
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2024/25

lecturer: Martin Klazar

LECTURE 7 (April 2, 2025) SOLVING THE BASEL

PROBLEM BY FOURIER SERIES

• The Basel problem. What is the sum B of the series∑∞
n=1

1
n2

= 1 + 1
4 + 1

9 + 1
16 + . . . ?

According to the (English mutation of) Wikipedia, this problem

was posed by Pietro Mengoli in 1650 and solved by Leonard Euler

in 1734:

B = π2

6 .

The problem is named after Euler’s hometown. There resided the

clan of mathematicians Bernoulli’s who also tried to solve the pro-

blem but they did not succeed.

• Series. We review basic notions of the theory of (infinite) series

to make sense of the previous problem. A series
∑
an =

∑∞
n=1 an

is actually a sequence (an) ⊂ R, to which we assign the sequence

of partial sums

(sn) = (a1 + a2 + · · · + an) ⊂ R .

The sum of the series is lim sn, if this limit exists. If this limit is

finite (∈ R), the series converges, else (the sum is ±∞ or does not

exist) it diverges. Sums of series are denoted by the same symbols

as the series themselves,∑
an =

∑∞
n=1 an = lim sn = lim(a1 + a2 + · · · + an) .

In the following exercises we review basic results about series.
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Exercise 1 (necessary condition for convergence) If the

series
∑
an converges then lim an = 0.

Exercise 2 If the series
∑
an has almost all summands non-

negative, i.e. n ≥ n0 ⇒ an ≥ 0, then
∑
an converges or has the

sum +∞.

Exercise 3 (harmonic series) The sum
∑

1
n = +∞.

Exercise 4 The sum
∑

1
(n+1)n = 1.

Exercise 5 Using the previous exercise, prove that the series∑
n−2 in the Basel problem converges.

Exercise 6 (geometric series) For q ∈ (−1, 1), the sum∑∞
n=0 q

n = 1
1−q .

Exercise 7 (Leibniz’s criterion) If a1 ≥ a2 ≥ · · · ≥ 0 and

lim an = 0, then the series
∑

(−1)n−1an = a1 − a2 + a3 − . . .

converges.

Exercise 8 Prove simply that if the sum∑
1
n2

= π2

6 then the sum
∑ (−1)n−1

n2
= π2

12 .

• Riemannian series. We call a series
∑
an Riemannian if (i)

lim an = 0, (ii)
∑
akn = +∞ and (iii)

∑
azn = −∞, where (akn),

resp. (azn), is the subsequence of nonnegative, resp. negative, sum-

mands in the series
∑
an.

Exercise 9 (harder) Fill in details in the sketch of the next

proof.
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Theorem 10 (Riemann) Let
∑
an be a Riemannian series.

Then for every S ∈ R∗ there is a bijection π : N→ N such that∑∞
n=1 aπ(n) = S .

Thus by reordering any Riemannian series we can get any sum.

Proof. Suppose that
∑
an is a Riemannian series and that

∑
akn

and
∑
azn are as in the definition. We define π for any given S ∈ R

(i.e., S is a real number, not ±∞) as follows. We initialize three

variables by i = 1, j = 0 and π(1) = k1. Suppose that π(1), π(2),

. . . , π(n) have been already defined and a =
∑n

k=1 aπ(k). If a < S

then i := i + 1, j := j and π(n + 1) = ki. If a ≥ S then i := i,

j := j+1 and π(n+1) = zj. In this way we define a map π : N→ N.

It follows that π is a bijection and∑∞
n=1 aπ(n) = S .

2

• Trigonometric series. These are the series

a0
2 +

∑∞
n=1

(
an cos(nx) + bn sin(nx)

)
,

where an, bn ∈ R are the coefficients and x ∈ R is a variable. One

can view them as parametric systems of series parameterized by

the variable x. Our goal is to derive expressions for a wide class of

functions f : [−π, π] → R as trigonometric series. Then we use it

to solve the Basel problem.

