MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2023/24
lecturer: Martin Klazar

LECTURE 2 (February 27, 2024) OSTROWSKI'S THEOREM. COMPACT METRIC SPACES.

- Ostrowski's theorem. On any field F we have the trivial norm. It is a function $\|\cdot\|$ with $\left\|0_{F}\right\|=0$ and $\|x\|=1$ for $x \neq 0_{F}$.

Exercise 1 Prove that a trivial norm is a norm.
From the usual absolute value $|\cdot|$ on \mathbb{Q}, \mathbb{R} and \mathbb{C}, we get many other norms by exponentiation.

Exercise 2 Prove that for any $c>0,|\cdot|^{c}$ is a norm (on \mathbb{Q}, \mathbb{R}, and \mathbb{C}) if and only if $c \leq 1$. We will call this norm the modified absolute value.

For $\alpha \in \mathbb{Q}$ and a prime p, the canonical p-adic norm $\|\cdot\|_{p}$ is defined by

$$
\|\alpha\|_{p}=p^{-\operatorname{ord}_{p}(\alpha)}
$$

- in the general p-adic norm $|\cdot|_{p}$ we set $c=1 / p$.

Exercise 3 Let $M=\{2,3,5,7,11, \ldots\} \cup\{\infty\}$ and $\|\cdot\|_{\infty}=|\cdot|$ (ordinary absolute value). Prove that for every nonzero number $\alpha \in \mathbb{Q}$ the product formula

$$
\prod_{p \in M}\|\alpha\|_{p}=1
$$

holds.

Exercise 4 Let $\|\cdot\|$ be a nontrivial norm on the field \mathbb{Q}. Prove that $\exists n \in \mathbb{N}(n \geq 2 \wedge\|n\| \neq 1)$.

Exercise 5 Prove that for every two coprime numbers $a, b \in \mathbb{Z}$ there exist numbers $c, d \in \mathbb{Z}$ such that

$$
a c+d b=1 .
$$

Theorem 6 (A. Ostrowski, 1916) Let $\|\cdot\|$ be a norm on the field of rational numbers \mathbb{Q}. Then one of the following three cases occurs.

1. It is a trivial norm.
2. There exists a real $c \in(0,1]$ such that $\|x\|=|x|^{c}$.
3. There exists a real $c \in(0,1)$ and a prime number p such that $\|x\|=|x|_{p}=c^{\operatorname{ord}_{p}(x)}$.
Modified absolute values and p-adic norms are therefore the only non-trivial norms on the field of rational numbers.
Proof. Let $\|\cdot\|$ be a nontrivial norm. By Exercise 4 there exists an $n \in \mathbb{N} \backslash\{1\}$ such that $\|n\| \neq 1$. Two cases occur.
4. There exists an $n \in \mathbb{N}$ such that $\|n\|>1$. Let n_{0} be the smallest such n. Apparently $n_{0} \geq 2$ a

$$
\begin{equation*}
1 \leq m<n_{0} \Rightarrow\|m\| \leq 1 . \tag{1}
\end{equation*}
$$

There is a unique real number $c>0$ such that

$$
\begin{equation*}
\left\|n_{0}\right\|=n_{0}^{c} . \tag{2}
\end{equation*}
$$

Any $n \in \mathbb{N}$ expands in base n_{0} :

$$
\begin{aligned}
& n=a_{0}+a_{1} n_{0}+a_{2} n_{0}^{2}+\cdots+a_{s} n_{0}^{s} \text { where } \\
& a_{i}, s \in \mathbb{N}_{0}, 0 \leq a_{i}<n_{0} \text { and } a_{s} \neq 0 .
\end{aligned}
$$

For $n_{0}=10$ this is the usual decadic notation, like $2024=2 \cdot 10^{3}+$ $0 \cdot 10^{2}+2 \cdot 10^{1}+4 \cdot 10^{0}$. So

$$
\|n\| \quad=\quad\left\|a_{0}+a_{1} n_{0}+a_{2} n_{0}^{2}+\cdots+a_{s} n_{0}^{s}\right\|
$$

$$
\Delta \text {-ineq. and multipl. of }\|\cdot\| \sum_{j=0}^{s}\left\|a_{j}\right\| \cdot\left\|n_{0}\right\|^{j}
$$

$$
\begin{array}{ll}
\stackrel{\text { eq. (1) and (2) }}{\leq} & \sum_{j=0}^{s} n_{0}^{j c} \leq n_{0}^{s c} \sum_{i=0}^{\infty}\left(1 / n_{0}^{c}\right)^{i} \\
\stackrel{n_{0}^{s} \leq n}{\leq} & n^{c} C \text { where } C=\sum_{i=0}^{\infty}\left(1 / n_{0}^{c}\right)^{i}
\end{array}
$$

