MATHEMATICAL ANALYSIS 3 (NMAI056) summer term 2024/25 lecturer: Martin Klazar

LECTURE 4 (March 12, 2025) THE PROOF OF FUNDAMENTAL THEOREM OF ALGEBRA. COMPLETE SPACES. BAIRE'S THEOREM

• *n*-th complex roots. To prove the existence of *n*-th roots in \mathbb{C} , we first reduce the situation to odd *n* and to numbers with modulus 1 which lie on the complex unit circle *S*.

Exercise 1 Using the last two exercises in the previous lecture, prove that if for every $u \in S$ and for every odd $n \in \mathbb{N}$ there exists a $v \in S$ such that $v^n = u$, then the following theorem holds.

Theorem 2 (n-th roots in \mathbb{C}) Complex numbers contain all *n-th roots, formally*

$$\forall u \in \mathbb{C} \ \forall n \in \mathbb{N} \ \exists v \in \mathbb{C} \ \left(v^n = u \right) \ .$$

Proof. So we can assume that $u \in S$ and $n \in \mathbb{N}$ is odd. We need to prove that the map

$$f(z) = z^n \colon S \to S \;,$$

which is clearly continuous, is onto. We assume for contradiction that there is a number

$$w \in S \setminus f[S]$$

(that is, w has no n-th root). Since n is odd, also $-w \in S \setminus f[S]$ (always f(-z) = -f(z)). We consider the line $\ell \subset \mathbb{C}$ going through the points w and -w. Then we have the partition

$$\mathbb{C} = A \cup \ell \cup B$$

where A and B are open half-planes determined by ℓ . By Exercise 3, A and B are disjoint open sets. By Exercise 4, $(A \cup B) \cap S =$ $S \setminus \{w, -w\}, \{1, -1\} \subset f[S] \cap (A \cup B)$ and $|A \cap \{1, -1\}| = 1$. Thus, the sets A and B cut the set f[S] and make it disconnected. This contradicts Theorem 21 in the last lecture, because f[S] is the image of the connected set S by the continuous function f and is therefore connected.

Exercise 3 Prove that for every line $\ell \subset \mathbb{C}$, $\mathbb{C} \setminus \ell$ is the disjoint union of two open sets.

Exercise 4 Let $\ell \subset \mathbb{C}$ be a line passing through the origin, $\ell \cap S = \{w, -w\}$ and A and B are the open half-planes determined by it. Prove that $(A \cup B) \cap S = S \setminus \{w, -w\}$ and that for every $u \in S \setminus \{w, -w\}$, the points u and -u lie in different half-planes A and B.

We proceed to the second step of the proof of FTAlg which uses compact sets in \mathbb{C} . Recall that the complex numbers \mathbb{C} form the MS $(\mathbb{C}, |u - v|)$ which is isometric to the Euclidean plane (\mathbb{R}^2, e_2) .

Exercise 5 For every real numbers $\alpha \leq \alpha'$ and $\beta \leq \beta'$, the rectangle

$$R = \{a + bi: \ \alpha \le a \le \alpha' \land \beta \le b \le \beta'\}$$

is a compact set.

Proposition 6 (reduction to *n***-th roots)** If \mathbb{C} contains all roots, then the Fundamental Theorem of Algebra holds, every non-constant complex polynomial has a root.

Proof. Let

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

be a non-constant complex polynomial: $n \in \mathbb{N}$, $a_j \in \mathbb{C}$ and $a_n \neq 0$. The function

$$f(z)=|p(z)|\colon \mathbb{C}\to [0,\,+\infty)\subset \mathbb{C}$$

is continuous. We prove that f(u) = 0 for some $u \in \mathbb{C}$. Then also p(u) = 0 and u is a root of p(z).

First we prove that f attains on its definition domain \mathbb{C} a minimum value f(u). Then we prove that f(u) = 0. Let the real number K > 0 be so large that

$$\frac{K^n|a_n|}{2} > |a_0|$$
 and $\sum_{j=0}^{n-1} |a_j| K^{j-n} < \frac{|a_n|}{2}$.