Let R(−π, π) be the set of all Riemann integrable functions

f : [−π, π]→ R. For f, g ∈ R(−π, π) we define

〈f, g〉 =
∫ π
−π fg (∈ R)
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(it follows from the theory of the Riemann integral that if f and g

are in R(−π, π), then fg ∈ R(−π, π) too). It looks like a scalar

product.

Exercise 11 Prove that

〈f, g〉 = 〈g, f〉 , 〈f, f〉 ≥ 0

and, for a, b ∈ R,

〈af + bg, h〉 = a 〈f, h〉 + b 〈g, h〉 .

But it is not completely a scalar product.

Exercise 12 The equivalence

〈f, f〉 = 0 ⇐⇒ f ≡ 0

does not hold.

A function f : R→ R is 2π-periodic if for every x ∈ R we have

f (x + 2π) = f (x) .

Proposition 13 (orthogonality of sines and cosines) For

every two integers m,n ≥ 0,

〈sin(mx), cos(nx)〉 = 0 .

For every two integers m,n ≥ 0, except m = n = 0, one has

that

〈sin(mx), sin(nx)〉 = 〈cos(mx), cos(nx)〉 =

{
π . . . m = n and

0 . . . m 6= n .

Finally,

〈sin(0x), sin(0x)〉 = 0 and 〈cos(0x), cos(0x)〉 = 2π .

4



Proof. Let m,n ∈ N0. We compute the values

Sm,n = 〈sin(mx), sin(nx)〉, Tm,n = 〈cos(mx), cos(nx)〉
and

Um,n = 〈sin(mx), cos(nx)〉 .
Clearly, S0,0 = 0, T0,0 = 2π and U0,0 = 0. Let m or n be non-

zero, say m 6= 0 (for n 6= 0 the calculation is similar). Integration

by parts using that sin(mx) = (− cos(mx)/m)′ and cos(mx) =

(sin(mx)/m)′ yields

Sm,n =
n

m
· Tm,n, Tm,n =

n

m
· Sm,n and Um,n = − n

m
· Un,m

− the first term [. . . ]π−π in the formula is always zero because . . .

is a 2π-periodic function. The first two equations together give

(1− (n/m)2)Sm,n = 0 = (1− (n/m)2)Tm,n .

If n 6= m then Sm,n = Tm,n = 0. When n = m, then we know that

Sm,m = Tm,m. But from the identity sin2 x + cos2 x = 1 (holding

for every x ∈ R) it follows that Sm,m + Tm,m =
∫ π
−π 1 = 2π. Thus,

Sm,m = Tm,m = π. The third equation above for m = n gives

Um,m = −Um,m and so Um,m = 0. To calculate Um,n for m 6= n,

we express Un,m by integration by parts again using cos(mx) =

(sin(mx)/m)′:

Un,m = −(n/m)Um,n .

Together Um,n = (n/m)2Um,n and again Um,n = 0. In summary:

Sm,m = Tm,m = π for m ∈ N, S0,0 = 0 and T0,0 = 2π, and all other

values of Sm,n, Tm,n and Um,n for m,n ∈ N0 are zero. 2

• The Fourier series of a function. For f ∈ R(−π, π) we define

the cosine Fourier coefficients by

an = 〈f(x), cos(nx)〉
π = 1

π

∫ π
−π f (x) cos(nx) dx, n = 0, 1, . . .
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and its sine Fourier coefficients by

bn = 〈f(x), sin(nx)〉
π = 1

π

∫ π
−π f (x) sin(nx) dx, n = 1, 2, . . . .

The Fourier series of the function f (∈ R(−π, π)) is the trigo-

nometric series

Ff(x) = a0
2 +

∑∞
n=1

(
an cos(nx) + bn sin(nx)

)
,

where an and bn are, respectively, the cosine and sine Fourier coeffici-

ents of f . From the perspective of functional analysis, we work in an

infinite-dimensional vector space with the (almost) scalar product

〈·, ·〉, in which the “coordinate axes” (elements of the orthogonal

basis) are the functions

{cos(nx) : n ∈ N0} ∪ {sin(nx) : n ∈ N} .

