MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2022/23
lecturer: Martin Klazar

LECTURE 2 (February 22, 2023) OSTROWSKI'S
THEOREM. COMPACT METRIC SPACES.

e Ostrowski’s theorem. On any field F' we have the trivial norm.
It is a function || - || with ||0z|| = 0 and ||z|| = 1 for « # Op.

Exercise 1. Prove that a trivial norm s a norm.

From the usual absolute value of | - | to Q, R and C, we get many
other norms by exponentiation.

Exercise 2. Prove that for any ¢ > 0, |-|® is a norm (on Q, R,
and C) if and only if ¢ < 1. We will call this norm the modified
absolute value.

For @ € Q and a prime p, the canonical p-adic norm | - ||, is
defined by

—ordy(a)

ledly == p
— in the general p-adic norm | - |, we set ¢ == 1/p.
Exercise 3. Let M = {2,3,5,7,11,... } U{oo} and || - ||~ =

| - | (ordinary absolute value). Prove for every nonzero number
a € QQ the product formula

1T lledl, =1

peM

Exercise 4. Let ||-|| be a nontrivial norm on the field Q. Prove
that 3n € N (n > 2 A||n|| #1).
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Exercise 5. Prove that for every two coprime numbers a,b € 7Z
there exist numbers c,d € Z such that

ac+db=1.

Theorem 6 (A. Ostrowski, 1916). Let || - || be a norm on
the field of rational numbers Q. Then one of the following three
cases 0ccurs.

1. It 15 a trivial norm.
2. There exists a real ¢ € (0,1] such that ||z|| = |z|°.

3. There exists a real ¢ € (0,1) and a prime number p such
that ||z|| = |z, = @),

Modified absolute values and p-adic norms are therefore the
only non-trivial norms on the field of rational numbers.

Proof. Let || - || be a nontrivial norm. By Exercise 4, there exists
n € N\ {1} such that ||n|| # 1. We have two cases.

1. There exists an n € N such that ||n|]| > 1. We denote the
smallest such n as ny. Apparently ng > 2 a

1<m<ny=|m| <1. (1)
There exists a unique real number ¢ > 0 such that
gl = 2)
Any n € N can be expanded in the base ny:

n=a0+a1n0+a2ng+---+asn8 where
a;, s € Ng, 0 <a; <ng and as #0 .



For ny = 10 we get the standard decimal notation. So

In|] — Hao+a1no+a2n%+---+asn‘5H

A-ineq. and multipl. of || - ||

> o lajll - lImoll’
Zj:o n‘éc < 1y go(l/”g)i

< n‘C, where C == 3" (1/ng)" .
Hence
Vn e Ny (||n] < Cnf) . (3)

This inequality actually holds even with C' = 1. For each m,n € N,
the multiplicativity of the norm and inequality (3) give

In]™ = []n™]] < €' (n™)" = C (0" .

If we take the m-th root, we get ||n|| < CY™n¢. For m — oo we
have C/™ — 1. So indeed

Vn € Ny (||n|| < n°) . (4)

We similarly derive the converse inequality ||n| > n¢ n € Nj.
For every n € N the above expression of the number n in the base
ng gives that

ngtt >n>nj.
By the A-inequality we have that

ol = 1Ing™ | < [Inll + [Ing™ — ]l -
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eq. (2) and (4)
L e [ e ()
nzng (s+1)c, s+1 s\e (s+1)c 1 ¢
> ng (g —np) = ng (1_< _n_0>>
n8+1>n c
> n°C', where C':=1— (1 — nio) > 0.

The trick with the m-th root gives again
Vn e Ny (||n] > n°)

and so
Vn € Ny (||n]| =n°) .

From the multiplicativity of the norm we get that ||z| = |z| for
any x € Q. By Exercise 2 ¢ € (0,1]. Thus case 2 of Ostrowski’s
theorem holds.

2. The remaining case when for every n € N there is an
In|| <1 and there exists an n € N such that ||n|| < 1. Let ng be
the smallest such n, again ng > 2. We claim that ng = p is a prime
number. Indeed, if ny had a decomposition ng = ning with n; € Z
and 1 < nq,ny < ng, we would get the contradiction

L> [lnol| = lnane|l = lnall - fInofl = 1-1 =1,

where we used the multiplikativity of the norm and that ||m|| = 1
for every m € N with 1 < m < ny. We show that every prime
number ¢ with ¢ # p has the norm ||¢|| = 1. For the contrary,
let ¢ # p be another prime number with norm ||¢q|| < 1. We take
a large m € N such that ||p||™, ||¢||™ < 1. By Exercise 5 there are
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integers a and b such that aq™ + bp™ = 1. Taking norms in this
equality gives the contradiction:

1 1
L= {100 = llag™ 05" < llall-lall™+ bl o™ < 15415 =1

Here we used the triangle inequality, the multiplicativity of the
norm, and the fact that now ||al| < 1 for every a € Z.

