an)

with limit in f [X ]. So f [X ] is compact. 2

Exercise 6. Find an example showing that the inverse image

of a compact set by a continuous function need not be compact.

Another useful property of compact sets is the following.

Proposition 7 (continuity of inverses). Let

f : X → N

be an injective continuous map from a compact set X ⊂ M in

a MS (M,d) to a MS (N, e). Then the inverse map

f−1 : f [X ]→ X

is continuous.

Proof. We use the version of topological continuity in Exercise 3.

We need to prove that for every set A ⊂ X that is closed in the

subspace (X, d), the inverse image (f−1)−1[A] = f [A] ⊂ f [X ]

by the map f−1 is closed in the subspace (f [X ], e). By one of the

exercises in the last lecture we know that A is compact (it is a closed
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set in a compact space). By the previous proposition, we know that

f [A] is a compact set in the subspace (f [X ], e). By a proposition

in the last lecture, f [A] is closed in this subspace. 2

• Homeomorphisms of MSs. A map f : M → N between MSs

(M,d) and (N, e) is their homeomorphism if f is a bijection and

if both f and f−1 are continuous. If there is a homeomorphism

between (M,d) and (N, e), these spaces are called homeomorphic.

Exercise 8. Describe the homeomorphism between the Eucli-

dean spaces (0, 1) ⊂ R and R.

Exercise 9. Consider the Euclidean spaces I := [0, 2π) ⊂ R
and the unit circle

S := {(x, y) ∈ R2 | x2 + y2 = 1} ⊂ R2 .

Is the mapping I 3 t 7→ (cos t, sin t) ∈ S a homeomorphism

between them?

Exercise 10. Let (M,d) and (N, e) be homeomorphic MPs. Is

it true that M is compact ⇐⇒ N is compact, and that M is

bounded ⇐⇒ N is bounded?

• The Heine–Borel theorem. This theorem characterizes compact

sets in MSs by means of open sets. We say that a subset A ⊂M of

a MS (M,d) is topologically compact if for every system of open

sets {Xi | i ∈ I} in M it holds that⋃
i∈I

Xi ⊃ A⇒ ∃ finite set J ⊂ I

(⋃
i∈J

Xi ⊂ A

)
.
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One says that “every open covering of A has a finite subcovering”.

We prove that this definition of compactness is equivalent to the

original definition.

Theorem 11 (Heine–Borel). A set A ⊂M in a metric space

(M,d) is compact if and only if it is topologically compact.

Proof. Without loss of generality, A = M (Exercise 12).

We prove the implication ⇒. Let (M,d) be a compact MS and

M =
⋃
i∈I

Xi

be its open covering (so every set Xi is open). We find a finite

subcovering in the system

{Xi | i ∈ I} .

First we prove that

∀ δ > 0 ∃ finite set Sδ ⊂M

( ⋃
a∈Sδ

B(a, δ) = M

)
.

If this were not the case, there would exist a δ0 > 0 and a sequence

(an) ⊂M such thatm < n⇒ d(am, an) ≥ δ0. In contrary with the

assumed compactness of the set M this sequence has no convergent

subsequence. Indeed, if (we negate the above statement about δ and

Sδ) there exists a δ0 > 0 such that for every finite set S ⊂ M one

has that

M \
⋃
a∈S B(a, δ0) 6= ∅ ,

then — if we already have defined points a1, a2, . . . , an satisfying

that d(ai, aj) ≥ δ0 for every 1 ≤ i < j ≤ n— we take an+1 ∈
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M \
⋃n
i=1B(ai, δ0) and an+1 has from each point a1, a2, . . . , an

distance at least δ0. Thus we define the whole sequence (an).

For contrary we assume that the above open covering of M by

the sets Xi has no finite subcovering. We argue that it follows that

(the finite sets Sδ are defined above)

∀n ∈ N ∃ bn ∈ S1/n ∀ i ∈ I
(
B(bn, 1/n) 6⊂ Xi

)
.

If this were not the case, then (negating the previous statement)

there would exist an n0 ∈ N such that for every b ∈ S1/n0 there

exists a ib ∈ I such that B(b, 1/n0) ⊂ Xib. But then, since M =⋃
b∈S1/n0

B(b, 1/n0), the indices give J = {ib | b ∈ S1/n0} ⊂ I in

contrary with the assumption on finite subcovering of the set M .

