MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2022/23
lecturer: Martin Klazar

LECTURE 12 (May 3, 2023) EXISTENCE THEOREMS
FOR SOLUTIONS OF DIFFERENTIAL EQUATIONS:
PICARD’S AND PEANO’S

e One of the seven Millennium Problems announced by the Clay
Mathematical Institute in 2000 — by solving any of them one can
earn 10°$—is the problem if there exists a smooth solution to the
Navier—Stokes (partial differential) equations which describe flow of
fluid in the (3-dim.) space.
e Banach’s fixed point theorem. For Picard’s theorem on diffe-
rential equations, we will need two results about complete metric
spaces, with which we therefore begin. The first of these is the well-
known existence result of fixed points of a contracting mapping
(contraction)

f:M— M
of the metric space (M, d) into itself. This is any mapping such that
for some constant ¢ € (0, 1) for every a,b € M,

d(f(a)7 f(b)) <c- d(aa b)
— f contracts distances by some factor less than 100%.

Exercise 1 Prove that every contracting mapping of a metric
space into itself 1s continuous.

Theorem 2 (Banach’s on fixed point) Every contraction
f:M—M
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of a complete MS has a unique fized point: a point a € M such
that

fla)=a.
Furthermore, each sequence (a,) C M of iterations of f, where
the point a; € M is arbitrary and a, = f(a,_1) for n > 1,
converges to this fixed point a.

Proof. We show that any sequence (a,) C M of iterations of
the function f is Cauchy. This can be seen immediately from the
estimate that for every two indices m > n it holds that (c is a
constant from the definition of the contraction)

A-inequality m-1
d(apm, an) < Zd(@zﬂ, a;)
=n o f(a;)

f is contr., def. of a;

m—1
< Z ¢~ d(ag, ay)
1=n

adding > 0 terms X . ]
< d(a27 a’l) E c’

1=n

. -1
> of geom. series d as, ai) - c"
= ( ’1 ) —0, n—00.
— C

Since (M, d) is a complete MP, we can define
a:= lima, € M .

n—oo

Then due to the continuity of the function f (Exercise 1),

fla) = flim, o0 ap) = limy, oo f(a,) = limy, 00 ani1 = a

and a is a fixed point of f. You can prove its uniqueness in the
following Exercise 3. O



Exercise 3 Prove that the fized point of any contraction of any
MS is unique.

Exercise 4 Prove Banach’s Fized Point Theorem under the
weaker assumption that only some n-th iteration

f[n]::fofo---ofJ:M%M

n times f

of the mapping f of M into itself is contracting.
o Completeness of a certain function space. We also need the

following complete MS.

Proposition 5 (completeness of continuous functions) For
every two real numbers a < b, the metric space

(Cla, b], d)

of continuous functions f: |a,b] — R is complete with respect
to the maximum metric

d(f, g) = max |f(z) — g(x)]| .

a<zx<b
Proof. This is Prop. 17 in lecture 6. O
e Picard’s theorem is the following theorem about the existence

and uniqueness of the solution of a first-order ordinary differential
equation with explicit first derivative.

Theorem 6 (Picard’s) Leta,b € R and F': R* — R be a con-
tinuous function for which there exists a constant M > 0 such
that for every three numbers u, v, w € R,

|F(u, v) — F(u, w)| <M - |v—w| .
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Then there exists 6 > 0 and a uniquely defined function
fila—d,a+d] =R,
such that
fla)=bAVz €la—46,a+6](f'(x)=F(z, f(x)). (1)

Proof. Let I := [a — 6, a + ], for some small § > 0 to be de-
termined later. It is easy to see (Exercise 7) that the solvability of
the equation (1) for the unknown function f is equivalent to the
solvability of the equation

Veel(f(z)= b+/$ E(t, f(t) dt) , (2)

a

also for the unknown function f. We show that for any sufficiently
small 9 > 0, the equation (2), and therefore also the equation (1),
has on the interval I a unique solution f. The right side of the
equation (2) defines the map

A C(I)— C)
from the set of continuous functions f: I — R into itself, namely
A(f) =y
where for x € I, g(x) == b +/ F(t, f(t)) dt .

We prove that A is a contraction of the MS (C(I),d) with the
maximum metric d into itself. By Theorem 2 and Proposition 5, A
has a unique fixed point, the function f € C(I) such that A(f) = f,
and equations (1) and (2) have unique solutions.



We prove that for any sufficiently small 6 > 0, A is a contraction.
Let f,g € C(I). Then

d(A(f), Alg)) =

defotd max [A(f)(x) — Alg)(w)
def.:()fA ma]gc / F(t, f(t)) dt _/ F(t, g(t)) dt'
Te a a
lineari_ty of [ ! F F d
i max| [ (F(t, [()) = F(t, (1)) dt
| [hl < [1h] o
< max [ |F(t, f(t) = F(t, g(t))] dt
re a
ass.on F,h<j= [h<[j z
< max [ MIFG) - ge)
re a
h<j=[h<[j v
< max M -d(f, ,g)dt
re a
faxczg_a)c 5M.d(f’ g) .

For example, if § = 1/2M then A is a contraction with the constant
c=1/2. O

Exercise 7 Prove that the function f: I — R is a solution of
the equation (1) if and only if f is a solution of the equation

(2).
For example, the equation

fA)==3nf=f

has a unique solution on a neighborhood of 1, because here F'(u,v) =
v and the condition on the function F' is satisfied with the constant
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M = 1. This solution is the function
f(t) = (=3/e)exp(t) .

