MATHEMATICAL ANALYSIS 3 (NMAI056) summer term 2023/24 lecturer: Martin Klazar

LECTURE 11 (April 30, 2024) INTRODUCTION TO COMPLEX ANALYSIS 3

• A theorem on the integral $\int_{\partial R}$. In an analogy to the last theorem of the previous lecture we obtain basic properties of the integral $\int_{\partial R} f$ for holomorphic functions $f \colon \mathbb{C} \setminus A \to \mathbb{C}$, where $A \subset \operatorname{int}(R)$ is a compact set and $R \subset \mathbb{C}$ is a rectangle.

Theorem 1 (properties of $\int_{\partial R}$) These $\int s$ have three important properties.

1. (linearity) If R, A and functions f and g are as above, then for every $\alpha, \beta \in \mathbb{C}$,

$$\int_{\partial R} (\alpha f + \beta g) = \alpha \int_{\partial R} f + \beta \int_{\partial R} g \; .$$

2. (An extension of the C.-G. thm.) If R, $A = \{a\} \subset \mathbb{C}$ and f are as above and f is bounded on a deleted neighborhood of the point a, then

$$\int_{\partial R} f = 0 \; .$$

3. For every $a \in \mathbb{C}$ and every rectangle $R \subset \mathbb{R}$ with $a \in int(R)$,

$$\int_{\partial R} \frac{1}{z-a} = \rho$$

where $\rho = 2\pi i$ is the previously introduced constant.

Proof. 1. We actually proved this linearity earlier, in the last theorem of the lecture before the last lecture.

2. We take some rectangles R_n containing the point a in their interiors and shrink them to a. ML estimates of the integrals $\int_{\partial R_n} f$ then show, due to per $(R_n) \to 0$ as $n \to \infty$ and to boundedness of |f| on a deleted neighborhood of the point a, that these integrals go to 0. Hence $\int_{\partial R} f = 0$.

3. Let S be a square with vertices $\pm 1 \pm i$ and a + S be its shifted copy. By the previous theorem, by the definition of $\int_{\partial R}$ and by the definition of the constant ρ we have that

$$\int_{\partial R} \frac{1}{z-a} = \rho \int_{\partial (a+S)} \frac{1}{z-a} = \int_{\partial S} \frac{1}{z} = \rho .$$

Exercise 2 Let R be a rectangle, $a \in int(R)$ be a point, and $k \ge 2$ be an integer. Then

$$\int_{\partial R} \frac{1}{(z-a)^k} = 0 \; .$$

• *The Cauchy formula.* For simplicity we state and prove it only for entire functions.

Theorem 3 (Cauchy formula) Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function, $\rho = 2\pi i$ be the previously defined constant, $R \subset \mathbb{C}$ be a rectangle and $a \in int(R)$. Then

$$f(a) = \frac{1}{\rho} \int_{\partial R} \frac{f(z)}{z - a} \, .$$

Proof. The existence of the derivative f'(a) implies the boundedness of the function

$$\frac{f(z) - f(a)}{z - a}$$

on a deleted neighborhood of the point a. By 1–3 of Theorem 1 we have that

$$0 \stackrel{\text{part 2}}{=} \int_{\partial R} \frac{f(z) - f(a)}{z - a} \stackrel{\text{part 1}}{=} \int_{\partial R} \frac{f(z)}{z - a} - f(a) \int_{\partial R} \frac{1}{z - a} \frac{f(z)}{z - a} \int_{\partial R} \frac{f(z)}{z - a} - f(a)\rho.$$

Since $\rho \neq 0$ (Theorem 6 in the last lecture), we immediately get the Cauchy formula.

Proof of Liouville's theorem. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire bounded function, so |f(z)| < c for every $z \in \mathbb{C}$ and some real constant c > 0. Let $a, b \in \mathbb{C}$ be two (different) points. Using Exercise 4, for every sufficiently large $s \in \mathbb{N}$ we find a square $S \subset \mathbb{C}$ with side of length s such that $a, b \in int(S)$ and for every $z \in \partial S$,

$$|z-a|, |z-b| > \frac{s}{3} = \frac{\operatorname{per}(S)}{12}$$

•

Due to the Cauchy formula and the linearity of $\int_{\partial R}$,

$$f(a) - f(b) = \frac{1}{\rho} \int_{\partial S} \frac{f(z)}{z - a} - \frac{1}{\rho} \int_{\partial S} \frac{f(z)}{z - b}$$
$$= \frac{a - b}{\rho} \int_{\partial S} \frac{f(z)}{(z - a)(z - b)}.$$

By the ML estimate, the last integral is in the absolute value at most

$$\frac{c}{\operatorname{per}(S)^2/144} \cdot \operatorname{per}(S) = \frac{144c}{4s} = \frac{36c}{s} \to 0 \text{ for } s \to \infty .$$

So f(a) = f(b) and f is a constant function.