Fourier coefficients of a given function f are the coordinates of f

with respect to these infinitely many coordinate axes. In contrast

with Cartesian coordinates of points in Rn, not every function is

equal to the sum of its Fourier series. In a moment we present

sufficient conditions for this to hold.

• Bessel’s inequality.

Theorem 14 (Bessel’s Inequality) For every function f in

R(−π, π) the Fourier coefficients an and bn satisfy the inequa-

lity
a20
2 +

∑∞
n=1(a

2
n + b2n) ≤ 〈f, f〉

π = 1
π

∫ π
−π f

2 .

Proof. We denote by sn = sn(x), n = 1, 2, . . . , the n-th partial

sum of the Fourier series of the function f :

sn = a0
2 +

∑n
k=1

(
ak cos(kx) + bk sin(kx)

)
=
∑n

k=0

(
a′k cos(kx) + b′k sin(kx)

)
,
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where

ak = π−1〈f, cos(kx)〉, bk = π−1〈f, sin(kx)〉, k = 0, 1, 2, . . . ,

a′0 = a0
2 , a′k = ak for k > 0, b′0 = 0 and b′k = bk for k > 0. Due

to the linearity of the (almost) scalar product 〈·, ·〉, the definition

of the numbers a′k, b
′
k, ak, bk and the orthogonality of functions

sin(kx) and cos(kx), the (almost) scalar product 〈sn, sn〉 equals to∑n
k=0

(
(a′k)

2〈cos(kx), cos(kx)〉 + (b′k)
2〈sin(kx), sin(kx)〉

)
= π

(a20
2 +

∑n
k=1(a

2
k + b2k)

)
.

Also,

〈sn, f〉 =
∑n

k=0

(
a′k〈cos(kx), f〉 + b′k〈sin(kx), f〉

)
= π

(a20
2 +

∑n
k=1(a

2
k + b2k)

)
.

On the other hand,

0 ≤ 〈f − sn, f − sn〉 = 〈f, f〉 − 2〈sn, f〉 + 〈sn, sn〉 ,

hence 2〈sn, f〉 − 〈sn, sn〉 ≤ 〈f, f〉. Thus for every n,

a20
2 +

∑n
k=1(a

2
k + b2k) = 2〈sn,f〉−〈sn,sn〉

π ≤ 〈f,f〉
π .

The series of squares of the Fourier coefficients of the function f

converges and its sum is bounded by the stated value. 2

Exercise 15 (Riemann–Lebesgue Lemma) Using Bessel’s

inequality, prove that for every function f ∈ R(−π, π)

limn→∞
∫ π
−π f (x) sin(nx) dx = limn→∞

∫ π
−π f (x) cos(nx) dx = 0 .

(Hint: see Exercise 1).
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• Piece-wise smooth functions and Dirichlet’s theorem. The

function

f : [a, b]→ R ,

where a < b are real numbers, is piece-wise smooth if there is

a partition

a = a0 < a1 < a2 < · · · < ak = b, k ∈ N ,

of the interval [a, b] such that on every interval (ai−1, ai), i =

1, 2, . . . , k, f has continuous derivative f ′, for every i = 1, 2, . . . , k

there exist finite one-sided limits

f (ai − 0) = lim
x→a−i

f (x) and f ′(ai − 0) = lim
x→a−i

f ′(x)

and for each i = 0, 1, . . . , k − 1 there exist finite one-sided limits

f (ai + 0) = lim
x→a+i

f (x) and f ′(ai + 0) = lim
x→a+i

f ′(x) .

A piece-wise smooth function can be at several points in the interval

[a, b] discontinuous, but at the points of discontinuity it has finite

one-sided limits and one-sided non-vertical tangents.

