MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2024/25
lecturer: Martin Klazar

LECTURE 7 (April 2, 2025) SOLVING THE BASEL
PROBLEM BY FOURIER SERIES

e The Basel problem. What is the sum B of the series
o 1 1,1, 1
Z —1—|—Z+§+E—|—...?

n=1 n2
According to the (English mutation of) Wikipedia, this problem
was posed by Pietro Mengoli in 1650 and solved by Leonard Euler
in 1734:

2

B=2.

The problem is named after Euler’'s hometown. There resided the
clan of mathematicians Bernoulli’s who also tried to solve the pro-
blem but they did not succeed.

e Series. We review basic notions of the theory of (infinite) series

0. 9]

to make sense of the previous problem. A series > a, = > ", a,

n=1
is actually a sequence (a,) C R, to which we assign the sequence

of partial sums
(Sn) = (CL1—|—CL2—|—"'—|—CLn) CR.

The sum of the series is lim s,,, if this limit exists. If this limit is
finite (€ R), the series converges, else (the sum is 00 or does not
exist) it diverges. Sums of series are denoted by the same symbols
as the series themselves,

Sa,=> "1 a,=lims, =lim(a; +as+---+a,).

n=1

In the following exercises we review basic results about series.
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Exercise 1 (necessary condition for convergence) If the
series »_ a, converges then lima, = 0.

Exercise 2 If the series > a, has almost all summands non-
negative, i.e. n > ng = a, > 0, then Y a, converges or has the
sum +0oQ.

Exercise 3 (harmonic series) The sum ).+ = +oo0.

Exercise 4 The sum ) ——— = 1.

n—l—l

Exercise 5 Using the previous exercise, prove that the series
S~ n~% in the Basel problem converges.

Exercise 6 (geometric series) For g € (—1,1), the sum

Zn Oq 1q

Exercise 7 (Leibniz’s criterion) If a1 > as > --- > 0 and
lima, = 0, then the series > (—1)""'a, = a; — as + az —
CONVETGES.

Exercise 8 Prove simply that if the sum

n—1 2

-2 -1 s
#:F then the sum Z( 71)2 — 12

e Riemannian series. We call a series ) a, Riemannian if (i)
lima, =0, (ii) Y ar, = +oo and (iii) Y _ a, = —oo, where (ay, ),
resp. (a., ), is the subsequence of nonnegative, resp. negative, sum-
mands in the series > a,,.

Exercise 9 (harder) Fill in details in the sketch of the next
proof.



Theorem 10 (Riemann) Let ) a, be a Riemannian series.
Then for every S € R* there is a bijection m: N — N such that

2t Q) = 5.

Thus by reordering any Riemannian series we can get any sum.

Proof. Suppose that ) a, is a Riemannian series and that > ay,
and ) a, are as in the definition. We define 7 for any given S' € R
(i.e., S is a real number, not £o00) as follows. We initialize three
variables by ¢ = 1, 7 = 0 and (1) = k. Suppose that (1), 7(2),
..., m(n) have been already defined and @ = >} aqy. f a < S
theni =i+ 1, j:=jand r(n+1) = k;. If @ > S then i := i,
j = j+land m(n+1) = z;. In this way we defineamap 7: N — N.
It follows that 7 is a bijection and

22021 aﬁm) = S.

e Trigonometric series. These are the series
943 (a, cos(nx) + b, sin(nz)) ,

where a,, b, € R are the coefficients and z € R is a variable. One
can view them as parametric systems of series parameterized by
the variable . Our goal is to derive expressions for a wide class of
functions f: [—m, 7] — R as trigonometric series. Then we use it
to solve the Basel problem.

Let R(—m,m) be the set of all Riemann integrable functions
f:|-m,m] = R. For f,g € R(—m,m) we define

(f,9y=["_fg (eR)
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(it follows from the theory of the Riemann integral that if f and g
are in R(—m, ), then fg € R(—m, ) too). It looks like a scalar
product.

Exercise 11 Prove that
(fr9)="Ag. 1), {f. ) =0
and, for a,b € R,
(af +bg, hy =a(f, h) +b(g, h) .
But it is not completely a scalar product.
Exercise 12 The equivalence
(. [)=0 < f=0
does not hold.

A function f: R — R is 2w-pertodic if for every x € R we have

flx+2m) = f(x) .

Proposition 13 (orthogonality of sines and cosines) For
every two integers m,n > 0,

(sin(mx), cos(nx)) = 0.

