
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2024/25

lecturer: Martin Klazar

LECTURE 4 (March 12, 2025) THE PROOF OF

FUNDAMENTAL THEOREM OF ALGEBRA. COMPLETE

SPACES. BAIRE’S THEOREM

• n-th complex roots. To prove the existence of n-th roots in C, we

first reduce the situation to odd n and to numbers with modulus 1

which lie on the complex unit circle S.

Exercise 1 Using the last two exercises in the previous lecture,

prove that if for every u ∈ S and for every odd n ∈ N there

exists a v ∈ S such that vn = u, then the following theorem

holds.

Theorem 2 (n-th roots in C) Complex numbers contain all

n-th roots, formally

∀u ∈ C ∀n ∈ N ∃ v ∈ C
(
vn = u

)
.

Proof. So we can assume that u ∈ S and n ∈ N is odd. We need

to prove that the map

f (z) = zn : S → S ,

which is clearly continuous, is onto. We assume for contradiction

that there is a number

w ∈ S \ f [S]

(that is, w has no n-th root). Since n is odd, also −w ∈ S \ f [S]

(always f (−z) = −f (z)). We consider the line ` ⊂ C going through
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the points w and −w. Then we have the partition

C = A ∪ ` ∪B ,

whereA andB are open half-planes determined by `. By Exercise 3,

A and B are disjoint open sets. By Exercise 4, (A ∪ B) ∩ S =

S \ {w,−w}, {1,−1} ⊂ f [S] ∩ (A ∪ B) and |A ∩ {1,−1}| = 1.

Thus, the sets A and B cut the set f [S] and make it disconnected.

This contradicts Theorem 21 in the last lecture, because f [S] is the

image of the connected set S by the continuous function f and is

therefore connected. 2

Exercise 3 Prove that for every line ` ⊂ C, C\` is the disjoint

union of two open sets.

Exercise 4 Let ` ⊂ C be a line passing through the origin, `∩
S = {w,−w} and A and B are the open half-planes determined

by it. Prove that (A∪B)∩ S = S \ {w,−w} and that for every

u ∈ S\{w,−w}, the points u and −u lie in different half-planes

A and B.

We proceed to the second step of the proof of FTAlg which uses

compact sets in C. Recall that the complex numbers C form the

MS (C, |u− v|) which is isometric to the Euclidean plane (R2, e2).

Exercise 5 For every real numbers α ≤ α′ and β ≤ β′, the

rectangle

R = {a + bi : α ≤ a ≤ α′ ∧ β ≤ b ≤ β′}

is a compact set.
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Proposition 6 (reduction to n-th roots) If C contains all

roots, then the Fundamental Theorem of Algebra holds, every

non-constant complex polynomial has a root.

Proof. Let

p(z) = a0 + a1z + a2z
2 + · · · + anz

n

be a non-constant complex polynomial: n ∈ N, aj ∈ C and an 6= 0.

The function

f (z) = |p(z)| : C→ [0, +∞) ⊂ C

is continuous. We prove that f (u) = 0 for some u ∈ C. Then also

p(u) = 0 and u is a root of p(z).

First we prove that f attains on its definition domain C a mini-

mum value f (u). Then we prove that f (u) = 0. Let the real number

K > 0 be so large that

Kn|an|
2

> |a0| and

n−1∑
j=0

|aj|Kj−n <
|an|

2
.

Then for every z ∈ C we have the estimate that

|z| > K ⇒ f (z) = |p(z)| ≥ |z|n
(
|an| −

n−1∑
j=0

|aj| · |z|j−n
)

> |a0| = |p(0)| = f (0) .

We define a rectangle

R = {a + bi : −K ≤ a, b ≤ K} ⊂ C .

Clearly, if z ∈ C \ R then |z| > K. By Theorem 15 in the second

lecture (the minimax principle) and Exercise 5 in this lecture there
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exists u ∈ R such that f (u) ≤ f (v) for every v ∈ R. Since 0 ∈ R,

f (u) ≤ f (0). By the above estimate we have that

∀ v ∈ C
(
f (u) ≤ f (v)

)
.

Thus f attains at u the smallest value on C.