Then for every $z \in \mathbb{C}$ we have the estimate that

$$|z| > K \Rightarrow f(z) = |p(z)| \ge |z|^n \left(|a_n| - \sum_{j=0}^{n-1} |a_j| \cdot |z|^{j-n} \right)$$

> $|a_0| = |p(0)| = f(0)$.

We define a rectangle

$$R = \{a + bi: -K \le a, b \le K\} \subset \mathbb{C}.$$

Clearly, if $z \in \mathbb{C} \setminus R$ then |z| > K. By Theorem 15 in the second lecture (the minimax principle) and Exercise 5 in this lecture there

exists $u \in R$ such that $f(u) \leq f(v)$ for every $v \in R$. Since $0 \in R$, $f(u) \leq f(0)$. By the above estimate we have that

$$\forall v \in \mathbb{C} \left(f(u) \leq f(v) \right)$$
.

Thus f attains at u the smallest value on \mathbb{C} .

We prove that f(u) = 0. To this end we express the polynomial p(z) by Exercise 7 as

$$p(z) = \sum_{j=0}^{n} b_j (z-u)^j$$
,

with $b_j \in \mathbb{C}$ and $b_n = a_n$. So $f(u) = |p(u)| = |b_0|$. Let for contrary $f(u) = |b_0| > 0$. We find the first non-zero non-constant coefficient b_k in p(z) and write it as

$$p(z) = b_0 + b_k(z-u)^k + \underbrace{b_{k+1}(z-u)^{k+1} + \dots + b_n(z-u)^n}_{q(z)},$$

where $q \in \mathbb{C}[z]$, $k \in \mathbb{N}$, $b_0 \neq 0$ and $b_k \neq 0$. We use the assumption of existence of roots in \mathbb{C} and take an $\alpha \in \mathbb{C}$ such that

$$\alpha^k = -\frac{b_0}{b_k} \, .$$

It is clear that $q(z) = o((z - u)^k)$ (for $z \to u$), so that

$$\lim_{z \to u} q(z)(z-u)^{-k} = 0 \; .$$

Hence we can take a $\delta \in (0, 1)$ such that for

$$v = u + \delta \alpha$$

one has

$$|q(v)| < \delta^k \cdot \frac{|b_0|}{2} .$$

We get the contradiction that f(v) < f(u):

$$\begin{aligned} f(v) &= |p(v)| &= |b_0 + b_k \alpha^k \delta^k + q(v)| \\ \stackrel{\text{def. of } \alpha}{=} |b_0(1 - \delta^k) + q(v)| \\ \Delta \text{'s ineq. and mult. } |\cdot| &\leq |b_0|(1 - \delta^k) + |q(v)| \\ \stackrel{|q(v)| < \dots}{<} |b_0|(1 - \delta^k/2) \\ \delta \in (0, 1) \\ < |b_0| = f(u) . \end{aligned}$$

Hence f(u) = 0 and p(u) = 0.

Exercise 7 Prove that for eng $n \in \mathbb{N}_0$ and any complex numbers a_0, a_1, \ldots, a_n and u there exist complex numbers b_0, b_1, \ldots, b_n such that $b_n = a_n$ and the polynomial equality

$$\sum_{j=0}^{n} a_j z^j = \sum_{j=0}^{n} b_j (z-u)^j$$

holds.

• Complete metric spaces and complete sets. Let (M, d) be a MS. It is complete if every Cauchy sequence $(a_n) \subset M$ is convergent. Recall that Cauchy sequence (a_n) satisfies

$$\forall \varepsilon \exists n_0 (m, n \ge n_0 \Rightarrow d(a_m, a_n) < \varepsilon) .$$

A set $X \subset M$ is *complete* if the subspace (X, d) is complete.