For every two integers m,n > 0, except m = n = 0, one has
that

T ... m=mn and

(sin(mx), sin(nz)) = (cos(max), cos(nx)) = { 0 ... m+4n.
Finally,
(sin(0x), sin(0x)) =0 and (cos(0x), cos(0x)) = 27 .
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Proof. Let m,n € Ny. We compute the values
Smn = (sin(mz), sin(nx)), T, = (cos(mzx), cos(nx))

and
Up.n = (sin(mx), cos(nz)) .
Clearly, Spo = 0, Thg = 27 and Upy = 0. Let m or n be non-
zero, say m # 0 (for n # 0 the calculation is similar). Integration
by parts using that sin(mz) = (— cos(mx)/m)" and cos(mz) =
(sin(max)/m)" yields
Sm,n — ﬁ : Tm,na Tm,n — E : Sm,n and Um,n — _ﬁ ) Un,m
m m m
— the first term [...]" _in the formula is always zero because . ..
is a 2m-periodic function. The first two equations together give
(1 - (n/m)2)Smn =0=(1- (n/m)Q)Tm,n :
If n # m then S,,,, = T;,,, = 0. When n = m, then we know that
Smm = Lm.m- But from the identity sin?x + cos?x = 1 (holding
for every x € R) it follows that Sy, . + T = f:r 1 = 2x. Thus,
Smm = Lmm = m. The third equation above for m = n gives
Unm = —Upm and so Uy, = 0. To calculate U, ,, for m # n,
we express U, ,, by integration by parts again using cos(mz) =
(sin(mx)/m)":
Un,m — (n/m) mmn -
Together U,,,, = (n/m)*Uy,,, and again Uy, ,, = 0. In summary:
Smm = T = mlorm € N, Spg = 0 and Ty = 2, and all other
values of Sy, 1, Tin.n and U, for m,n € Ny are zero. O

e The Fourier series of a function. For f € R(—m,m) we define
the costne Fourier coeﬁ?cients by
(f(x), cos(nz)) __ 1f f

a, = Jeos(nz)dx, n =0, 1, ...
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and its stne Fourter coefficients by
bn:<f( sin(na)) =1 [" f(z)sin(nz)dx, n=1,2, ... .

The Fourier series of the function f (€ R(—m,m)) is the trigo-
nometric series

Frlx)=24+> 7, (an cos(nx) + by Sin(nsr:)) :

where a,, and b,, are, respectively, the cosine and sine Fourier coeffici-

ents of f. From the perspective of functional analysis, we work in an
infinite-dimensional vector space with the (almost) scalar product
(-,-), in which the “coordinate axes” (elements of the orthogonal
basis) are the functions

{cos(nz): n € Ny} U {sin(nz): n € N}.

Fourier coefficients of a given function f are the coordinates of f
with respect to these infinitely many coordinate axes. In contrast
with Cartesian coordinates of points in R", not every function is
equal to the sum of its Fourier series. In a moment we present
sufficient conditions for this to hold.

e Bessel’s inequality.
Theorem 14 (Bessel’s Inequality) For every function f in

R(—m,m) the Fourier coefficients a, and b, satisfy the inequa-
lity

Gy < L Ly
Proof. We denote by s, = s,(z), n = 1,2,..., the n-th partial
sum of the Fourier series of the function f:
sn = L4+ >_ (arcos(kx) + by sin(kx))
= Zk o (a cos(kx) + b), sin(kx)) ,
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where
arp =7 Hf, cos(kx)), by = 7 {f, sin(kx)), k=0,1,2, ...,

ay = 5, ap = aj for k > 0, by = 0 and b}, = by, for & > 0. Due
to the linearity of the (almost) scalar product (-,-), the definition
of the numbers ay, by, ay, by and the orthogonality of functions
sin(kz) and cos(kx), the (almost) scalar product (s, s,,) equals to

> o (( 13 (cos(kx), cos(kx)) + (b))% (sin(kx), Siﬂ(k:ﬁ)))

= W(? + > (ap +67)) -
Also,

(sns f) = 2iso (ah(cos(ka), f) + b (sin(kx), f))
(T ).

On the other hand,

0 <(f = sn =)=, [) = 2(s0, )+ (Sns Sn) ;
hence 2(s,,, f) — (sn, sn) < {f, f). Thus for every n,

ap n Sn,J ) —{Sn,;Sn )
70+Zk:1(a%+b%):2< f>ﬂ< ) < L)

- ™

The series of squares of the Fourier coefficients of the function f
converges and its sum is bounded by the stated value. O

Exercise 15 (Riemann—Lebesgue Lemma) Using Bessel’s
inequality, prove that for every function f € R(—m,m)
limy, oo [ f(2) sin(nz) dx = lim, e [ f(x) cos(nz) dx = 0.

