
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2023/24

lecturer: Martin Klazar

LECTURE 10 (April 23, 2024) INTRODUCTION TO

COMPLEX ANALYSIS 2

• The Cauchy–Goursat thm. for rectangles and linear functions.

We continue with the proofs of the theorem on analyticity of integral

functions and of Liouville’s theorem; we presented both theorems

in the last lecture. For k ∈ N and a segment u ⊂ C, by its k-

equipartition we mean the partition of u into k subsegments of the

same length |u|/k. It is the image of the partition 0 < 1
k <

2
k <

· · · < k−1
k < 1 of the unit interval I = [0, 1].

Exercise 1 Let a, b, α, β ∈ C and a 6= b. Prove from the defi-

nition of the integral that∫
ab

(αz + β) = α

(
b2

2
− a2

2

)
+ β(b− a) = g(b)− g(a) ,

where g(z) := αz2/2 + βz. Hint: use equipartitions of the seg-

ment ab.

Corollary 2 (the easy C.–G. thm.) Let α ∈ C, β ∈ C,

and R ⊂ C be a rectangle. Then∫
∂R

(αz + β) = 0 .

Proof. Let a, b, c, d be the canonical vertices of the rectangle R

and let f (z) := αz + β. According to the definition of
∫
∂R and of
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the previous problem, it is∫
∂R

f = g(b)− g(a) + g(c)− g(b) + g(d)− g(c) + g(a)− g(d) = 0 .

2

Proposition 3 (
∫
u and (R)

∫
) Let a, b ∈ C, a 6= b, f : ab→ C

be a continuous function and ϕ(t) := t(b− a) + a : [0, 1]→ C be

the parametrization defining the segment u = ab. Then∫
u

f =

∫ 1

0

f (ϕ(t)) · ϕ′(t) dt = (b− a)

∫ 1

0

f (ϕ(t)) dt

= (b− a)

(∫ 1

0

re
(
f (ϕ(t))

)
dt + i ·

∫ 1

0

im
(
f (ϕ(t))

)
dt

)
(except for the first integral, all others are Riemann).

Exercise 4 Prove the previous statement.

For completeness, we give the definition of the integral
∫
ϕ f along

the curve ϕ, fundamental for complex analysis. When

f : U → C is a function and ϕ : [a, b]→ U

is a continuous and piece-wise smooth function, then we define the

integral of the function f along the curve ϕ as∫
ϕ

f :=

∫ b

a

f (ϕ(t)) · ϕ′(t) dt

=

∫ b

a

re
(
f (ϕ(t)) · ϕ′(t)

)
dt + i ·

∫ b

a

im
(
f (ϕ(t)) · ϕ′(t)

)
dt ,

if the last two (real) Riemann integrals exist. Thus, our
”
line in-

tegral“
∫
u is a special case of the curve integral

∫
ϕ according to

Proposition 3.
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Exercise 5 Let ϕ(t) : [0, 12]→ C,

ϕ(t) := e2πit =
∑
n≥0

(2πit)n

n!
,

be a parametrization of the upper unit semicircle, and f (z) :=

z2. Find ∫
ϕ

f .

Hint: follow the first line of the definition of
∫
ϕ.

• The constant ρ = 2πi. The following theorem is an underappre-

ciated pillar of complex analysis: if the constant ρ in it were 0, the

Cauchy formulas we present next would not hold and the complex

analysis would collapse.

Theorem 6 (the constant ρ) Let S be the square with the

vertices ±1± i. Then

ρ :=

∫
∂S

1

z
6= 0, even im(ρ) ≥ 4 .

Proof. The canonical vertices of the square S are a := −1 − i,

b := 1 − i, c := 1 + i and d = −1 + i. Let pn = (a0, a1, . . . , an)

be an n-equipartition of the segment ab. Because multiplying by i

means rotation around the origin in the positive direction (couter-

clockwise) by the angle π/2, qn = ipn := (ia0, ia1, . . . , ian) is an

n-equipartition of the segments bc. Similarly, rn = iqn = −pn, resp.

sn = irn = −ipn, is an n-equipartition of the segment cd, resp. da.

