MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2024/25
lecturer: Martin Klazar

LECTURE 4 (March 12, 2025) THE PROOF OF
FUNDAMENTAL THEOREM OF ALGEBRA. COMPLETE
SPACES. BAIRE'S THEOREM

e n-th complex roots. To prove the existence of n-th roots in C, we
first reduce the situation to odd n and to numbers with modulus 1
which lie on the complex unit circle S.

Exercise 1 Using the last two exercises in the previous lecture,
prove that if for every uw € S and for every odd n € N there
erists a v € S such that v" = u, then the following theorem
holds.

Theorem 2 (n-th roots in C) Complex numbers contain all
n-th roots, formally

VueCVneNIveC(v'=u).

Proof. So we can assume that v € S and n € N is odd. We need
to prove that the map

fz)=2":5—=9,

which is clearly continuous, is onto. We assume for contradiction
that there is a number

w e S\ flS]

(that is, w has no n-th root). Since n is odd, also —w € S\ f[9]
(always f(—z) = — f(2)). We consider the line ¢ C C going through

1



the points w and —w. Then we have the partition
C=AulUB,

where A and B are open half-planes determined by ¢. By Exercise 3,
A and B are disjoint open sets. By Exercise 4, (AU B) NS =
S\ A{w, —w}, {1,—1} C fIS]N(AUB) and |[AN{l,—1}| = 1.
Thus, the sets A and B cut the set f[S] and make it disconnected.
This contradicts Theorem 21 in the last lecture, because f[S] is the
image of the connected set S by the continuous function f and is
therefore connected. O

Exercise 3 Prove that for every line { C C, C\/ is the disjoint
union of two open sets.

Exercise 4 Let { C C be a line passing through the origin, £ N
S ={w,—w} and A and B are the open half-planes determined
by it. Prove that (AU B)NS = S\ {w, —w} and that for every
u € S\{w, —w}, the points u and —u lie in different half-planes
A and B.

We proceed to the second step of the proof of FTAlg which uses
compact sets in C. Recall that the complex numbers C form the
MS (C, |u — v|) which is isometric to the Euclidean plane (R?, es).

Exercise 5 For every real numbers o < o' and 5 < 3, the
rectangle

R={a+bi: a<a<dANF<bL P}

1S a compact set.



Proposition 6 (reduction to n-th roots) If C contains all
roots, then the Fundamental Theorem of Algebra holds, every
non-constant complex polynomaial has a root.

Proof. Let
p(2) =ag+ a1z +ag2® + -+ +a,2"

be a non-constant complex polynomial: n € N, a; € C and a,, # 0.
The function

f(z) =|p(z)]: C =10, +0) C C

is continuous. We prove that f(u) = 0 for some u € C. Then also
p(u) = 0 and u is a root of p(z).

First we prove that f attains on its definition domain C a mini-
mum value f(u). Then we prove that f(u) = 0. Let the real number
K > 0 be so large that

K"|a,|
2

[

2

n—1
> |ap| and Z |a;| K77 <

J=0

Then for every z € C we have the estimate that

We define a rectangle
R={a+bi: —K<a, b<K}CC.

Clearly, if z € C\ R then |z| > K. By Theorem 15 in the second
lecture (the minimax principle) and Exercise 5 in this lecture there
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exists u € R such that f(u) < f(v) for every v € R. Since 0 € R,
f(u) < f(0). By the above estimate we have that

Vo e C(f(u) < f(v)) .

Thus f attains at u the smallest value on C.
We prove that f(u) = 0. To this end we express the polynomial
p(2) by Exercise 7 as

p) = D bz =)

with b; € C and b, = a,. So f(u) = |p(u)| = |bo|. Let for contrary
f(u) = |by| > 0. We find the first non-zero non-constant coefficient
br in p(z) and write it as

p(2) = by + bp(z — u)* + by (2 — w) by (2— ),

7

"~

q(z)
where ¢ € C|z], k € N, by # 0 and by # 0. We use the assumption
of existence of roots in C and take an o € C such that

It is clear that ¢(z) = o((z — u)¥) (for z — u), so that
lim q(2)(z —u) " =0.

Z—U

Hence we can take a § € (0, 1) such that for

v=1u-+dx
one has ,
o)) <ot 20
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We get the contradiction that f(v) < f(u):

f(v) = |p(v)] = [bo + bt + g(v))]
. [bo(1 — %) + g(v)]
A’s ineq. and mult. | - | "

< [bo| (1 = 0%) + |q(v)]

lq(v)] <.
< [bo| (1 — %/2)

de€(0,1)
< |bo| = f(u) .

Hence f(u) =0 and p(u) = 0. O

Exercise 7 Prove that for eny n € Ny and any complexr num-
bers agy, ai, ..., a, and u there exist complexr numbers by, b,
..., by such that b, = a, and the polynomial equality

Zn: a;z = z": bi(z — u)
=0 =0

holds.

e Complete metric spaces and complete sets. Let (M, d) be a MS.
It is complete if every Cauchy sequence (a,) C M is convergent.
Recall that Cauchy sequence (a,,) satisfies

Ve dng (m, n>ng = dan,, a,) < 5) :
A set X C M is complete if the subspace (X, d) is complete.

Exercise 8 Let (M,d) be MS and X C' Y C M. Prove that a
set X is complete in the MS (Y, d) if and only if it is complete
in the MS (M, d).



Exercise 9 Prove that the Cartesian product
(M x N, dxe)
of complete MSs (M, d) and (N, e) is a complete MS.
A basic example of a complete MS is the Euclidean space
(R, e1) = (R, |z —y]) .