Exercise 8 Let (M, d) be MS and $X \subset Y \subset M$. Prove that a set X is complete in the MS (Y, d) if and only if it is complete in the MS (M, d).

Exercise 9 Prove that the Cartesian product

 $(M \times N, d \times e)$

of complete MSs (M, d) and (N, e) is a complete MS.

A basic example of a complete MS is the Euclidean space

$$(\mathbb{R}, e_1) = (\mathbb{R}, |x - y|).$$

It is complete due to the fact that every sequence $(a_n) \subset \mathbb{R}$ is convergent if and only if it is Cauchy. By Exercise 9 all Euclidean spaces $(\mathbb{R}^n, e_n), n \in \mathbb{N}$, are complete. We can construct many complete MSs as follows.

Proposition 10 (closed subspaces) In every complete MS (M, d) every closed subset $X \subset M$ is complete.

Proof. Let $(a_n) \subset X$ be a Cauchy sequence in the closed set $X \subset M$ in the complete MS (M, d). There exists $a = \lim a_n \in M$. Since X is a closed set, $a \in X$. So the set X is complete. \Box

Exercise 11 Let $X \subset M$ be a compact set in a MS (M, d). Prove that X is complete.

Exercise 12 Give an example of a complete and non-compact set $X \subset \mathbb{R}$ in the Euclidean MS (\mathbb{R}, e_1) .

Exercise 13 Which of the following implications holds in a MS (M, d)?

- 1. $X \subset M$ is a complete set $\Rightarrow X$ is closed.
- 2. $X \subset M$ and $Y \subset M$ are complete sets $\Rightarrow X \cup Y$ is a complete set.

3. $X \subset M$ and $Y \subset M$ are complete sets $\Rightarrow X \cap Y$ is a complete set.

4.
$$X \subset M$$
 is a complete set $\Rightarrow X$ is bounded.

5. $X \subset M$ is finite $\Rightarrow X$ is complete.

• Baire's theorem. This is the main result about complete metric spaces. It says that no complete MS is a countable union of sparse sets. A set $X \subset M$ in a MS (M, d) is sparse (in M) if

$$\forall a \in M \ \forall r > 0 \ \exists b \in M \ \exists s > 0 \\ \left(B(b, s) \subset B(a, r) \land B(b, s) \cap X = \emptyset \right)$$

- every ball in (M, d) contains a subball disjoint to X. Similarly, a set $X \subset M$ in a MS (M, d) is *dense (in M)* if

$$\forall a \in M \ \forall r > 0 \left(B(a, r) \cap X \neq \emptyset \right)$$

- every ball in (M, d) contains an element of the set X.

Exercise 14 Let (M, d) be a MS and $X \subset M$ be a subset. Prove the equivalence that

$$X \text{ is dense} \iff \forall a \in M \exists (a_n) \subset X (\lim a_n = a).$$

Proposition 15 (density and continuity) Let (M, d) and (N, e) be MSs, $X \subset M$ be dense in M and let

$$f, g \colon M \to N$$

be continuous mappings such that $f \mid X = g \mid X$ (their restrictions to X coincide). Then f = g.

Proof. Let $a \in M$ be an arbitrary point. Since X is dense, by the previous exercise there exists a sequence $(a_n) \subset X$ such that $\lim a_n = a$. Using Heine's definition of continuity of functions and the assumption about f and g, we have that

$$f(a) = \lim f(a_n) = \lim g(a_n) = g(a).$$

So f = g.

Exercise 16 Any finite union of sparse sets is a sparse set. This is in general not true for countable unions.

Exercise 17 The intersection of two dense sets, one of which is open, is a dense set. This is in general not true if we omit the assumption of openness.

For $a \in M$ and real r > 0, the *closed ball* $\overline{B}(a, r)$ in a MS (M, d) is the set

$$\overline{B}(a, r) = \{ x \in M \mid d(a, x) \le r \} .$$

Exercise 18 Every closed ball $\overline{B}(a, r)$ is a closed set. For every $a \in M$ and $r, s \in \mathbb{R}$ with 0 < r < s,

$$\overline{B}(a, r) \subset B(a, s)$$
.