Hence

$$
\begin{equation*}
\forall n \in \mathbb{N}_{0}\left(\|n\| \leq C n^{c}\right) . \tag{3}
\end{equation*}
$$

This bound holds in fact even with $C=1$. For each $m, n \in \mathbb{N}$, multiplicativity of the norm and inequality (3) give

$$
\|n\|^{m}=\left\|n^{m}\right\| \leq C\left(n^{m}\right)^{c}=C\left(n^{c}\right)^{m}
$$

We take the m-th root and get that $\|n\| \leq C^{1 / m} n^{c}$. For $m \rightarrow \infty$ we have $C^{1 / m} \rightarrow 1$. So indeed

$$
\begin{equation*}
\forall n \in \mathbb{N}_{0}\left(\|n\| \leq n^{c}\right) \tag{4}
\end{equation*}
$$

We similarly derive the converse inequality $\|n\| \geq n^{c}, n \in \mathbb{N}_{0}$. For every $n \in \mathbb{N}$ the above expansion of n in base n_{0} gives that

$$
n_{0}^{s+1}>n \geq n_{0}^{s}
$$

By the Δ-inequality,

$$
\left\|n_{0}\right\|^{s+1}=\left\|n_{0}^{s+1}\right\| \leq\|n\|+\left\|n_{0}^{s+1}-n\right\| .
$$

Hence

$$
\begin{aligned}
&\|n\| \geq\left\|n_{0}\right\|^{s+1}-\left\|n_{0}^{s+1}-n\right\| \stackrel{(2)}{\geq} n_{0}^{(s+1) c}-\left(n_{0}^{s+1}-n\right)^{c} \\
& \quad n \geq n_{0}^{s} \\
& \geq n_{0}^{(s+1) c}-\left(n_{0}^{s+1}-n_{0}^{s}\right)^{c}=n_{0}^{(s+1) c}\left(1-\left(1-\frac{1}{n_{0}}\right)^{c}\right) \\
& \geq n^{s+1}>n \\
& \quad \geq \quad \text { where } C^{\prime}=1-\left(1-\frac{1}{n_{0}}\right)^{c}>0
\end{aligned}
$$

The trick with the m-th root gives again

$$
\forall n \in \mathbb{N}_{0}\left(\|n\| \geq n^{c}\right)
$$

Hence

$$
\forall n \in \mathbb{N}_{0}\left(\|n\|=n^{c}\right)
$$

From multiplicativity of the norm $\|\cdot\|$ we get that $\|x\|=|x|^{c}$ for any $x \in \mathbb{Q}$. By Exercise $2, c \in(0,1]$. Thus case 2 of Ostrowski's theorem holds.
2. $\forall n \in \mathbb{N}$ one has $\|n\| \leq 1$ and $\exists n \in \mathbb{N}$ with $\|n\|<1$. Let n_{0} be minimum such n; again $n_{0} \geq 2$. We claim that $n_{0}=p$ is a prime number. Indeed, if we could express $n_{0}=n_{1} n_{2}$ with $n_{i} \in \mathbb{Z}$ and $1<n_{1}, n_{2}<n_{0}$, the contradiction

$$
1>\left\|n_{0}\right\|=\left\|n_{1} n_{2}\right\|=\left\|n_{1}\right\| \cdot\left\|n_{2}\right\|=1 \cdot 1=1
$$

follows (we used multiplikativity of norms and that $\|m\|=1$ for any $m \in \mathbb{N}$ with $1 \leq m<n_{0}$). We show that every prime number q with $q \neq p$ has the norm $\|q\|=1$. For the contrary let $q \neq p$ be another prime number with $\|q\|<1$. We take a large $m \in \mathbb{N}$ such that $\|p\|^{m},\|q\|^{m}<\frac{1}{2}$. By Exercise 5 there are integers a and b such
that $a q^{m}+b p^{m}=1$. Taking norms we get that
$1=\|1\|=\left\|a q^{m}+b p^{m}\right\| \leq\|a\| \cdot\|q\|^{m}+\|b\| \cdot\|p\|^{m}<1 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=1$.
which is a contradiction; we used the triangle inequality, multiplicativity of norms, and the fact that now $\|a\| \leq 1$ for every $a \in \mathbb{Z}$.