We prove that f (u) = 0. To this end we express the polynomial

p(z) by Exercise 7 as

p(z) =

n∑
j=0

bj(z − u)j ,

with bj ∈ C and bn = an. So f (u) = |p(u)| = |b0|. Let for contrary

f (u) = |b0| > 0. We find the first non-zero non-constant coefficient

bk in p(z) and write it as

p(z) = b0 + bk(z − u)k + bk+1(z − u)k+1 + · · · + bn(z − u)n︸ ︷︷ ︸
q(z)

,

where q ∈ C[z], k ∈ N, b0 6= 0 and bk 6= 0. We use the assumption

of existence of roots in C and take an α ∈ C such that

αk = −b0

bk
.

It is clear that q(z) = o((z − u)k) (for z → u), so that

lim
z→u

q(z)(z − u)−k = 0 .

Hence we can take a δ ∈ (0, 1) such that for

v = u + δα

one has

|q(v)| < δk · |b0|
2
.
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We get the contradiction that f (v) < f (u):

f (v) = |p(v)| = |b0 + bkα
kδk + q(v)|

def. of α
= |b0(1− δk) + q(v)|

∆’s ineq. and mult. | · |
≤ |b0|(1− δk) + |q(v)|

|q(v)| < . . .
< |b0|(1− δk/2)

δ ∈ (0, 1)
< |b0| = f (u) .

Hence f (u) = 0 and p(u) = 0. 2

Exercise 7 Prove that for eny n ∈ N0 and any complex num-

bers a0, a1, . . . , an and u there exist complex numbers b0, b1,

. . . , bn such that bn = an and the polynomial equality

n∑
j=0

ajz
j =

n∑
j=0

bj(z − u)j

holds.

• Complete metric spaces and complete sets. Let (M,d) be a MS.

It is complete if every Cauchy sequence (an) ⊂ M is convergent.

Recall that Cauchy sequence (an) satisfies

∀ ε ∃n0

(
m, n ≥ n0 ⇒ d(am, an) < ε

)
.

A set X ⊂M is complete if the subspace (X, d) is complete.

Exercise 8 Let (M,d) be MS and X ⊂ Y ⊂ M . Prove that a

set X is complete in the MS (Y, d) if and only if it is complete

in the MS (M,d).
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Exercise 9 Prove that the Cartesian product

(M ×N, d× e)

of complete MSs (M,d) and (N, e) is a complete MS.

A basic example of a complete MS is the Euclidean space

(R, e1) = (R, |x− y|) .

It is complete due to the fact that every sequence (an) ⊂ R is con-

vergent if and only if it is Cauchy. By Exercise 9 all Euclidean spaces

(Rn, en), n ∈ N, are complete. We can construct many complete

MSs as follows.

Proposition 10 (closed subspaces) In every complete MS

(M,d) every closed subset X ⊂M is complete.

Proof. Let (an) ⊂ X be a Cauchy sequence in the closed set

X ⊂M in the complete MS (M,d). There exists a = lim an ∈M .

Since X is a closed set, a ∈ X . So the set X is complete. 2

Exercise 11 Let X ⊂ M be a compact set in a MS (M,d).

Prove that X is complete.

Exercise 12 Give an example of a complete and non-compact

set X ⊂ R in the Euclidean MS (R, e1).

Exercise 13 Which of the following implications holds in a MS

(M,d)?

1. X ⊂M is a complete set ⇒ X is closed.

2. X ⊂M and Y ⊂M are complete sets ⇒ X ∪ Y is a com-

plete set.
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3. X ⊂M and Y ⊂M are complete sets ⇒ X ∩ Y is a com-

plete set.

4. X ⊂M is a complete set ⇒ X is bounded.

5. X ⊂M is finite ⇒ X is complete.

• Baire’s theorem. This is the main result about complete metric

spaces. It says that no complete MS is a countable union of sparse

sets. A set X ⊂M in a MS (M,d) is sparse (in M) if

∀ a ∈M ∀ r > 0 ∃ b ∈M ∃ s > 0(
B(b, s) ⊂ B(a, r) ∧B(b, s) ∩X = ∅

)
− every ball in (M,d) contains a subball disjoint to X . Similarly,

a set X ⊂M in a MS (M,d) is dense (in M) if

∀ a ∈M ∀ r > 0
(
B(a, r) ∩X 6= ∅

)
− every ball in (M,d) contains an element of the set X .

