
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2022/23

lecturer: Martin Klazar

LECTURE 12 (May 3, 2023) EXISTENCE THEOREMS

FOR SOLUTIONS OF DIFFERENTIAL EQUATIONS:

PICARD’S AND PEANO’S

• One of the seven Millennium Problems announced by the Clay

Mathematical Institute in 2000 — by solving any of them one can

earn 106 $ — is the problem if there exists a smooth solution to the

Navier–Stokes (partial differential) equations which describe flow of

fluid in the (3-dim.) space.

• Banach’s fixed point theorem. For Picard’s theorem on diffe-

rential equations, we will need two results about complete metric

spaces, with which we therefore begin. The first of these is the well-

known existence result of fixed points of a contracting mapping

(contraction)

f : M →M

of the metric space (M,d) into itself. This is any mapping such that

for some constant c ∈ (0, 1) for every a, b ∈M ,

d(f (a), f (b)) ≤ c · d(a, b)

− f contracts distances by some factor less than 100%.

Exercise 1 Prove that every contracting mapping of a metric

space into itself is continuous.

Theorem 2 (Banach’s on fixed point) Every contraction

f : M →M
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of a complete MS has a unique fixed point: a point a ∈M such

that

f (a) = a .

Furthermore, each sequence (an) ⊂M of iterations of f , where

the point a1 ∈ M is arbitrary and an = f (an−1) for n > 1,

converges to this fixed point a.

Proof. We show that any sequence (an) ⊂ M of iterations of

the function f is Cauchy. This can be seen immediately from the

estimate that for every two indices m > n it holds that (c is a

constant from the definition of the contraction)

d(am, an)
∆-inequality

≤
m−1∑
i=n

d(ai+1︸︷︷︸
f(ai)

, ai)

f is contr., def. of ai
≤

m−1∑
i=n

ci−1 · d(a2, a1)

adding ≥ 0 terms

≤ d(a2, a1)

∞∑
i=n

ci−1

∑
of geom. series

=
d(a2, a1) · cn−1

1− c
→ 0, n→∞ .

Since (M,d) is a complete MP, we can define

a := lim
n→∞

an ∈M .

Then due to the continuity of the function f (Exercise 1),

f (a) = f (limn→∞ an) = limn→∞ f (an) = limn→∞ an+1 = a

and a is a fixed point of f . You can prove its uniqueness in the

following Exercise 3. 2
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Exercise 3 Prove that the fixed point of any contraction of any

MS is unique.

Exercise 4 Prove Banach’s Fixed Point Theorem under the

weaker assumption that only some n-th iteration

f [n] := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times f

: M →M

of the mapping f of M into itself is contracting.

• Completeness of a certain function space. We also need the

following complete MS.

Proposition 5 (completeness of continuous functions) For

every two real numbers a < b, the metric space

(C[a, b], d)

of continuous functions f : [a, b] → R is complete with respect

to the maximum metric

d(f, g) = max
a≤x≤b

|f (x)− g(x)| .

Proof. This is Prop. 17 in lecture 6. 2

• Picard’s theorem is the following theorem about the existence

and uniqueness of the solution of a first-order ordinary differential

equation with explicit first derivative.

Theorem 6 (Picard’s) Let a, b ∈ R and F : R2 → R be a con-

tinuous function for which there exists a constant M > 0 such

that for every three numbers u, v, w ∈ R,

|F (u, v)− F (u, w)| ≤M · |v − w| .
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Then there exists δ > 0 and a uniquely defined function

f : [a− δ, a + δ]→ R ,

such that

f (a) = b ∧ ∀x ∈ [a− δ, a + δ]
(
f ′(x) = F (x, f (x))

)
. (1)

Proof. Let I := [a − δ, a + δ], for some small δ > 0 to be de-

termined later. It is easy to see (Exercise 7) that the solvability of

the equation (1) for the unknown function f is equivalent to the

solvability of the equation

∀x ∈ I
(
f (x) = b +

∫ x

a

F (t, f (t)) dt
)
, (2)

also for the unknown function f . We show that for any sufficiently

small δ > 0, the equation (2), and therefore also the equation (1),

has on the interval I a unique solution f . The right side of the

equation (2) defines the map

A : C(I)→ C(I)

from the set of continuous functions f : I → R into itself, namely

A(f ) = g

where for x ∈ I , g(x) := b +

∫ x

a

F (t, f (t)) dt .