Exercise 8 Prove that Picard’s theorem holds even under this
weaker assumption about the function F': there exist constants

h, M >0 such that
F:(a—h,a+h)x(b—h,b+h)—R

is continuous and for every two pairs (u,v) and (u,w) from
the definition domain F,

|F(u, v) — F(u, w)| <M - |v—w| .

e Peano’s Theorem is the following theorem about the existence
(but no longer uniqueness) of solutions to differential equations of
the same kind as above.

Theorem 9 (Peano’s) Let (a,b) € U C R?, where U is an
open set in the Euclidean plane R?, and F': U — R be a conti-
nuous function. Then there exists a 0 > 0 and a function

fila—9d,a+9 - R
such that
fla)=bAVz€la—46, a+d](f'(z)=F(z, f(z).

Proof. First, we note that it suffices to prove the version of Peano’s
theorem, let us call it VP2, in which the interval [a — J,a + §]
is replaced by the interval [a,a + 9]. Indeed, by VP2 there exists
a ¢ > 0 and a function f; such that

fi(—a)=0b a Vit €[—a,—a+ ] (fl’(t) = G(t, fl(t))) :
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where G(u,v) := —F(—u,v). Then for f5(t) := fi(—t) we have
fo(a) = b and for every t € [—6" + a, a,

fot) = =fi(=t) = =G(—t, fi(=t)) = F(t, fo(t)) .

We combine this solution of our problem to the left of @ with some
of its solutions to the right of a, obtained again according to VP2,
and we get a solution on a two-sided d-neighborhood of the point a
(Exercise 10).

So we prove VP2: there exists a 0 > 0 and a function f: [a,a +
0] — R such that

fla) =bAVtE [a, a+d)(f(t)=F(t f(t) .

We take constants a’, b’ > 0 such that F'is defined and continuous
on [a,a + a'] X [b—b,b+V]. So |F| < L on this set, for some
constant L > 0. Let’s take the interval

I:=[a, a+c], where ¢:=min(d, b'/L),
and the set A of functions
(TR fla)=bA(s, t € T = |f(s)— f()] < L|s— )}

According to the choice of ¢, for each f € A the composite function
F(t, f(t)), t € I, is well-defined, continuous and bounded (by
the constant L). We can therefore define the functional P: A —
[0, +00),

P(f) = max

g .

Fit)—b— / F(s, f(s)) ds| ;

It is easy to see as before that if P(f) = 0, then f is a solution of
VP2: f(a) =ba f'(t) = F(t, f(t)) on |a,a + c|. According to the
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following Theorem 14,
AcC C(I)

is a compact set in the MS (C([I), d) with the maximum metric. It
is easy to see that the functional P is continuous (Exercise 11), and

therefore attains its minimum value on some function ¢ € A.
We show that P(y¢) = 0 by finding functions f,, € A for n =

2,3, ... such that P(f,) — 0. We define them recursively as
Vt e la, a+c/n](fu(t) :=Db)

and

t—c/n
Vte (a+c/n, a+c)(fu(t) ::b—l—/ F(s, fa(s)) ds) .

It is not difficult to see that this recursion correctly and uniquely
defines the function f, and that f, € A (Exercise 12). But then
for each t € [a,a + ¢/n] we have that (according to the first part
of the definition of f;,)

fn(t)—b—/ F(s, fu(s)) ds| =

and for each t € (a+c¢/n,a+ ] that ( accordmg to the second part
of the definition of f,, and by linearity of the integral)

fn<t>—b—/ F(s, fuls)) ds| = ‘// s fuls

n
by means of simple ML integral estimates. Thus 0 < P(f,,) <
and indeed P(f,) — 0 for n — oo.

Lc
s| < —
n

S

9

Le
n
O

This proof is taken from: R. L. Pouso, Peano’s Existence Theorem
revisited, arXiv:1202.1152v1, 2012.
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Exercise 10 Explain in detail how the solution to the problem
to the left of the point a can be combined with the solution to
the right of point a and why these solutions can be combined.

Exercise 11 Prove that the functional P in the previous proof
1S continuous.

Exercise 12 Prove that the functions f,, in the previous proof
are well defined and lie in the set A.

Exercise 13 (non-unique solutions) For real numbers a <
0 < b we define the function f = f,p: R = R as

t<a= flt)=(t—a)P a<t<b= f(t):=0
and
t>b= f(t)=(t—0b)’.

Prove that each of these functions is on R a solution of the
equation

F0) =0 f1(t) =3f () = 3(f (D))"
The power z'/3 is defined here for v < 0 as —(—z)"/? .
Theorem 14 (Arzela—Ascoli) Let I = [a,b] be a compact

real interval and C(I) be the MS of continuous functions f: I —
R with the maximum metric. A set X C C(I) is compact if and

only if
Je>0VfeXVrel(f(x)<c)

— the functions in X are uniformly bounded — and

Ve>0d0>0VfeXVa,yel
(le—yl <6 =|f(z)— fly)] <e)
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— the functions in X are uniformly uniformly continuous.

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to Mgr. J. Rondos, Ph.D. by the
end of the coming Monday by e-mail (jakub.rondos@gmail.com)
solutions to the Exercises 1, 3, 7 and 13.
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