Theorem 19 (Baire's) Let (M, d) be a complete MS and

$$M = \bigcup_{n=1}^{\infty} X_n \; .$$

Then for some n, the set X_n is not sparse. In other words, no complete metric space is a countable union of sparse sets.

Proof. We assume that all sets X_n are sparse and deduce a contradiction. We construct a sequence $(\overline{B_n})$ of nested closed balls with centers converging to a point $a \in M$ not in any X_n , which is a contradiction.

Let $B(b,1) \subset M$ be arbitrary. X_1 is sparse and there exists an a_1 in M and an $s_1 > 0$ such that $B(a_1, s_1) \subset B(b, 1)$ and $B(a_1, s_1) \cap X_1 = \emptyset$. We set

$$\overline{B}(a_1, r_1) = \overline{B}(a_1, \min(s_1/2, 1/2)) .$$

Then $\overline{B}(a_1, r_1) \subset B(a_1, s_1)$, thus $\overline{B}(a_1, r_1) \cap X_1 = \emptyset$, and $r_1 \leq 1/2$. Suppose that we already defined the closed balls

$$\overline{B}(a_1, r_1) \supset \overline{B}(a_2, r_2) \supset \cdots \supset \overline{B}(a_n, r_n)$$

such that for i = 1, 2, ..., n, $\overline{B}(a_i, r_i) \cap X_i = \emptyset$ and $r_i \leq 2^{-i}$. Since X_{n+1} is sparse, there exist $a_{n+1} \in M$ and $s_{n+1} > 0$ such that $B(a_{n+1}, s_{n+1}) \subset B(a_n, r_n)$ and $B(a_{n+1}, s_{n+1}) \cap X_{n+1} = \emptyset$. We set

$$\overline{B}(a_{n+1}, r_{n+1}) = \overline{B}(a_{n+1}, \min(s_{n+1}/2, 2^{-n-1}))$$
.

Then

$$\overline{B}(a_{n+1}, r_{n+1}) \subset \overline{B}(a_n, r_n) \cap B(a_{n+1}, s_{n+1}) .$$

Hence also $\overline{B}(a_{n+1}, s_{n+1}) \cap X_{n+1} = \emptyset$ and $r_{n+1} \leq 2^{-n-1}$.

The sequence $(a_n) \subset M$ of the centers of the closed balls defined above is Cauchy:

$$m \ge n \Rightarrow \overline{B}(a_m, r_m) \subset \overline{B}(a_n, r_n) \text{ and } d(a_m, a_n) \le r_n \le \frac{1}{2^n}.$$

We use completeness of the MS (M, d) and take the limit

$$a = \lim a_n \in M$$
.

Since $m \ge n \Rightarrow a_m \in \overline{B}(a_n, r_n)$ and since by Exercise 18 every $\overline{B}(a_n, r_n)$ is a closed set, the limit *a* lies in every closed ball $\overline{B}(a_n, r_n)$ and therefore in none of the sets X_n , which is a contradiction. \Box

Baire's theorem has many applications, but now we mention only one. A point $a \in M$ in a MS (M, d) is *isolated* if

$$\exists r > 0 (B(a, r) = \{a\}).$$

Exercise 20 Prove that in any MS (M, d),

 $a \in M$ is not isolated $\iff \{a\}$ is a sparse set in M.

Corollary 21 (uncountability) Any complete MS (M, d) without isolated points is uncountable.

Proof. Suppose for the contrary that M is countable. Then

$$M = \bigcup_{a \in M} \{a\}$$

is a countable union. Since each set $\{a\}$ is sparse (by the previous exercise), we have a contradiction with Baire's theorem. \Box

THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz) by the end of the coming Sunday solutions to the Exercises 7, 11, 13, 16 and 20.