Exercise 16 Is the function f : [−1, 1]→ R, defined as f (x) =

(−x)1/3 for x ∈ [−1, 0] and f (x) = x1/3 for x ∈ [0, 1], piece-wise

smooth?

Exercise 17 Is the signum function sgn : [−1, 1] → R, defined

as sgn(x) = −1 for x ∈ [−1, 0), sgn(0) = 0 and sgn(x) = 1 for

x ∈ (0, 1], piece-wise smooth?

Theorem 18 (Dirichlet’s) Let

f : R→ R
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be a 2π-periodic function such that its restriction to the interval

[−π, π] is piece-wise smooth. Then for every a ∈ R its Fourier

series Ff(x) sums to

Ff(a) = f(a+0)+f(a−0)
2 :=

limx→a+ f(x)+limx→a− f(x)
2 .

Thus, at each point of continuity a ∈ R of the function f (x),

its Fourier series sums to the functional value, Ff(a) = f (a).

Proof. We will probably skip it. 2

We say that the function f : [a, b] → R is smooth if it has on

(a, b) continuous derivative f ′ and at the ends a and b the functions

f (x) and f ′(x) have finite limits.

Corollary 19 (on smooth function) Let f : R→ R be a 2π-

periodic and continuous function whose restriction to the inter-

val [−π, π] is smooth. Then for each a ∈ R is

Ff(a) = f (a) .

Any continuous and smooth function is therefore equal to the

sum of its Fourier series.

Proof. This follows from the previous theorem: by the assumption

f is continuous on R. 2

• Back to the Basel problem. Let I ⊂ R be an interval symmetric

with respect to the origin and f : I → R. We say that the function

f is even (resp. odd) if for every x ∈ I , f (−x) = f (x) (resp.

f (−x) = −f (x)).

Exercise 20 Let f ∈ R(−π, π). Prove that all sine (or cosine)

Fourier coefficients of an even (or odd) functions f are zero.
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How do you simplify cosine (or sine) Fourier coefficients of an

even (or odd) function?

We calculate the Fourier series of the function f : R → R de-

fined on the interval [−π, π] by f (x) = x2 and 2π-periodically

extended to the entire R (which is possible due to the fact that

(−π)2 = π2). Its sine Fourier coefficients are zero according to the

previous exercise. The first (actually zeroth) cosine Fourier coeffici-

ent is (according to this exercise)

a0 = 2
π

∫ π
0 x

2 dx = 2π2

3 .

Next (n ∈ N)

an = 2
π

∫ π
0 x

2

(sin(nx)/n)′︷ ︸︸ ︷
cos(nx) dx

= 2
πn [x2 sin(nx)]π0︸ ︷︷ ︸

0−0=0

− 4
πn

∫ π
0 x

(− cos(nx)/n)′︷ ︸︸ ︷
sin(nx) dx

= 4
πn2

[x cos(nx)]π0︸ ︷︷ ︸
π(−1)n

− 4
πn2

∫ π
0 cos(nx) dx︸ ︷︷ ︸

0−0=0

= (−1)n 4
n2
.

Since the function f is continuous and smooth on [−π, π], by Co-

rollary 19 one has for every a ∈ R that

f (a) = a0
2 +

∑∞
n=1 an cos(na) = π2

3 + 4
∑∞

n=1(−1)n cos(na)
n2

.

For a = π we get

π2 = f (π) = π2

3 + 4
∑∞

n=1(−1)n (−1)
n

n2
, so that

∑∞
n=1

1
n2

= π2

6 .

Exercise 21 The function f (x) is defined on the interval [−π, π)

as f (x) = π − x and is 2π-periodically extended to R. Expand

it into Fourier series.
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Exercise 22 What sum of the infinite series do we get from

the previous expansion (using Dirichlet’s theorem) for x = π
2?

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send me (klazar@kam.mff.cuni.cz) by

the end of the coming Sunday solutions to the Exercises 1, 8, 9, 16

and 20.
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