Exercise 4 Let $a, b \in \mathbb{C}$. For every large $s \in \mathbb{N}$, find a square $S \subset \mathbb{C}$ with side length s such that $a, b \in int(S)$ and for any $z \in \partial S$ the distances |z - a|, |z - b| are greater than s/3.

Proof of analyticity of every entire function. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function, the number $a \in \mathbb{C}$ be arbitrary, and R be a large rectangle such that $0, a \in int(R)$ and for every $z \in \partial R$,

$$\left|\frac{a}{z}\right| = \frac{|a|}{|z|} < \frac{1}{2}$$
 and $|z-a| > 1$

(Exercise 5). Let $m \in \mathbb{N}$. Using Cauchy's formula and the identity

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^m + \frac{x^{m+1}}{1-x}$$

we get that

$$f(a) \stackrel{\text{C. formula}}{=} \frac{1}{2\pi i} \int_{\partial R} \frac{f(z)}{z-a}$$

$$\stackrel{\text{identity}}{=} \frac{1}{2\pi i} \int_{\partial R} \frac{f(z)}{z} \left(\sum_{n=0}^{m} (a/z)^n + \frac{(a/z)^{m+1}}{1-a/z}\right)$$

$$\stackrel{\text{linearity of } \int_{\partial R}}{=} \sum_{n=0}^{m} \left(\frac{1}{2\pi i} \int_{\partial R} \frac{f(z)}{z^{n+1}}\right) a^n + \frac{1}{2\pi i} \int_{\partial R} \frac{f(z)(a/z)^{m+1}}{z-a}$$

$$=: \sum_{n=0}^{m} c_n a^n + \frac{I_{m+1}}{2\pi i}.$$

The ML estimate of the integral I_{m+1} shows that we are done: for $m \to \infty$,

$$|I_{m+1}| \le \max_{z \in \partial R} |f(z)| \cdot \frac{(1/2)^{m+1}}{1} \cdot \operatorname{per}(R) \to 0$$
.

Thus, for every $a \in \mathbb{C}$ one has that

$$f(a) = \sum_{n=0}^{\infty} c_n a^n, \text{ where } c_n = \frac{1}{2\pi i} \int_{\partial S} \frac{f(z)}{z^{n+1}}$$

with an arbitrary rectangle S containing inside the point 0. \Box

Exercise 5 Show that for any $a \in \mathbb{C}$ there exists a rectangle R such that $0, a \in int(R)$ and for every $z \in \partial R$ one has that $|a/z| < \frac{1}{2}$ and |z - a| > 1.

• Meromorphic functions and residues. We generalize part 3 of Theorem 1 about the constant ρ . A set $A \subset \mathbb{C}$ is discrete if every open disc $B(z,r) \subset \mathbb{C}$ contains only finitely many of its elements. A holomorphic function

$$f: U \setminus A \to \mathbb{C}$$
,

where $A \subset U$ is discrete, is *meromorphic* and A is the set of its poles if every point $a \in A$ has a neighborhood $U_a \subset U$ with $U_a \cap A = \{a\}$ such that for a holomorphic function $g_a \colon U_a \to \mathbb{C}$ and some numbers $k_a \in \mathbb{N}_0$ and $c_{j,a} \in \mathbb{C}, j = 1, 2, \ldots, k_a$, it holds for any $z \in U_a \setminus \{a\}$ that

$$f(z) = g_a(z) + \sum_{j=1}^{k_a} \frac{c_{j,a}}{(z-a)^j}$$

For $k_a = 0$, the sum is defined as 0 and the function $f = g_a$ is then holomorphic on U_a . The coefficient $c_{1,a}$ is the so-called *residue of* the function f at the point a and we denote it as

$$\operatorname{res}(f, a) := c_{1, a} .$$

From Cauchy's formula it follows that res(f, a) is uniquely determined by the function f (Exercise 7).

Theorem 6 (on residues) We assume that $f: U \setminus A \to \mathbb{C}$ is a meromorphic function with the set of poles A and that $R \subset U$ is a rectangle whose boundary ∂R contains no point of A. Then the equality holds

$$\frac{1}{2\pi i} \int_{\partial R} f = \sum_{a \in A \cap \operatorname{int}(R)} \operatorname{res}(f, a) = \sum_{a \in A \cap R} \operatorname{res}(f, a)$$

(both sums are finite). So the integral of the function f over the boundary of the rectangle R, divided by $2\pi i$, is equal to the sum of the residues of the function f in poles lying inside R.