Thus ||q|| = 1 for every prime number ¢ different from p. From
this, using multiplicativity of the norm and the decomposition of
the non-zero fraction x in the product of powers of prime numbers,
we get the expression

lell = | I ¢\ = TI Ml = fpjoe
q=2,3,5, ... q=2,3,5, ...
= %@ where ¢ = ||p|| € (0,1) .
Also ||0]] = %0 = ¢ = 0. We are in case 3 of Ostrowski’s
theorem. O

The preceding proof is taken from the book

N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions,
Springer-Verlag, New York, 1984.

The book contains a lot of interesting information about the p-adic
norm || - ||, and related p-adic analysis.

e Compactness of sets in MSs. First, we introduce limits of sequen-
ces in MSs. Let (M, d) be a MS, (a,) C M be a sequence of points
in it and @ € M be a point. We say that (a,) has the limit a (in
(M, d)) if

Ve Ing (n>nyg = dlay, a) <e) .
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From now on € > 0 is a real number and ng,n € N. We write that
lim a, = a or lim, ., a, = a. If the sequence (a,) has a limit, we
say that it is convergent, otherwise it is divergent.
Let (M,d) be a MS and X C M, for example X = M. We say
that the set X is compact if
V(ay) C X 3(am,) Ja € X ( lim a,, =a).

n—0o0

In words: every sequence of points in the set X has a convergent
subsequence with limit in X. The MS (M, d) is compact when the
set M is compact.

The Bolzano—Weierstrass theorem states that on the real axis,
i.e., in the MS (R, |z — y|), every closed and bounded interval X =
la, b] is a compact set. We will give a few examples of compact sets
and compact MSs.

Exercise 7. In every MS every finite set is compact.

Exercise 8. Is the real axis (with the metric |x—y|) a compact
MS?

Exercise 9. Which other intervals on the real axis besides |a, b]
are compact sets?

Exercise 10. Let X = [a,b] X [c,d] be a rectangle in the plane,
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that is, in the Fuclidean space (R*, e3). Prove that X is a com-

pact set.

Exercise 11. Let (M,d) be MS, A, B C M and let us briefly
write ,is c.“ instead of ,,18 a compact set”. Determine which of



the following implications holds

A and B are c. = AU B 1is c.
A and B are c. = AN B 1is c.
ACB and B is c. = A is c.
A and B are c. = A\ B is c.

o We extend the maximum principle from the real axis to gene-
ral MSs. But first we need to introduce continuous maps between

MSs. Let (M,d) and (N, e) be MSs and f: M — N be a map

between them. We say that it is continuous at a € M if
Ve3dVa e M (dz, a) <6 = e(f(z), fla)) <e).

Here 6 > 0 is a real number. A map f is continuous if it is
continuous at every point a € M.

Exercise 12. Let f: M — N be a map between MSs and a €
M be a point. Prove Heine’s definition of continuity, that s,
prove the equivalence

f s continuous at a <
— V(a,) C M (lim a, = a = lim f(a,) = f(a)) .
Theorem 13 (attaining extrema). Let (M,d) be a MS,
f:M—R

be a continuous function from M to the real axis, and X C M
be a nonempty compact set. Then

Ja,be X Vz e X (f(a) < f(z) < f(b)) .

Thus the function f attains on the set X its smallest value f(a)
and its largest value f(b).



Proof. First we show that the image f[X|={f(z) |z € X} isa
bounded subset of R. If the set f[X] were not bounded from above,
we could take a sequence (a,) C X with lim f(a,) = 400, i.e.,
such that V¢ Ing (n > ng = f(a,) > ¢). By the assumption, (a,)
has a convergent subsequence (a,,, ) with lim a,, = a € X. By the
continuity of f at a and Exercise 12, lim f(a,,, ) = f(a) € R. But
this is a contradiction because lim f(a,,,) = +00. Boundedness of
f[X] from below can be proved similarly.