We prove that A is a contraction of the MS (C(I), d) with the

maximum metric d into itself. By Theorem 2 and Proposition 5, A

has a unique fixed point, the function f ∈ C(I) such thatA(f ) = f ,

and equations (1) and (2) have unique solutions.
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We prove that for any sufficiently small δ > 0, A is a contraction.

Let f, g ∈ C(I). Then

d(A(f ), A(g)) =
def. of d

= max
x∈I
|A(f )(x)− A(g)(x)|

def. of A
= max

x∈I

∣∣∣∣ ∫ x

a

F (t, f (t)) dt−
∫ x

a

F (t, g(t)) dt

∣∣∣∣
linearity of

∫
= max

x∈I

∣∣∣∣ ∫ x

a

(
F (t, f (t))− F (t, g(t))

)
dt

∣∣∣∣
|
∫
h| ≤

∫
|h|

≤ max
x∈I

∫ x

a

∣∣F (t, f (t))− F (t, g(t))
∣∣ dt

ass. on F , h ≤ j ⇒
∫
h ≤

∫
j

≤ max
x∈I

∫ x

a

M |f (t)− g(t)| dt

h ≤ j ⇒
∫
h ≤

∫
j

≤ max
x∈I

∫ x

a

M · d(f, , g) dt∫ x

a
c = (x− a)c

= δM · d(f, g) .

For example, if δ = 1/2M then A is a contraction with the constant

c = 1/2. 2

Exercise 7 Prove that the function f : I → R is a solution of

the equation (1) if and only if f is a solution of the equation

(2).

For example, the equation

f (1) = −3 ∧ f ′ = f

has a unique solution on a neighborhood of 1, because here F (u, v) =

v and the condition on the function F is satisfied with the constant
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M = 1. This solution is the function

f (t) = (−3/e) exp(t) .

Exercise 8 Prove that Picard’s theorem holds even under this

weaker assumption about the function F : there exist constants

h,M > 0 such that

F : (a− h, a + h)× (b− h, b + h)→ R

is continuous and for every two pairs (u, v) and (u,w) from

the definition domain F ,

|F (u, v)− F (u, w)| ≤M · |v − w| .

• Peano’s Theorem is the following theorem about the existence

(but no longer uniqueness) of solutions to differential equations of

the same kind as above.

Theorem 9 (Peano’s) Let (a, b) ∈ U ⊂ R2, where U is an

open set in the Euclidean plane R2, and F : U → R be a conti-

nuous function. Then there exists a δ > 0 and a function

f : [a− δ, a + δ]→ R

such that

f (a) = b ∧ ∀x ∈ [a− δ, a + δ]
(
f ′(x) = F (x, f (x))

)
.

Proof. First, we note that it suffices to prove the version of Peano’s

theorem, let us call it VP2, in which the interval [a − δ, a + δ]

is replaced by the interval [a, a + δ]. Indeed, by VP2 there exists

a δ′ > 0 and a function f1 such that

f1(−a) = b a ∀ t ∈ [−a,−a + δ′]
(
f ′1(t) = G(t, f1(t))

)
,
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where G(u, v) := −F (−u, v). Then for f2(t) := f1(−t) we have

f2(a) = b and for every t ∈ [−δ′ + a, a],

f ′2(t) = −f ′1(−t) = −G(−t, f1(−t)) = F (t, f2(t)) .

We combine this solution of our problem to the left of a with some

of its solutions to the right of a, obtained again according to VP2,

and we get a solution on a two-sided δ-neighborhood of the point a

(Exercise 10).

So we prove VP2: there exists a δ > 0 and a function f : [a, a +

δ]→ R such that

f (a) = b ∧ ∀ t ∈ [a, a + δ]
(
f ′(t) = F (t, f (t))

)
.