Thus $\|q\|=1$ for every prime number $q \neq p$. From this, multiplicativity of norms and prime factorization of any non-zero fraction x we get the expression

$$
\begin{aligned}
\|x\| & =\left\|\prod_{q=2,3,5, \ldots} q^{\operatorname{ord}_{q}(x)}\right\|=\prod_{q=2,3,5, \ldots}\|q\|^{\operatorname{ord}_{q}(x)}=\|p\|^{\operatorname{ord}_{p}(x)} \\
& =c^{\operatorname{ord}_{p}(x)}, \text { where } c=\|p\| \in(0,1) .
\end{aligned}
$$

Also $\|0\|=c^{\operatorname{ord}_{p}(0)}=c^{\infty}=0$. We are in case 3 of Ostrowski's theorem.

The preceding proof is taken from the book by Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, SpringerVerlag, New York, 1984.

This book contains lot of information about the p-adic norm $\|\cdot\|_{p}$ and related p-adic analysis.

- Compact sets in metric spaces. We review limits of sequences in MSs. Let (M, d) be a MS, $\left(a_{n}\right) \subset M$ be a sequence of points in it and $a \in M$ be a point. We say that $\left(a_{n}\right)$ has the limit a (in (M, d)) if

$$
\forall \varepsilon \exists n_{0}\left(n \geq n_{0} \Rightarrow d\left(a_{n}, a\right)<\varepsilon\right)
$$

From now on $\varepsilon>0$ is a real number and $n_{0}, n \in \mathbb{N}$. We write that $\lim a_{n}=a$ or $\lim _{n \rightarrow \infty} a_{n}=a$. If the sequence $\left(a_{n}\right)$ has a limit, we say that it is convergent, otherwise it is divergent.

Let (M, d) be a MS and $X \subset M$, for example $X=M$. We say that the set X is compact if

$$
\forall\left(a_{n}\right) \subset X \exists\left(a_{m_{n}}\right) \exists a \in X\left(\lim _{n \rightarrow \infty} a_{m_{n}}=a\right)
$$

In words: every sequence of points in the set X has a convergent subsequence with limit in X. The MS (M, d) is compact when the set M is compact.

The Bolzano-Weierstrass theorem states that on the real axis, i.e., in the $\operatorname{MS}(\mathbb{R},|x-y|)$, every closed and bounded interval $X=$ $[a, b]$ is a compact set. We give a few examples of compact sets and compact MSs.

Exercise 7 In every MS every finite set is compact.
Exercise 8 Is the real axis (with the metric $|x-y|$) a compact MS?

Exercise 9 Which other intervals on the real axis besides $[a, b]$ are compact sets?

Exercise 10 Let $X=[a, b] \times[c, d]$ be a rectangle in the plane, that is, in the Euclidean space $\left(\mathbb{R}^{2}, e_{2}\right)$. Prove that X is compact.

Exercise 11 Let (M, d) be MS and $A, B \subset M$. Which of the
following implications holds?
A and B are compact $\Rightarrow A \cup B$ is compact
A and B are compact $\Rightarrow A \cap B$ is compact
$A \subset B$ and B is compact $\Rightarrow A$ is compact
A and B are compact $\Rightarrow A \backslash B$ is compact

- Extrema and compact sets. We begin with continuous maps between MSs. Let (M, d) and (N, e) be MSs and $f: M \rightarrow N$ be a map between them. We say that it is continuous in the point $a \in M$ if

$$
\forall \varepsilon \exists \delta \forall x \in M(d(x, a)<\delta \Rightarrow e(f(x), f(a))<\varepsilon) .
$$

Here $\delta>0$ is a real number. A map f is continuous if it is continuous in every point $a \in M$.