It is complete due to the fact that every sequence (a,) C R is con-
vergent if and only if it is Cauchy. By Exercise 9 all Euclidean spaces
(R, e,), n € N, are complete. We can construct many complete
MSs as follows.

Proposition 10 (closed subspaces) In every complete MS
(M, d) every closed subset X C M is complete.

Proof. Let (a,) € X be a Cauchy sequence in the closed set
X C M in the complete MS (M, d). There exists a = lim a,, € M.
Since X is a closed set, a € X. So the set X is complete. O

Exercise 11 Let X C M be a compact set in a MS (M,d).
Prove that X 1s complete.

Exercise 12 Give an example of a complete and non-compact
set X C R in the Fuclidean MS (R, ey).

Exercise 13 Which of the following implications holds in a MS
(M,d)?

1. X C M 1is a complete set = X 1is closed.

2. X CM andY C M are complete sets = X UY 1is a com-
plete set.



3. X CMandY C M are complete sets = X NY is a com-
plete set.

4. X C M 1is a complete set = X 15 bounded.
5. X C M s finite = X 1is complete.

e Baire’s theorem. This is the main result about complete metric

spaces. It says that no complete MS is a countable union of sparse
sets. A set X C M in a MS (M, d) is sparse (in M ) if

Vae MVr>03dbe M ds>0
(B(b, s) C Bla, ) AB(b, s) N X = 0)

— every ball in (M, d) contains a subball disjoint to X. Similarly,
aset X C M ina MS (M,d) is dense (in M ) if

Vae MYr>0(Ba,r)NX #0)
— every ball in (M, d) contains an element of the set X.

Exercise 14 Let (M, d) be a MS and X C M be a subset. Prove
the equivalence that

X is dense <= VYa € M 3(a,) C X (lim a, =a) .

Proposition 15 (density and continuity) Let (M,d) and (N, e)
be MSs, X C M be dense in M and let

f,g: M — N

be continuous mappings such that f| X = g| X (their restricti-
ons to X coincide). Then f =g.



Proof. Let a € M be an arbitrary point. Since X is dense, by
the previous exercise there exists a sequence (a,) C X such that
lim a,, = a. Using Heine’s definition of continuity of functions and
the assumption about f and g, we have that

f(a) = lim f(an) = lim g(a,) = g(a).
So f=g. O
Exercise 16 Any finite union of sparse sets is a sparse set.
This 1s 1 general not true for countable unions.

Exercise 17 The intersection of two dense sets, one of which
1s open, 18 a dense set. This is in general not true if we omit
the assumption of openness.

For a € M and real r > 0, the closed ball B(a,r) in a MS
(M, d) is the set

Bla,r)={x € M |d(a, z) <r}.

Exercise 18 Every closed ball B(a,r) is a closed set. For every
ace M andr,s e R with 0 <r < s,

B(a, r) C B(a, s) .
Theorem 19 (Baire’s) Let (M, d) be a complete MS and

M—QXn.

Then for some n, the set X,, is not sparse. In other words, no
complete metric space is a countable union of sparse sets.

8



Proof. We assume that all sets X, are sparse and deduce a con-
tradiction. We construct a sequence (B,,) of nested closed balls with
centers converging to a point a € M not in any X,,, which is a con-
tradiction.

Let B(b,1) C M be arbitrary. X; is sparse and there exists
an a; in M and an s; > 0 such that B(aj,s;) C B(b,1) and

B(ay,s1) N X1 = 0. We set

B(ay, r1) = B(ay, min(s; /2, 1/2)) .

Then B(ay, ) C B(ay, s1), thus B(ay,r)NX; =0, andr; < 1/2.
Suppose that we already defined the closed balls

B(ay, r1) D Blag, 73) D -+ D Blay, 1)

such that for i = 1,2,....n, B(a;,7) N X; = 0 and r; < 27°
Since X,,11 is sparse, there exist a,,.1 € M and s,,1 > 0 such that
B<an+17 Sn—H) - B(CLn, rn) and B(a'n—i-la Sn—i—l) M Xn—i—l - @ We set

Blani1, Tni1) = B(any1, min(s,1/2, 27"74) .

Then

B(an+17 Tn—i—l) C E(an; Tn) M B(an—i—la Sn—l—l) .

Hence also E(anﬂ, Spa1) N X1 =0 and r, g < 2—n—1
The sequence (a,,) C M of the centers of the closed balls defined
above is Cauchy:

_ _ 1

m >n = Blan, ) C Bla,, r,) and d(am, a,) <1, < TR

We use completeness of the MS (M, d) and take the limit
a=1lma, € M.
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Since m > n = a,, € B(an,rn) and since by Exercise 18 every
B(ay, ry) is a closed set, the limit a lies in every closed ball B(a,,, 7,,)
and therefore in none of the sets X,,, which is a contradiction. O

Baire’s theorem has many applications, but now we mention only
one. A point a € M in a MS (M, d) is isolated if

3r > 0(B(a, r) = {a}) .
Exercise 20 Prove that in any MS (M, d),

a € M is not isolated <= {a} is a sparse set in M .

Corollary 21 (uncountability) Any complete MS (M, d) wi-
thout isolated points is uncountable.
Proof. Suppose for the contrary that M is countable. Then
M = | J{a}
aceM

is a countable union. Since each set {a} is sparse (by the previous
exercise), we have a contradiction with Baire’s theorem. O

THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz)
by the end of the coming Sunday solutions to the Exercises 7, 11,
13, 16 and 20.
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