The claim on n and bn son the separate line is therefore valid

and we have the sequence (bn) ⊂ M . By the assumption it has

a convergent subsequence (bkn) with b := lim bkn ∈ M . Since the

Xi cover M , there exists a j ∈ I such that b ∈ Xj. Due to the

openness of Xj there exists an r > 0 such that B(b, r) ⊂ Xj. We

take n ∈ N so large that 1/kn < r/2 and d(b, bkn) < r/2. For

every x ∈ B(bkn, 1/kn) then, by the triangle inequality, we have

that d(x, b) ≤ d(x, bkn) + d(bkn, b) < r/2 + r/2 = r. Hence

B(bkn, 1/kn) ⊂ B(b, r) ⊂ Xj ,

in contrary with the above property of points bn. The assumption

that finite subcovering does not exist leads to a contradiction. Hence

the coverage of M by the sets Xi, i ∈ I , has a finite subcovering.

We prove the implication ⇐, which is easier. We assume that

every open covering of the set M has a finite subcovering, and we

derive from this that that every sequence (an) ⊂ M has a conver-
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gent subsequence. We first assume that

∀ b ∈M ∃ rb > 0
(
Mb := {n ∈ N | an ∈ B(b, rb)} is finite

)
and show that this assumption leads to a contradiction. Indeed,

from the covering M =
⋃
b∈M B(b, rb) we would choose a finite

subcovering given by a finite set N ⊂ M and we would deduce

that there exists an n0 such that n ≥ n0 ⇒ an 6∈
⋃
b∈N B(b, rb)

because the set of indices
⋃
b∈NMb is finite (it is a finite union of

finite sets). But this is a contradiction because
⋃
b∈N B(b, rb) = M .

So the assumption does not hold and on the contrary it is true that

∃ b ∈M ∀ r > 0
(
Mr := {n ∈ N | an ∈ B(b, r)} is infinite

)
.

Now we can easily select from (an) a convergent subsequence (akn)

with the limit b. Let the indices 1 ≤ k1 < k2 < · · · < kn be already

defined such that d(b, aki) < 1/i for i = 1, 2, . . . , n. The set of

indices M1/(n+1) is infinite, so we can choose a kn+1 ∈ N such that

kn+1 > kn and kn+1 ∈M1/(n+1). Then also d(b, akn+1) < 1/(n+ 1).

This way we define a subsequence (akn) converging to b. 2

Exercise 12. Why can one take in the previous proof A = M?

• Connected sets and MSs. The subset X ⊂ M in a MS (M,d)

is clopen if it is at the same time open and closed. For example,

the sets ∅ and M clopen. The space M is connected if it has no

nontrivial (different from ∅ and M) clopen subset. Else, if M has

a clopen subset X ⊂ M with X 6= ∅,M , we say that M is dis-

connected. A subset X ⊂ M is connected, or disconnected, if the

subspace (X, d) is connected, or disconnected.

Exercise 13. Which finite sets X ⊂ R in the Euclidean space

R are connected?
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Exercise 14. Is the set X ⊂ R2 in the Euclidean plane R2,

given as

X := ({0} × [−1, 1]) ∪ {(t, sin(1/t)) | 0 < t ≤ 1} ,

connected?

Let (M,d) be a MS and X,A,B ⊂ M . We say that the sets A

and B cut the set X if A and B are open and

(X ⊂ A ∪B) ∧ (X ∩ A 6= ∅ 6= X ∩B) ∧ (X ∩ A ∩B = ∅) .

Exercise 15. Prove that X ⊂M is a disconnected set in a MS

(M,d) if and only if there are sets A,B ⊂M that cut X.

Exercise 16. Let (M,d) be a MP and A,B ⊂M be connected

sets such that A ∩ B 6= ∅. Prove that then the set A ∪ B is

connected.

• The Fundamental Theorem of Algebra (FTAlg). We prove it

using compact and continuous sets in the MS C.

Theorem 17 (FTAlg). Every non-constant complex polyno-

mial has a root, that is,

(n ≥ 1) ∧ (a0, a1, . . . , an ∈ C) ∧ (an 6= 0)⇒
⇒ ∃α ∈ C

(∑n
j=0 ajα

j = 0
)
.

