
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2024/25

lecturer: Martin Klazar

LECTURE 6 (March 26, 2025)

APPLICATIONS OF BAIRE’S THEOREM:

NON-DIFFERENTIABLE CONTINUOUS FUNCTIONS,

TRANSCENDENTAL GROWTHS OF PERMUTATIONS

• Non-differentiable continuous functions. Let I = [0, 1]. By

C(I) we denote the set of all continuous functions from I to R.

Recall that for x ∈ R and δ > 0,

P (x, δ) = (x− δ, x + δ) \ {x} = (x− δ, x) ∪ (x, x + δ)

is the deleted δ-neighborhood of x. We prove the following theorem.

Theorem 1 (wild functions exist) There exists a function

f in C(I) such that for every x ∈ I and every δ > 0,

sup

({∣∣∣∣f (y)− f (x)

y − x

∣∣∣∣ : y ∈ P (x, δ) ∩ I
})

= +∞ .

Recall that f : I → R is differentiable at x ∈ I if it has a finite

derivative f ′(x) ∈ R.

Exercise 2 The function f in Theorem 1 is continuous on I

but is not differentiable at any point of I.

• Four lemmas. We prove Theorem 1 with the help of four lemmas.

Lemma 3 (1st lemma) If f ∈ C(I) has the property that for

every x ∈ I,

sup

({∣∣∣∣f (y)− f (x)

y − x

∣∣∣∣ : y ∈ I \ {x}
})

= +∞
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then f has the property in Theorem 1. Hence the parameter δ

in Theorem 1 is superfluous.

Proof. We assume that f ∈ C(I) has for every x ∈ I the stated

property. The set

Q(x, δ) = I \ U(x, δ) = [0, 1] \ (x− δ, x + δ)

is compact for every x ∈ I and every δ > 0 (Exercise 4). Let

M(x, δ) be the maximum value of the continuous function

Q(x, δ) 3 y 7→
∣∣(f (y)− f (x))/(y − x)

∣∣ ≥ 0 .

For every given x ∈ I and δ > 0, by the assumption there is

a y ∈ I \ {x} such that∣∣∣∣f (y)− f (x)

y − x

∣∣∣∣ > M(x, δ) .

But then y 6∈ Q(x, δ), thus y ∈ P (x, δ) and wee see that f has the

property in Theorem 1. 2

Exercise 4 Show that the set Q(x, δ) is compact.

Exercise 5 Why is the function y 7→
∣∣f(y)−f(x)

y−x

∣∣ continuous?.

Recall that for any set X , the infinity-norm

‖f‖∞ = sup({|f (x)| : x ∈ X})

on the set B of bounded functions f : X → R makes B a MS

(B, ‖f − g‖∞).

Exercise 6 Show that this is a MS.
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Lemma 7 (2nd lemma) Let (M,d) be a MS, (xn) ⊂ M be

a sequence with limxn = x0 ∈ M and let (fn), fn : M → R,

be a sequence of functions converging in the norm ‖ · ‖∞ to

a continuous function f : M → R. Then

lim fn(xn) = f (x0) .

Proof. By the triangle inequality,

|fn(xn)− f (x0)| ≤ |fn(xn)− f (xn)| + |f (xn)− f (x0)| .
For a given ε > 0, we can make the first | · | on the right side < ε

2

for every n ≥ n0 due to the assumption that ‖fn− f‖∞ → 0. The

same holds for the second | · | on the right side for every n ≥ n1,

due to Heine’s definition of continuity of f at the point x0. Hence

n ≥ max({n0, n1}) ⇒ |fn(xn)− f (x0)| < ε
2 + ε

2 = ε. 2

A broken line going through the points (a0, b0), (a1, b1), . . . ,

(ak, bk) in R2 in this order, where a0 < a1 < · · · < ak, is the

function f : [a0, ak] → R which is on every interval [ai−1, ai], i =

1, 2, . . . , k, defined by

f (x) =
(bi − bi−1)(x− ai−1)

ai − ai−1
+ bi−1

(thus f (ai−1) = bi−1 and f (ai) = bi). Its graph on the interval

[ai−1, ai] is the segment joining the points (ai−1, bi−1) and (ai, bi).