Proof. The infinity of the intersection of $A \cap R$ would mean the existence of a limit point of the set A, in contradiction with its discreteness (Exercise 8). The above sums are therefore finite. We take mutually disjoint squares

$$S_a \subset \operatorname{int}(R) \cap U_a, \ a \in R \cap A$$
,

where U_a is the neighborhood of the point a from the definition of a meromorphic function and S_a has its center at a. We then divide the rectangle R into rectangles including all of these squares S_a and get that

$$\int_{\partial R} f = \sum_{a \in A \cap R} \int_{\partial S_a} f = \sum_{a \in A \cap R} \int_{\partial S_a} \left(g_a(z) + \sum_{j=1}^{k_a} \frac{c_{j,a}}{(z-a)^j} \right)$$
$$= \sum_{a \in A \cap R} 2\pi i \cdot \operatorname{res}(f, a)$$

by which we are done. The first equality follows using part 3 of the theorem on properties of \int_u (Exercise 9). The second equality follows from the definition of a meromorphic function. The third

equality follows from the linearity of the integral, the Cauchy–Goursat theorem, part 3 of Theorem 1 and from Exercise 2. \Box

Exercise 7 Why is the reside of a function f at a point a uniquely determined by the function f?

Exercise 8 Prove that every infinite subset of any rectangle R has a limit point.

Exercise 9 Show how to partition a given rectangle R, with prescribed disjoint rectangles R_1, R_2, \ldots, R_k contained in int(R), by appropriate lines into subrectangles including all R_j such that the first equality in the above proof holds.

Exercise 10 What is the punch line of the following mathematical joke?

Did you know that the contour integral of f around the border of France is zero? ??? Because all Poles are in Eastern Europe!

• Solution of the generalized Basel problem. We now illustrate the usefulness of the residue theorem and complex analysis by summing the series $(k \in \mathbb{N})$

$$\zeta(2k) := \sum_{n=1}^{\infty} \frac{1}{n^{2k}} \ .$$

In the earlier lectures, we used Fourier series to show that $\zeta(2) = \pi^2/6$. We now generalize this formula for $\zeta(2k)$. But first we prove two auxiliary results.

Proposition 11 (on F(z)) Let

$$F(z) := \frac{2\pi i}{\mathrm{e}^{2\pi i z} - 1} \colon \mathbb{C} \setminus \mathbb{Z} \to \mathbb{C} \; .$$

The function F is meromorphic with the poles \mathbb{Z} . At any integer it has the residue 1.

Proof. (Sketch.) The function $f(z) := e^{2\pi i z} - 1$ is entire (it is defined by the sum of the power series) and $f(z) = 0 \iff z \in \mathbb{Z}$. For any $n \in \mathbb{Z}$ we have the local expansion

$$f(z) = 2\pi i(z-n) + a_2(z-n)^2 + \dots$$

since $f'(n) = 2\pi i$. Therefore, in a deleted neighborhood of n one has that

$$F(z) = \frac{2\pi i}{f(z)} = \frac{1}{z-n} \cdot \frac{1}{1 + (a_2/2\pi i)(z-n)) + \cdots}$$
$$= (z-n)^{-1} + b_0 + b_1(z-n) + \cdots$$

and the residue of the function F(z) at n is equal to 1.

Lemma 12 Let F(z) be as above and $S_N \subset \mathbb{C}$, for $N \in \mathbb{N}$, be the square with the vertices $(N + \frac{1}{2})(\pm 1 \pm i)$. Then there exists $a \ c > 0$ such that

$$\forall N \in \mathbb{N} \ \forall z \in \partial S_N \left(|F(z)| \le c \right) .$$

Proof. Since $F(z) = 2\pi i/(e^{2\pi i z} - 1)$, for the given z it suffices to cut off $e^{2\pi i z} - 1$ from 0. For $z \in \partial S_N$ with $|\operatorname{im}(z)| \ge 1$,

$$\begin{aligned} |e^{2\pi i z} - 1| &\geq ||e^{2\pi i z}| - 1| = |e^{\operatorname{re}(2\pi i z)} - 1| \\ &= |e^{-2\pi \cdot \operatorname{im}(z)} - 1| \geq \min(1 - e^{-2\pi}, e^{2\pi} - 1) \\ &= 1 - e^{-2\pi} > 0. \end{aligned}$$

For $z \in \partial S_N$ with $|\operatorname{im}(z)| \leq 1$ we use the fact that the function $e^{2\pi i z}$ is 1-periodic, and therefore we can after reduction modulo 1 work just in the strip P given by the condition $0 \leq \operatorname{re}(z) \leq 1$. Then $z = \frac{1}{2} + i x$, where $x \in \mathbb{R}$ with $|x| \leq 1$, and

$$\left| e^{2\pi i z} - 1 \right| = \left| e^{\pi i} e^{-2\pi x} - 1 \right| = \left| e^{-2\pi x} + 1 \right| \ge 1 + e^{-2\pi}.$$

Thus, one can set $c = 2\pi/(1 - e^{-2\pi})$.