Exercise 14 Let (M,d) be a MS and X ⊂M be a subset. Prove

the equivalence that

X is dense ⇐⇒ ∀ a ∈M ∃ (an) ⊂ X
(

lim an = a
)
.

Proposition 15 (density and continuity) Let (M,d) and (N, e)

be MSs, X ⊂M be dense in M and let

f, g : M → N

be continuous mappings such that f |X = g |X (their restricti-

ons to X coincide). Then f = g.
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Proof. Let a ∈ M be an arbitrary point. Since X is dense, by

the previous exercise there exists a sequence (an) ⊂ X such that

lim an = a. Using Heine’s definition of continuity of functions and

the assumption about f and g, we have that

f (a) = lim f (an) = lim g(an) = g(a).

So f = g. 2

Exercise 16 Any finite union of sparse sets is a sparse set.

This is in general not true for countable unions.

Exercise 17 The intersection of two dense sets, one of which

is open, is a dense set. This is in general not true if we omit

the assumption of openness.

For a ∈ M and real r > 0, the closed ball B(a, r) in a MS

(M,d) is the set

B(a, r) = {x ∈M | d(a, x) ≤ r} .

Exercise 18 Every closed ball B(a, r) is a closed set. For every

a ∈M and r, s ∈ R with 0 < r < s,

B(a, r) ⊂ B(a, s) .

Theorem 19 (Baire’s) Let (M,d) be a complete MS and

M =

∞⋃
n=1

Xn .

Then for some n, the set Xn is not sparse. In other words, no

complete metric space is a countable union of sparse sets.
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Proof. We assume that all sets Xn are sparse and deduce a con-

tradiction. We construct a sequence (Bn) of nested closed balls with

centers converging to a point a ∈M not in any Xn, which is a con-

tradiction.

Let B(b, 1) ⊂ M be arbitrary. X1 is sparse and there exists

an a1 in M and an s1 > 0 such that B(a1, s1) ⊂ B(b, 1) and

B(a1, s1) ∩X1 = ∅. We set

B(a1, r1) = B(a1, min(s1/2, 1/2)) .

ThenB(a1, r1) ⊂ B(a1, s1), thusB(a1, r1)∩X1 = ∅, and r1 ≤ 1/2.

Suppose that we already defined the closed balls

B(a1, r1) ⊃ B(a2, r2) ⊃ · · · ⊃ B(an, rn)

such that for i = 1, 2, . . . , n, B(ai, ri) ∩ Xi = ∅ and ri ≤ 2−i.

Since Xn+1 is sparse, there exist an+1 ∈M and sn+1 > 0 such that

B(an+1, sn+1) ⊂ B(an, rn) and B(an+1, sn+1) ∩Xn+1 = ∅. We set

B(an+1, rn+1) = B(an+1, min(sn+1/2, 2−n−1)) .

Then

B(an+1, rn+1) ⊂ B(an, rn) ∩B(an+1, sn+1) .

Hence also B(an+1, sn+1) ∩Xn+1 = ∅ and rn+1 ≤ 2−n−1.

The sequence (an) ⊂M of the centers of the closed balls defined

above is Cauchy:

m ≥ n⇒ B(am, rm) ⊂ B(an, rn) and d(am, an) ≤ rn ≤
1

2n
.

We use completeness of the MS (M,d) and take the limit

a = lim an ∈M .
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Since m ≥ n ⇒ am ∈ B(an, rn) and since by Exercise 18 every

B(an, rn) is a closed set, the limit a lies in every closed ballB(an, rn)

and therefore in none of the sets Xn, which is a contradiction. 2

Baire’s theorem has many applications, but now we mention only

one. A point a ∈M in a MS (M,d) is isolated if

∃ r > 0
(
B(a, r) = {a}

)
.

Exercise 20 Prove that in any MS (M,d),

a ∈M is not isolated ⇐⇒ {a} is a sparse set in M .

Corollary 21 (uncountability) Any complete MS (M,d) wi-

thout isolated points is uncountable.

Proof. Suppose for the contrary that M is countable. Then

M =
⋃
a∈M

{a}

is a countable union. Since each set {a} is sparse (by the previous

exercise), we have a contradiction with Baire’s theorem. 2

THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz)

by the end of the coming Sunday solutions to the Exercises 7, 11,

13, 16 and 20.
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