We call these segments just segments.

Exercise 8 Every broken line is a continuous function.

The slope of a plane line given by the equation y = ax+ b is the

number a. The slope of a segment is the slope of the line extending

the segment. The secant (line) of a function f : M → R, M ⊂ R,

is a line going through two distinct points on the graph of f .
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Lemma 9 (3rd lemma) For every ε > 0 and every function

f ∈ C(I) there is a function g ∈ C(I) and a constant M > 0

such that

(i) ‖f−g‖∞ < ε and (ii) x, y ∈ I, x 6= y ⇒
∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ < M

− every f ∈ C(I) can be arbitrarily closely approximated by

a function g ∈ C(I) that has secant lines with bounded slopes.

Proof. Let f ∈ C(I) and let an ε > 0 be given. Since the interval

I is compact, the function f is uniformly continuous (Exercise 10).

Hence for every sufficiently large m and every i = 0, 1, . . . ,m it

holds that

i
m ≤ x ≤ i+1

m ⇒ |f ( im)− f (x)|, |f (i+1
m )− f (x)| < ε

2 .

We draw through the points (i/m, f (i/m)), i = 0, 1, . . . ,m a bro-

ken line g. For g the above implication holds too and with the

same m (Exercise 11). Thus

∀x ∈ I
(
|f (x)− g(x)| < ε/2 + ε/2 = ε

)
(Exercise 12) and g has property (i). By Exercise 13 we have that

for every two distinct numbers x, y ∈ I ,∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ ≤ |s|
where s is the largest, in absolute value, slope of a segment of the

broken line g. Hence g has also property (ii). 2

Exercise 10 Why is any f ∈ C(I) uniformly continuous?
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Exercise 11 Show that the displayed implication holds for the

broken line g.

Exercise 12 Prove the displayed inequality that ∀x . . . .

Exercise 13 Prove the inequality · · · ≤ s.

Lemma 14 (4th lemma) For every ε > 0 and T > 0 there is

a function g ∈ C(I) such that

(i) ‖g‖∞ < ε and (ii) ∀x ∈ I ∃ y ∈ I \{x} :

∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ > T

− there is a continuous and ‖ · ‖∞-small function g, defined on

I, such that through every point of its graph goes a secant line

with a large slope.

Proof. Let ε > 0 and T > 0 be given. We take a large even m ∈ N
such that 2mε

3 > T , take the m + 1 points(
i/m, (ε/3)(1− (−1)i

)
∈ R2, i = 0, 1 . . . , m ,

in the plane and draw through them a broken line g. It joins (0, 0)

and (1, 0) and has m/2 hills, each with height 2ε
3 and base width 2

m.

Thus ‖g‖∞ = 2ε
3 < ε and (i) holds. Let u be a point on the graph

of g. We lead through it the secant line extending the segment

containing u (if u lies in two segments, we choose any of them). Its

|slope| > T because both sides of any hill have |slope| = 2ε/3
1/m =

2mε
3 > T . We satisfied (ii) too. 2

• Proof of Theorem 1. We show that there is a continuous function

f : I → R that is not differentiable at any point of I .

5



Proof of Theorem 1. For n ∈ N we define sets

An =
{
f ∈ C(I) | ∃x ∈ I ∀ y ∈ I \ {x}

(∣∣f(y)−f(x)
y−x

∣∣ ≤ n
)}

.

We show that every set An is a sparse subset of the MS

(C(I), ‖f − g‖∞)

and by this we will be done. Indeed, by Proposition 17 below this MS

is complete and therefore by Baire’s theorem there exists a function

f ∈ C(I) \
∞⋃
n=1

An .