(Hint: see Ezercise 1).



e Piece-wise smooth functions and Dirichlet’s theorem. The
function

fila, )] = R,
where a < b are real numbers, is piece-wise smooth if there is
a partition

a=ayp< a1 <ay<---<ap=b, keN,

of the interval [a,b] such that on every interval (a; 1,a;), i =
1,2,...,k, f has continuous derivative f’, for every i =1,2,... k
there exist finite one-sided limits

fla;—0)= lim f(z) and f'(a; —0) = lim f'(x)

r—a,; r—a;
and for each 1 = 0,1,...,k — 1 there exist finite one-sided limits
fla; +0)= lim f(z) and f'(a; +0)= lim f'(x).
z—a; z—a;

A piece-wise smooth function can be at several points in the interval
la, b] discontinuous, but at the points of discontinuity it has finite
one-sided limits and one-sided non-vertical tangents.

Exercise 16 Is the function f: [—1,1] = R, defined as f(x) =
(=2)'3 forx € [—1,0] and f(x) = '/ for x € [0, 1], piece-wise
smooth?

Exercise 17 Is the signum function sgn: [—1,1] — R, defined
as sgn(x) = —1 for x € [—1,0), sgn(0) = 0 and sgn(z) = 1 for
x € (0,1], piece-wise smooth?

Theorem 18 (Dirichlet’s) Let
ffR—=>R
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be a 2m-pertodic function such that its restriction to the interval
|—7, 7| is piece-wise smooth. Then for every a € R its Fourier
series Fr(x) sums to

Ff(a,) _ f(a+0>—;f(a—0) - lim ., + f(x)—;—limx_m_ f(2) |

Thus, at each point of continuity a € R of the function f(x),
its Fourier series sums to the functional value, Fr(a) = f(a).

Proof. We will probably skip it. O

We say that the function f: [a,b] — R is smooth if it has on
(a, b) continuous derivative f” and at the ends a and b the functions
f(x) and f'(x) have finite limits.

Corollary 19 (on smooth function) Let f: R — R be a 27-
pertodic and continuous function whose restriction to the inter-
val [—m, 7| is smooth. Then for each a € R is

Fy(a) = f(a) .

Any continuous and smooth function is therefore equal to the
sum of its Fourier series.

Proof. This follows from the previous theorem: by the assumption
f is continuous on R. O

e Back to the Basel problem. Let I C R be an interval symmetric
with respect to the origin and f: I — R. We say that the function
f is even (resp. odd) if for every x € I, f(—x) = f(x) (resp.
f(=z) = —f(z)).

Exercise 20 Let f € R(—n, ). Prove that all sine (or cosine)
Fourier coefficients of an even (or odd) functions f are zero.
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How do you simplify cosine (or sine) Fourier coefficients of an
even (or odd) function?

We calculate the Fourier series of the function f: R — R de-
fined on the interval [—m, 7] by f(z) = z* and 2m-periodically
extended to the entire R (which is possible due to the fact that
(—m)? = m?). Its sine Fourier coefficients are zero according to the
previous exercise. The first (actually zeroth) cosine Fourier coeffici-
ent is (according to this exercise)

_ 2 (7,2 3, _ 277
ao—wfox dx = =-.

Next (n € N)
(sin(nz) /n)
a, = 2 [ 2% cos(nz) dx
(~ cos(nz) /n)

= %\xQ sin(nx)]a—% fo z sin(nz) dx
0—0=0

= #Lx cos(nx)]j _wfﬂ foﬂ cos(nz) dx = (_1)71%
AR hre

Since the function f is continuous and smooth on [—m, 7|, by Co-
rollary 19 one has for every a € R that

a 00 2 00 ncos(na
fla) =3+ > o apcos(na) = T +4 Yoo (=1) % .

n

For a = 7 we get
2

2 o0 n(=1" = s
= f(m) =% +4>7,(-1) (nlg) , sothat D7 5 =1
Exercise 21 The function f(x) is defined on the interval [—m, )
as f(x) = m — x and is 2w-periodically extended to R. Ezxpand
it into Fourier series.
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Exercise 22 What sum of the infinite series do we get from
the previous expansion (using Dirichlet’s theorem) for x = 5 ¢

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send me (klazar@kam.mff.cuni.cz) by
the end of the coming Sunday solutions to the Exercises 1, 8, 9, 16
and 20.
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