However, we still have to derive some results on connected sets.

From the point of view of compact sets, we are ready: the MS

C = (C, |u−v|) is actually the Euclidean space (R2, e2) andX ⊂ C
is compact iff X is closed and bounded.

We regard the real axis R as contained in C and first we prove

that every interval [a, b] ⊂ R ⊂ C is a connected set in C.
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Theorem 18 (connectedness of intervals). Every interval

[a, b] ⊂ C, where a, b ∈ R and a ≤ b, is a connected set.

Proof. For contrary letA,B ⊂ C be open sets that cut the interval

[a, b] (Exercise 15). It can be assumed that a < b and that a ∈ A
and b ∈ B (Exercise 19). We consider the number

c := sup({x ∈ [a, b] | x ∈ A}) ∈ [a, b] .

Then c ∈ A∪B. If c ∈ A, then c < b. It follows from the openness

ofA that every c′ with c < c′ < b and sufficiently close to c lies inA.

But this contradicts that c is an upper bound of the set A ∩ [a, b].

If c ∈ B, then a < c. It follows from the openness of B that every

c′ with a < c′ < c and sufficiently close to c lies in B, that is,

outside of A. But this contradicts the fact that c is the smallest

upper bound of the set A ∩ [a, b]. 2

Exercise 19. Why can one assume in the proof that a ∈ A

and b ∈ B?

Exercise 20. Prove the equivalence

X ⊂ R is continuous ⇐⇒ X is an interval .

Like compact sets, also connected ones are preserved by continu-

ous mappings.

Theorem 21 (continuity and connectedness). f : X → N

is a continuous map from a connected set X ⊂ M in a MS

(M,d) to another MS (N, e). Then the image

f [X ] = {f (x) | x ∈ X} ⊂ N

is connected.
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Proof. We deduce from the disconnectedness of f [X ] the discon-

nectedness of X . Let the open sets A,B ⊂ N cut the set f [X ]. By

Exercise 4 there exist open sets A′, B′ ⊂M such that

f−1[A] = X ∩ A′ and f−1[B] = X ∩B′ .

It is easy to see that the sets A′ and B′ cut the set X which is

therefore disconnected. 2

Now we can easily prove that complex unit circle

S := {z ∈ C | |z| = 1} ⊂ C

is connected. The simplest way (actually not quite) is to take the

continuous function f (t) = cos t + i sin t : I := [0, 2π]→ C. Then

S = f [I ]

and S is connected by the two previous theorems. In fact, it is not so

simple− we use the transcendental functions sin and cos. Derivation

of their properties is not so simple. We can avoid them by taking

instead of f two continuous functions f+, f− : I := [−1, 1] → C
defined by

f+(t) := t + i
√

1− t2 and f−(t) := t− i
√

1− t2 .

Then

S = f+[I ] ∪ f−[I ]

and S is connected due to the two previous theorems and Exer-

cise 16.

We now proceed to the first of the two steps in the proof of

FTAlg. We prove in it that C contains all n-th roots for n ∈ N;

again without using sine and cosine. I leave two special cases of this

fact to you as exercises.
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Exercise 22. Prove that for every nonnegative x ∈ R and every

n ∈ N there exists a nonnegative y ∈ R such that yn = x.

Exercise 23 (square roots in C). ∀ a + bi ∈ C we have for

an appropriate choice of signs in the real numbers

c := ±
√√

a2 + b2 + a√
2

and d := ±
√√

a2 + b2 − a√
2

that (c+di)2 = a+bi. What exactly is this choice of signs? How

would you derive these formulas? (Checking their correctness is

easy.)

Theorem 24 (nth roots in C). Complex numbers contain all

n-th roots, that is

∀u ∈ C ∀n ∈ N ∃ v ∈ C
(
vn = u

)
.

But we will prove this theorem only next time, when we also com-

plete the proof of FTAlg with a second step based on compact sets.

THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send to Mgr. J. Rondoš, Ph.D. by the

end of the coming Monday by e-mail (jakub.rondos@gmail.com)

solutions to the Exercises 4, 9, 13, 14 and 23.
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