Thus f is continuous and has the property described in the first

Lemma 3 and therefore, by this lemma, has the property in Theo-

rem 1 and by Exercise 2 the function f is not differentiable at any

point of I .

We show that every set An ⊂ C(I) is closed and contains no

ball, i.e., that for every ball B(f, r) in the MS, B(f, r) 6⊂ An. It

follows from this that An is a sparse set (Exercise 15).

We prove that An is closed by showing its closedness to limits.

Let (fk) ⊂ An be a sequence with limk→∞ fk = f ∈ C(I); we show

that f ∈ An. Since fk ∈ An, there is a number xk ∈ I such that

for every y ∈ I \ {xk},∣∣∣∣fk(y)− fk(xk)
y − xk

∣∣∣∣ ≤ n .

We know from Mathematical Analysis 1 that (xk) has a convergent

subsequence with a limit in I . To simplify notation, we assume that

already limk→∞ xk = x0 ∈ I . For every y ∈ I \ {x0} we have, by
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the property of the point xk and the second Lemma 7, that

n ≥ lim
k→∞

∣∣∣∣fk(y)− fk(xk)
y − xk

∣∣∣∣ =

∣∣∣∣f (y)− f (x0)

y − x0

∣∣∣∣
(non-strict inequalities are preserved in limits). The number x0 the-

refore witnesses that f ∈ An and An is a closed subset of the MS.

It remains to find in the given ball B(f, r) ⊂ C(I) a point (i.e.,

a function) g ∈ B(f, r) \An. We define it as g = g1 + g2 where we

get the functions g1 and g2 using the third and fourth Lemma 9 and

14, respectively. First we use Lemma 9 and get a function g1 ∈ C(I)

and a constant M > 0 such that ‖f−g1‖∞ < r
2 and that all secants

of the graph of g1 have slope in absolute value < M . Then we use

Lemma 14 and get a function g2 ∈ C(I) such that ‖g2‖∞ < r
2 and

that through every point in the graph of g2 there goes a secant line

with slope in absolute value > M + n. By the triangle inequality,

‖f − g‖∞ ≤ ‖f − g1‖∞ + ‖g2‖∞ < r
2 + r

2 = r

and g ∈ B(f, r). Let x ∈ I be arbitrary. By the property of the

function g2 we take a y ∈ I \ {x} such that |g2(y)−g2(x)y−x | > M + n.

Then ∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ =

∣∣∣∣g2(y)− g2(x)

y − x
+
g1(y)− g1(x)

y − x

∣∣∣∣
≥
∣∣∣∣g2(y)− g2(x)

y − x

∣∣∣∣− ∣∣∣∣g1(y)− g1(x)

y − x

∣∣∣∣
> (M + n)−M = n

and g 6∈ An. On the first line we used the definition of g, on the se-

cond the inequality from Exercise 16 and on the third the properties

of the functions g1 and g2. 2
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Exercise 15 Prove that every closed set X (in a MS) with

empty interior (i.e., X contains no ball) is sparse.

Exercise 16 Prove that for every two real numbers a and b,

|a− b| ≥ |a| − |b| .

• Completeness of the MS of continuous functions with the

infinity-norm metric.

Proposition 17 The metric space

(C(I), ‖f − g‖∞)

is complete.

Proof. Let (fn) ⊂ C(I) be a Cauchy sequence in this MS, i.e.,

∀ ε > 0 ∃m
(
n, n′ ≥ m⇒ ‖fn − fn′‖∞ < ε

)
.

Then for every x ∈ I the sequence (fn(x)) ⊂ R is Cauchy, therefore

convergent, and we can define

f (x) = lim
n→∞

fn(x) .