Surprisingly, for f (z) = 1/z it holds that

C(f, pn) = C(f, qn) = C(f, rn) = C(f, sn) .
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Indeed, extending the fraction by i gives

C(f, pn) =

n∑
j=1

(b− a)/n

a + j(b− a)/n
=

n∑
j=1

(ib− ia)/n

ia + j(ib− ia)/n

=

n∑
j=1

(c− b)/n
b + j(c− b)/n

= C(f, qn)

and similarly for the other two equalities. Furthermore, due to b−
a = 2 and a = −1 − i, extending the fraction by the number
2j
n − 1 + i we get that im(C(f, pn)) equals

im

 n∑
j=1

2/n

−1− i + 2j/n

 = im

2

n

n∑
j=1

2j/n− 1 + i

(2j/n− 1)2 + 1


=

2

n

n∑
j=1

1

(2j/n− 1)2 + 1
≥ 2

n

n∑
j=1

1

2
= 1 .

By Exercise 7, im(ρ) = im
(∫

∂S
1
z

)
is

4 · im
(∫

ab

1

z

)
= 4 · lim

n→∞
im(C(1/z, pn)) ≥ 4 · 1 = 4

and indeed ρ 6= 0. 2

Exercise 7 Let (zn) be a convergent sequence of complex num-

bers. Prove that im(lim zn) = lim im(zn).

Exercise 8 (re(ρ) = 0) Show that the previous proof gives the

equality re(ρ) = 0.
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Exercise 9 (ρ = 2πi) Again, let a := −1 − i and b := 1 − i.

Compute by the Proposition 3 that∫
ab

1

z
=
πi

2
.

Thus, by the previous proof,

ρ = 4 · πi
2

= 2πi .

Hint:
∫

1
1+t2

= arctan t.

Exercise 10 Let ϕ(t) : [0, 1]→ C, ϕ(t) := e2πit and f (z) := 1/z.

Show that ∫
ϕ

f = 2πi .

• Cauchy–Goursat theorem. This is theorem number 1 in complex

analysis: the integral
∫
ϕ f of any holomorphic function f over the

circuit ϕ (i.e., ϕ is an injective curve except for ϕ(a) = ϕ(b)) which

lies in the definition domain of f together with with its interior, is

0. We already proved a special case of this theorem in corollary 2.

But here we only need to integrate over boundaries of rectangles

and need not worry about complicated curves.

Recall that for X ⊂ C the diameter is defined as

diam(X) = sup({|x− y| | x, y ∈ X}) .

It may be +∞.

Exercise 11 If sets An with

C ⊃ A1 ⊃ A2 ⊃ . . .

are nonempty and closed and let lim diam(An) = 0, then we have

that
⋂∞
n=1An 6= ∅. Hint: see the proof of Baire’s theorem.
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We construct the quarters of a rectangle R. Let R have canonical

vertices a, b, c, d. When e := a+b
2 , f := b+c

2 , g := c+d
2 and h := d+a

2

are the midpoints of the sides of R and j := a+c
2 is its center, then

the four quarters of R are the rectangles A, B, C and D with the

canonical vertices, respectively,

(a, e, j, h), (e, b, f, j), (j, f, c, g) and (h, j, g, d) .

The rectangle R is divided into quarters by cutting it along the

segments eg and hf . For each of these quarters E it clearly holds:

per(E) = 1
2per(R) and diam(E) = 1

2diam(R).

Theorem 12 (Cauchy–Goursat for rectangles) Let

f : U → C

be a holomorphic function and R ⊂ U be a rectangle. Then∫
∂R

f = 0 .