So we can define the real numbers A := inf(f[X]) and B =
sup(f[X]). By the definition of infimum, there exists a sequence
(a,) C X such that lim f(a,) = A. By the assumption, (a,) has
a convergent subsequence (a,,,) with lim a,, = a € X. By the con-
tinuity of f at a@ and Exercise 12, lim f(a;,,) = f(a). At the same
time, however, since subsequences preserve limits, lim f(a,, ) = A.
Thus f(a) = A and for every x € X,

fla) =A< f(z)
because A is the infimum of the set f[X]. Similarly, we find b € X
such that f(b) = B, and similarly f(b) = B > f(z) for every
x € X. O

e Products of MSs. For the MSs (M, d) and (N, e), we define their
product (M x N, d x e) so that M x N is the Cartesian product
of the sets M and N and the d X e metric on it is given by

(d X 6)((&1, CLQ), (bl, bg)) = \/d(al, b1)2 + 6(&2, 52)2 .
Exercise 14. Prove that the product of two MSs s a MS.

Exercise 15. Prove that the product of two Euclidean MSs
(R™, e,,) and (R", e,)
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is (except for a formality in notation) the Fuclidean MS
R )
What is the “formality”?

e Characterization of compact sets in Fuclidean MSs. We de-
fined the ball B(a,r) in a MS last time. A set X C M in a MS
(M, d) is open if

Vae X 3r (Bla,r) C X) .

Here r > 0 is a real number, the radius of the ball B(a,r). X is
closed if M\ X is open. X is bounded if

Jae M 3r (X C B(a, 1)) .

The diameter of the set X is, for V = {d(a,b) | a,b € X} C
[0, +00), defined as

sup(V) ... the set V is bounded from above and
+o0o ... theset V is unbounded from above .

diam(X) := {
Exercise 16. Prove that any set X s bounded if and only if
diam(X) < +o0.

Exercise 17. Prove that for any unbounded set X there 1is
a sequence (a,) C X such that m <n = d(anm,a,) > 1.

In the following two exercises we review basic properties of open
and closed sets in a MS.

Exercise 18. Let (M,d) be a MS. Then the following holds.
1. The sets ) and M are both open and closed.
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2. Any finite intersection of open subsets of M 1is an open set
and any finite union of closed subsets of M s a closed set.

3. Any union of open subsets of M is an open set and any
intersection of closed subsets of M s a closed set.

Exercise 19. Let (M,d) be a MS and X C M. Then

the set X 1is closed <—
— V(a,) CXVaeM(lima,=a=a€X).

Theorem 20 (on compactness). The following holds.

1. If X C M is a compact set in a MS (M, d), then X is closed
and bounded. The opposite tmplication does not in general
hold, by Exercise 22.

2. If (M,d) and (N,e) are two compact MSs, then their pro-
duct (M x N,d x e) is a compact MS.

Proof. 1. If X is not closed, then by Exercise 19 there exists
a convergent sequence (a,) C X such that lim a, = a € M \ X.
This sequence does not have a convergent subsequence with limit
in X, since each subsequence has limit a. When X is not bounded,
we easily construct a sequence (a,) C X such that m < n =
d(@pm, a,) > 1 (Exercise 17). This sequence clearly has no conver-
gent subsequence.

2. Let (an) = ((an1,an2)) be a sequence in the product MS.
We choose a subsequence (b,) such that (b, 1) has a limit b € M
in (M,d). From (b)) we select a subsequence (c,) such that (¢, )
has a limit ¢ € N in (N, e). It is not difficult to see that (¢,) is
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a subsequence of the sequence (a,) and that it has in the product
MS the limit

lim ¢, = (b, c) € M x N .
O

Exercise 21. Let (M,d) be a compact MS and X C M be a
closed set. Prove that X is compact.

Exercise 22. Let M be an infinite set and the metric d on it is
given as d(a,b) =1 for a # b and d(a,a) = 0. Show that (M, d)
15 a MS that is bounded and closed but not compact.

Theorem 23 (compact sets in R"). In every Euclidean MS
(R, e,), X C R™ is compact if and only if it is bounded and
closed.

Proof. By the first part of the previous theorem, it suffices to prove
that every bounded and closed set X C R" is compact. From its
boundedness it follows that for a real number a > 0,

X C K :=[-a,a]"=|-a,a] X [—a,a] X - xX]|—a, a] CR".

The Euclidean MS (K e,) is compact by the Bolzano-Weierstrass
theorem, part 2 of the previous theorem, and Exercise 15. Clearly,
X is also closed in (K, e;,) (problem 24), so according to Exercise 21,
X is compact in (K e,) and therefore in (R", e,,) (Exercise 25). O

Exercise 24. Let (M,d) be a MS, A C B C M and A be a
closed set in (M,d) = A is closed also in the subspace (B,d).

Exercise 25. Let (M,d) be a MS and A C B C M. Then A is
compact in (M,d) <= A is compact in the subspace (B, d).
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THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send to Mgr. J. Rondos, Ph.D. by the
end of the coming Monday by e-mail (jakub.rondos@gmail.com)
solutions to the Exercises 5, 9, 11, 17 and 22.
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