Theorem 13 (summing $\sum n^{-2k}$) For every $k \in \mathbb{N}$ there exists a positive fraction $\alpha_k \in \mathbb{Q}$ that

$$\zeta(2k) = 1 + \frac{1}{2^{2k}} + \frac{1}{3^{2k}} + \frac{1}{4^{2k}} + \dots = \alpha_k \pi^{2k}$$

Proof. There exist fractions B_0, B_1, \ldots , so-called *Bernoulli numbers*, such that

$$\frac{x}{\mathrm{e}^x - 1} =: \sum_{r=0}^{\infty} \frac{B_r x^r}{r!} \in \mathbb{Q}[[x]]$$

(Exercise 14). We take the familiar meromorphic function

$$F(z) = \frac{2\pi i}{\mathrm{e}^{2\pi i z} - 1} \colon \mathbb{C} \setminus \mathbb{Z} \to \mathbb{C} \; .$$

By Proposition 11 it has poles exactly in \mathbb{Z} and with residues res(F, n) = 1 for every $n \in \mathbb{Z}$. If f(z) is holomorphic on a neighborhood of $n \in \mathbb{Z}$ then clearly res(fF, n) = f(n) (Exercise 15). We put $f(z) := 1/z^{2k}$. For $N \in \mathbb{N}$ we denote by S_N the familiar square with the vertices $(N + \frac{1}{2})(\pm 1 \pm i)$. By the residue theorem,

$$\frac{1}{2\pi i} \int_{\partial S_N} \frac{F(z)}{z^{2k}} = \sum_{n=-N}^N \operatorname{res}(F(z)z^{-2k}, n)$$
$$= \operatorname{res}(F(z)z^{-2k}, 0) + 2\sum_{n=1}^N \frac{1}{n^{2k}}$$

By Lemma 12 there is a constant c > 0 such that for every $N \in \mathbb{N}$, $z \in \partial S_N \Rightarrow |F(z)| \leq c$. According to the ML estimate, the above integral is in absolute value at most

$$\max_{z \in \partial S_N} \left| \frac{F(z)}{z^{2k}} \right| \cdot \operatorname{per}(S_N) \le \frac{c}{N^{2k}} \cdot (8N+4) \to 0 \text{ for } N \to \infty.$$

Hence

$$\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = -\frac{1}{2} \cdot \operatorname{res}(F(z)z^{-2k}, 0) \; .$$

By the definitions of the function F(z) and Bernoulli numbers, we have that

$$F(z)z^{-2k} = \frac{2\pi i z \cdot z^{-1-2k}}{e^{2\pi i z} - 1} = \sum_{r=0}^{\infty} \frac{B_r(2\pi i)^r z^{r-1-2k}}{r!}$$

Therefore (we take r = 2k)

$$\operatorname{res}(F(z)z^{-2k}, 0) = \frac{(-1)^k B_{2k}(2\pi)^{2k}}{(2k)!}$$

and the sum

$$\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \underbrace{\frac{2^{2k-1}}{(2k)!} (-1)^{k+1} B_{2k}}_{\alpha_k} \cdot \pi^{2k}$$

is indeed a rational multiple of π^{2k} .

•

Exercise 14 Prove that Bernoulli numbers are fractions.

Exercise 15 Prove that if f(z) is holomorphic on a neighborhood of $n \in \mathbb{Z}$, then $\operatorname{res}(fF, n) = f(n)$.

For $k \ge 2$, $B_{2k-1} = 0$ (Exercise 16). Further, $B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{30}$, $B_6 = \frac{1}{42}$ and so on (Exercise 17). The above proof is taken from the book P. D. Lax and L. Zalcman, *Complex Proofs of Real Theorems*, AMS (The American Mathematical Society), Providence, RI (Rhodes Island), 2012. You can learn more about Complex Analysis in Czech in the book of J. Veselý, *Komplexní analýza pro učitele*, Karolinum, Praha, 2000.

Exercise 16 Prove that the Bernoulli numbers with odd indices > 1 are zero.

Exercise 17 Check the values of the Bernoulli numbers above.

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz) by the end of the coming Sunday solutions to the Exercises 4, 5, 10 and 14.