Proof. Let f ,U andR be as shown. We construct nested rectangles

R = R0 ⊃ R1 ⊃ R2 ⊃ . . .

such that for every n ∈ N0, Rn+1 is a quarter of Rn and∣∣∣∣ ∫
∂Rn+1

f

∣∣∣∣ ≥ 1

4

∣∣∣∣ ∫
∂Rn

f

∣∣∣∣ . (1)

Let such rectangles R0, R1, . . . , Rn be already defined and let A,

B, C and D be the quarters of the rectangle Rn. We claim that∫
∂Rn

f =

∫
∂A

f +

∫
∂B

f +

∫
∂C

f +

∫
∂D

f . (2)
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This identity follows from part 3 of the theorem on properties

of the integral in the last lecture. After expressing every integral∫
∂A f, . . . ,

∫
∂D f as the sum of four integrals over the sides, we

get on the right-hand side of the equality (2) 16 term. Eight of

them correspond to the sides of quarters inside Rn and mutually

cancel because they form four pairs of opposite orientations of the

same segment. The remaining eight terms corresponds to the si-

des of quarters lying on ∂Rn and add up to the integral on the

left-hand side of equality (2). Inequalities (1) follow from the tri-

angle inequality: for some quarter E ∈ {A,B,C,D} one has that

|
∫
∂E f | ≥

1
4|
∫
∂Rn

f | . So we set Rn+1 = E.

By Exercise 11 there exists a point z0 such that

z0 ∈
∞⋂
n=0

Rn .

Since R0 = R ⊂ U , also z0 ∈ U . Now we use the existence of the

derivative f ′(z0). For a given ε > 0 there exists a δ > 0 such that

B(z0, δ) ⊂ U and that, with a function ∆: B(z0, δ)→ C, for every

z ∈ B(z0, δ) it holds that |∆(z)| < ε (see also Exercise 13) and

f (z) = f (z0) + f ′(z0) · (z − z0)︸ ︷︷ ︸
g(z)

+ ∆(z) · (z − z0)︸ ︷︷ ︸
h(z)

.

We consider functions g(z) and h(z). It is clear that g(z) is linear

and h(z) = f (z)−g(z) is continuous (onB(z0, δ)). Let n ∈ N0 be so

large that Rn ⊂ B(z0, δ) (only here we need that lim diam(Rn) =

0, for the existence point z0 it is not essential, see Exercise 14). By

the linearity of the integral and corollary 2 we have that∫
∂Rn

f =

∫
∂Rn

g +

∫
∂Rn

h
Cor. 2

=

∫
∂Rn

h . (3)
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Thus ∣∣∣∣ ∫
∂Rn

h

∣∣∣∣ ML estimate
≤ max

z∈∂Rn

|∆(z) · (z − z0)| · per(Rn)

< ε · diam(Rn) · per(Rn)

= ε · diam(R)

2n
· per(R)

2n

< ε · per(R)2

4n
. (4)

Here we used the above mentioned halving of the diameter and

perimeter after quartering and that the diameter of a rectangle is

smaller than its perimeter. According to the previous results we

have that

1

4n

∣∣∣∣ ∫
∂R

f

∣∣∣∣ ineq. (1)≤
∣∣∣∣ ∫

∂Rn

f

∣∣∣∣ eq. (3)=

∣∣∣∣ ∫
∂Rn

h

∣∣∣∣ ineq. (4)< ε · per(R)2

4n

⇒ |
∫
∂R f | < ε · per(R)2. It holds for every ε > 0, so

∫
∂R f = 0. 2

Exercise 13 What is the value of the function ∆(z) in the proof

at the point z0?

Exercise 14 Prove that for non-emptiness of the intersection

in Exercise 11, it suffices to assume that the set A1 is bounded

(instead of the zero limit of diameters). But show also that it

does not hold in general metric spaces.