Exercise 12 Let $f: M \rightarrow N$ be a map between MSs and $a \in M$ be a point. Prove Heine's definition of continuity:

$$
\begin{aligned}
& f \text { is continuous in } a \Longleftrightarrow \\
& \Longleftrightarrow \forall\left(a_{n}\right) \subset M\left(\lim a_{n}=a \Rightarrow \lim f\left(a_{n}\right)=f(a)\right) .
\end{aligned}
$$

Theorem 13 (attaining extrema) Let (M, d) be a MS,

$$
f: M \rightarrow \mathbb{R}
$$

be a continuous function from M to the real axis, and $X \subset M$ be a nonempty compact set. Then

$$
\exists a, b \in X \forall x \in X(f(a) \leq f(x) \leq f(b)) .
$$

Thus f attains on the set X both the smallest value $f(a)$ and the largest value $f(b)$.

Proof. First we show that $f[X]=\{f(x) \mid x \in X\}$ is a bounded subset of \mathbb{R}. If $f[X]$ were not bounded from above, we could take a sequence $\left(a_{n}\right) \subset X$ with $\lim f\left(a_{n}\right)=+\infty$, i.e., such that $\forall c \exists n_{0}\left(n \geq n_{0} \Rightarrow f\left(a_{n}\right)>c\right)$. By the assumption, $\left(a_{n}\right)$ has a convergent subsequence ($a_{m_{n}}$) with $\lim a_{m_{n}}=a \in X$. By the continuity of f in a and Exercise 12, $\lim f\left(a_{m_{n}}\right)=f(a) \in \mathbb{R}$. But this is a contradiction because $\lim f\left(a_{m_{n}}\right)=+\infty$. Boundedness of $f[X]$ from below follows in a similar way.

Thus we define the real numbers $A=\inf (f[X])$ and $B=$ $\sup (f[X])$. By the definition of infima, there is a sequence $\left(a_{n}\right) \subset X$ such that $\lim f\left(a_{n}\right)=A$. By the assumption, $\left(a_{n}\right)$ has a convergent subsequence $\left(a_{m_{n}}\right)$ with $\lim a_{m_{n}}=a \in X$. By the continuity of f in a and Exercise 12, $\lim f\left(a_{m_{n}}\right)=f(a)$. Since subsequences preserve $\operatorname{limits}, \lim f\left(a_{m_{n}}\right)=A$. Thus $f(a)=A$ and for every $x \in X$,

$$
f(a)=A \leq f(x)
$$

because $A=\inf (f[X])$. We produce the element $b \in X$ in a similar way.

- Products of metric spaces. For the MSs (M, d) and (N, e), we define their product ($M \times N, d \times e$) so that $M \times N$ is the Cartesian product of the sets M and N and the $d \times e$ metric on it is given by

$$
(d \times e)\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\sqrt{d\left(a_{1}, b_{1}\right)^{2}+e\left(a_{2}, b_{2}\right)^{2}} .
$$

Exercise 14 Prove that the product of two MSs is a MS.
Exercise 15 Prove that the product of two Euclidean MSs

$$
\left(\mathbb{R}^{m}, e_{m}\right) \text { and }\left(\mathbb{R}^{n}, e_{n}\right)
$$

is (except for a formality in notation) the Euclidean MS

$$
\left(\mathbb{R}^{m+n}, e_{m+n}\right)
$$

What is the "formality"?

- Characterization of compact sets in Euclidean MSs. We defined the ball $B(a, r)$ in a MS last time. A set $X \subset M$ in a MS (M, d) is open if

$$
\forall a \in X \exists r(B(a, r) \subset X)
$$

Here $r>0$ is a real number, the radius of the ball $B(a, r) . X$ is closed if $M \backslash X$ is open. X is bounded if

$$
\exists a \in M \exists r(X \subset B(a, r))
$$

The diameter of the set X is, for $V=\{d(a, b) \mid a, b \in X\} \subset$ $[0,+\infty)$, defined as
$\operatorname{diam}(X):=\left\{\begin{array}{lll}\sup (V) & \ldots & \text { the set } V \text { is bounded from above and } \\ +\infty & \ldots & \text { the set } V \text { is unbounded from above } .\end{array}\right.$
Exercise 16 Prove that any set X is bounded if and only if $\operatorname{diam}(X)<+\infty$.