We take constants a′, b′ > 0 such that F is defined and continuous

on [a, a + a′] × [b − b′, b + b′]. So |F | < L on this set, for some

constant L > 0. Let’s take the interval

I := [a, a + c], where c := min(a′, b′/L) ,

and the set A of functions

{f : I → R | f (a) = b ∧ (s, t ∈ I ⇒ |f (s)− f (t)| ≤ L|s− t|)} .

According to the choice of c, for each f ∈ A the composite function

F (t, f (t)), t ∈ I , is well-defined, continuous and bounded (by

the constant L). We can therefore define the functional P : A →
[0,+∞),

P (f ) := max
t∈I

∣∣∣∣f (t)− b−
∫ t

a

F (s, f (s)) ds

∣∣∣∣ ; .

It is easy to see as before that if P (f ) = 0, then f is a solution of

VP2: f (a) = b a f ′(t) = F (t, f (t)) on [a, a + c]. According to the
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following Theorem 14,

A ⊂ C(I)

is a compact set in the MS (C(I), d) with the maximum metric. It

is easy to see that the functional P is continuous (Exercise 11), and

therefore attains its minimum value on some function ϕ ∈ A.

We show that P (ϕ) = 0 by finding functions fn ∈ A for n =

2, 3, . . . such that P (fn)→ 0. We define them recursively as

∀ t ∈ [a, a + c/n]
(
fn(t) := b

)
and

∀ t ∈ (a + c/n, a + c)
(
fn(t) := b +

∫ t−c/n

a

F (s, fn(s)) ds
)
.

It is not difficult to see that this recursion correctly and uniquely

defines the function fn and that fn ∈ A (Exercise 12). But then

for each t ∈ [a, a + c/n] we have that (according to the first part

of the definition of fn)∣∣∣∣fn(t)− b−
∫ t

a

F (s, fn(s)) ds

∣∣∣∣ =

∣∣∣∣ ∫ t

a

F (s, fn(s)) ds

∣∣∣∣ ≤ Lc

n

and for each t ∈ (a+ c/n, a+ c] that (according to the second part

of the definition of fn and by linearity of the integral)∣∣∣∣fn(t)− b−
∫ t

a

F (s, fn(s)) ds

∣∣∣∣ =

∣∣∣∣ ∫ t

t−c/n
F (s, fn(s)) ds

∣∣∣∣ ≤ Lc

n
,

by means of simple ML integral estimates. Thus 0 ≤ P (fn) ≤ Lc
n

and indeed P (fn)→ 0 for n→∞. 2

This proof is taken from: R. L. Pouso, Peano’s Existence Theorem

revisited, arXiv:1202.1152v1, 2012.
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Exercise 10 Explain in detail how the solution to the problem

to the left of the point a can be combined with the solution to

the right of point a and why these solutions can be combined.

Exercise 11 Prove that the functional P in the previous proof

is continuous.

Exercise 12 Prove that the functions fn in the previous proof

are well defined and lie in the set A.

Exercise 13 (non-unique solutions) For real numbers a <

0 < b we define the function f = fa,b : R→ R as

t ≤ a⇒ f (t) := (t− a)3, a ≤ t ≤ b⇒ f (t) := 0

and

t ≥ b⇒ f (t) = (t− b)3 .

Prove that each of these functions is on R a solution of the

equation

f (0) = 0 ∧ f ′(t) = 3f (t)2/3 := 3(f (t)1/3)2 .

The power x1/3 is defined here for x < 0 as −(−x)1/3 .

Theorem 14 (Arzelà–Ascoli) Let I = [a, b] be a compact

real interval and C(I) be the MS of continuous functions f : I →
R with the maximum metric. A set X ⊂ C(I) is compact if and

only if

∃ c > 0 ∀ f ∈ X ∀x ∈ I
(
|f (x)| < c

)
− the functions in X are uniformly bounded − and

∀ ε > 0 ∃ δ > 0 ∀ f ∈ X ∀x, y ∈ I(
|x− y| < δ ⇒ |f (x)− f (y)| < ε

)
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− the functions in X are uniformly uniformly continuous.

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to Mgr. J. Rondoš, Ph.D. by the

end of the coming Monday by e-mail (jakub.rondos@gmail.com)

solutions to the Exercises 1, 3, 7 and 13.
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