A remarkable proof! The author of the theorem is the French mathe-

matician Augustin-Louis Cauchy (1789–1857), who also lived

a couple of years in Prague during his political exile. However,

Cauchy assumed continuity of the derivative f ′. It was Édouard

Goursat (1858–1936) who proved the theorem in 1900 only under

the assumption of mere existence of the derivative f ′:
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E. Goursat, Sur la definition générale des fonctions analy-

tiques, d’après Cauchy, Trans. Amer. Math. Soc. 1 (1900),

14–16.

The C.–G theorem for rectangles, more precisely their bounda-

ries, will suffice for us, but the theorem holds for general curves. We

give just an outline of the proof of the general version.

Theorem 15 (Cauchy–Goursat) Let f : U → C be a holo-

morphic function and ϕ : [a, b]→ U be a continuous and piece-

wise smooth function that is injective, with the exception of the

value ϕ(a) = ϕ(b), and whose interior — the bounded compo-

nent in the pair of components of the set C \ ϕ[ [a, b] ] — is a

subset of the set U . Then ∫
ϕ

f = 0 .

Sketch of the proof. We draw in C with the help of horizon-

tal and vertical lines a fine square grid M. A simple closed curve

ψ : [a, b]→ U runs along the sides of the gridM and satisfies that

(i) for a given ε > 0 it holds that |
∫
ϕ f −

∫
ψ f | < ε (the curve ψ

closely approximates the curve ϕ) and (ii) the interior of the curve

ψ is a subset of the set U . Then∫
ψ

f =
∑
R∈M

∫
∂R

f =
∑
R∈M

0 = 0 ,

where M are those elementary rectangles of the grid M that lie

inside the curve ψ. The first equality holds for the same reason as

equality (2) and the first equality in (5) below. The second follows
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from (ii) and the preceding C.–G. theorems for rectangles. By (i),

|
∫
ϕ f | < ε. This is true for every ε and

∫
ϕ f = 0. 2

Exercise 16 Like in Exercise 10, let ϕ(t) : [0, 1] → C, ϕ(t) :=

e2πit (now we parameterize the whole unit circle) and f (z) := zk,

where k ∈ Z with k 6= −1. Show that∫
ϕ

f = 0 .

(It does not follow completely from the C.–G. theorem!)

• Independence of
∫

on the integration rectangle. We prove that

in certain situation the integral
∫
∂R f does not depend much on the

rectangle R. Recall that every compact set A ⊂ C is closed and

bounded.

Proposition 17 (independence of
∫
∂R f on R) We assume

that A ⊂ int(R) ∩ int(S), with a compact set A and rectangles

R, S ⊂ C. Let f : C \ A→ C be a holomorphic function. Then∫
∂R

f =

∫
∂S

f .

Proof. Let A, R, S, and f be as given, and let first S ⊂ int(R).

By extending the sides of the rectangle S, we divide the rectangle

R into nine rectangles R1, R2, . . . , R8, S. Then indeed∫
∂R

f
as in (2)

=

8∑
j=1

∫
∂Rj

f +

∫
∂S

f
Thm. 12, Rj ⊂ C \ A

=

∫
∂S

f . (5)

We reduce general rectangles R and S to the previous case. By

Exercises 18 and 19 for any rectangles R and S and any nonempty
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compact set A ⊂ int(R) ∩ int(S) there is a rectangle T such that

A ⊂ int(T ) and T ⊂ int(R) ∩ int(S) .

By the previous case,∫
∂R

f =

∫
∂T

f =

∫
∂S

f .

2

Exercise 18 Prove that every nonempty intersection of two

rectangles is a rectangle.

Exercise 19 Prove that for any rectangles R and S and any

nonempty compact set A ⊂ int(R)∩ int(S) there exists a rectan-

gle T such that

A ⊂ int(T ) and T ⊂ int(R) ∩ int(S) .

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz)

by the end of the coming Sunday solutions to the Exercises 1, 5, 9,

16 and 19.
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