Exercise 17 Prove that for any unbounded set X there is a sequence $\left(a_{n}\right) \subset X$ such that $m<n \Rightarrow d\left(a_{m}, a_{n}\right)>1$.

In the following two exercises we review basic properties of open and closed sets in a MS.

Exercise 18 Let (M, d) be a MS. Then the following holds.

1. The sets \emptyset and M are both open and closed.
2. Any finite intersection of open subsets of M is an open set and any finite union of closed subsets of M is a closed set.
3. Any union of open subsets of M is an open set and any intersection of closed subsets of M is a closed set.

Exercise 19 Let (M, d) be a MS and $X \subset M$. Then
the set X is closed \Longleftrightarrow

$$
\Longleftrightarrow \forall\left(a_{n}\right) \subset X \forall a \in M\left(\lim a_{n}=a \Rightarrow a \in X\right) .
$$

Theorem 20 (on compactness) The following holds.

1. If $X \subset M$ is a compact set in a MS (M, d), then X is closed and bounded. The opposite implication does not in general hold, by Exercise 22.
2. If (M, d) and (N, e) are two compact MSs , then their product $(M \times N, d \times e)$ is a compact MS .

Proof. 1. If X is not closed, then by Exercise 19 there exists a convergent sequence $\left(a_{n}\right) \subset X$ such that $\lim a_{n}=a \in M \backslash X$. This sequence does not have a convergent subsequence with limit in X, since each subsequence has limit a. When X is not bounded, we easily construct a sequence $\left(a_{n}\right) \subset X$ such that $m<n \Rightarrow$ $d\left(a_{m}, a_{n}\right)>1$ (Exercise 17). This sequence clearly has no convergent subsequence.
2. Let $\left(a_{n}\right)=\left(\left(a_{n, 1}, a_{n, 2}\right)\right)$ be a sequence in the product MS. We choose a subsequence $\left(b_{n}\right)$ such that $\left(b_{n, 1}\right)$ has a limit $b \in M$ in (M, d). From $\left(b_{n}\right)$ we select a subsequence $\left(c_{n}\right)$ such that $\left(c_{n, 2}\right)$ has a limit $c \in N$ in (N, e). It is not difficult to see that $\left(c_{n}\right)$ is
a subsequence of the sequence $\left(a_{n}\right)$ and that it has in the product MS the limit

$$
\lim c_{n}=(b, c) \in M \times N
$$

Exercise 21 Let (M, d) be a compact MS and $X \subset M$ be a closed set. Prove that X is compact.

Exercise 22 Let M be an infinite set and the metric d on it is given as $d(a, b)=1$ for $a \neq b$ and $d(a, a)=0$. Show that (M, d) is a MS that is bounded and closed but not compact.

Theorem 23 (compact sets in \mathbb{R}^{n}) In every Euclidean MS $\left(\mathbb{R}^{n}, e_{n}\right), X \subset \mathbb{R}^{n}$ is compact if and only if it is bounded and closed.

Proof. By the first part of the previous theorem, it suffices to prove that every bounded and closed set $X \subset \mathbb{R}^{n}$ is compact. From its boundedness it follows that for a real number $a>0$,

$$
X \subset K=[-a, a]^{n}=[-a, a] \times[-a, a] \times \cdots \times[-a, a] \subset \mathbb{R}^{n}
$$

The Euclidean MS $\left(K, e_{n}\right)$ is compact by the Bolzano-Weierstrass theorem, part 2 of the previous theorem, and Exercise 15. Clearly, X is also closed in $\left(K, e_{n}\right)$ (problem 24), so according to Exercise 21, X is compact in $\left(K, e_{n}\right)$ and therefore in $\left(\mathbb{R}^{n}, e_{n}\right)$ (Exercise 25).

Exercise $24 \operatorname{Let}(M, d)$ be a MS, $A \subset B \subset M$ and A be a closed set in $(M, d) \Rightarrow A$ is closed also in the subspace (B, d).

Exercise 25 Let (M, d) be a MS and $A \subset B \subset M$. Then A is compact in $(M, d) \Longleftrightarrow A$ is compact in the subspace (B, d).

THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz) by the end of the coming Sunday solutions to the Exercises 5, 9, 11, 17 and 22.