Thus we have a function f : I → R with the property that poin-

twisely fn → f . Let us prove the uniform convergence, i.e., that

‖f − fn‖∞ → 0. Let an x ∈ I and an ε > 0 be given. We take

an m (it is independent of x) such that the above displayed Cau-

chy condition holds with ε
2. Then we take a k ≥ m such that

|fk(x)− f (x)| < ε
2. Thus n ≥ m⇒

|fn(x)− f (x)| ≤ |fn(x)− fk(x)| + |fk(x)− f (x)| < ε
2 + ε

2 = ε

and lim fn = f in this MS.
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It remains to show that f is continuous (i.e., it is an element of

this MS). Let an x0 ∈ I and an ε > 0 be given. We take an n0 such

that

n ≥ n0 ⇒ ‖f − fn‖∞ ≤ ε
2 .

We take a δ > 0 such that

x ∈ U(x0, δ) ∩ I ⇒ |fn0(x)− fn0(x0)| ≤ ε
2

(we use the continuity of fn0 at x0). Then ∀x ∈ U(x0, δ) ∩ I ,

|f (x)− f (x0)| is at most

|f (x)− fn0(x)| + |fn0(x)− fn0(x0)| ≤ ε
2 + ε

2 = ε

− f is continuous at x0. 2

Now the proof of Theorem 1 is complete.

• An application of Baire’s theorem in enumeration of permu-

tations. For m ≤ n in N = {1, 2, . . . } and two permutations (i.e.,

bijections) π : [m]→ [m] and ρ : [n]→ [n] we write π � ρ, and say

that π is contained in ρ, if there exist numbers i1 < i2 < · · · < im
in [n] such that

∀ j, k ∈ [m]
(
π(j) < π(k) ⇐⇒ ρ(ij) < ρ(ik)

)
.

Let S be the set of all finite permutations π : [n]→ [n] for n running

in N and let Sn ⊂ S be the (n!-element) set of permutations of [n].

Exercise 18 Show that (S,�) is a non-strict partial order.

We say that a set X ⊂ S is a permutation class if for every two

permutations π and ρ,

π � ρ ∈ X ⇒ π ∈ X .
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In the last cca 20 years, many results on enumeration of permutation

classes X , i.e., on the counting functions of the form

n 7→ |X ∩ Sn|

(|A| denotes the cardinality of a finite setA), were obtained. A basic

one is the next theorem.

Theorem 19 (A. Marcus and G. Tardos, 2004) Let X be

a permutation class. Then

X 6= S ⇒ ∃ c > 1 ∀n
(
|X ∩ Sn| ≤ cn

)
.

In words, any permutation class, with the exception of the class

of all permutations, grows only at most exponentially.

Exercise 20 Let π ∈ S2 be the identical permutation (π(1) = 1,

π(2) = 2) and let X be any permutation class such that π 6∈ X.

Show that then |X ∩ Sn| ≤ 1 for every n.

By the Marcus–Tardos theorem, for every permutation class X

different from S one can define its finite growth rate

c(X) = lim sup
n→∞

|X ∩ Sn|1/n (∈ [0, +∞)) .

For example, it is known that c({ρ ∈ S | ρ 6� π}) = 4 for every

π ∈ S3. In fact,

|X ∩ Sn| =
1

n + 1

(
2n

n

)
for every n for any of these six permutations classes X .

For some time there was a conjecture that every growth rate of

a permutation class is an algebraic number. It was refuted by the

following result.
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Theorem 21 (M. Albert and S. Linton, 2009) There is

a nonempty closed set

A ⊂ [0, +∞)

such that A has no isolated point and every number in A is the

growth rate of a permutation class.

As we saw in the lecture before the last lecture, Baire’s theorem im-

plies that each such setA is uncountable. Thus we have uncountably

many growth rates of permutation classes, and (since the set of al-

gebraic numbers is countable) almost all of them are non-algebraic.

Corollary 22 (transcendental growths) Hence there exist

non-algebraic growth rates of permutation classes.

Exercise 23 How does it exactly follow from Baire’s theorem

that the above set A is uncountable?

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz)

by the end of the coming Sunday solutions to the Exercises 2, 4, 15,

20 and 23.
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