
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2024/25

lecturer: Martin Klazar

LECTURE 1 (February 19, 2025) METRIC SPACES.

HEMISPHERE IS NOT FLAT. p-ADIC ULTRAMETRICS.

Syllabus in SIS:

1. Metric spaces: completeness, connectivity, compactness

2. Series: series of real/complex numbers, power series and series

of functions. Different types of convergence, operations with

series. Fourier series

3. Complex analysis: holomorphic functions, Cauchy formula - po-

les of a function, applications

4. Introduction to differential equations: equations with separated

variables, linear equations. Existence of a solution, numerical

view

We will follow it approximately.

A metric space (briefly MS) is a pair (M,d) of a set M 6= ∅ and

a map

d : M ×M → R ,

so called metric or distance. Moreover, for every x, y, z ∈ M it is

true that

1. d(x, y) = 0 ⇐⇒ x = y.

2. d(x, y) = d(y, x) (symmetry).
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3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

Exercise 1 Show that always d(x, y) ≥ 0.

Metric spaces with infinite distances are also considered but here

we will not use them.

Every subset X ⊂ M determines a new MS (X, d′), a subspace of

(M,d): for x, y ∈ X we set d′(x, y) = d(x, y). Both metrics are

usually denoted by the same symbol and we have a MS (X, d). An

isometry f of MSs (M,d) and (N, e) is a bijection f : M → N

preserving distances:

∀x, y ∈M
(
d(x, y) = e(f (x), f (y))

)
.

If it exists, we say that the spaces (M,d) and (N, e) are isometric.

It means that they are practically indistinguishable.

The most important example of a MS is the (n-dimensional) Eucli-

dean space (Rn, en), n ∈ N = {1, 2, . . . }, with the metric en given

for x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn by the formula

en(x, y) =
√∑n

i=1(xi − yi)2 .

Geometrically, en is the length of the segment joining the points

x and y. By an Euclidean space we mean more generally every

subspace (X, en) when X ⊂ Rn.

Proposition 2 (Rn is a MS) (Rn, en) is a metric space.

Proof. Clearly, the function en has properties 1 and 2 of a metric.

For n = 1, the triangle inequality is trivial, and for n ≥ 2 we can

prove it geometrically by reducing it to planar case n = 2. Indeed,

three different non-collinear points in Rn determine a unique two-

dimensional plane R ⊂ Rn, and all three distances between them
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in Rn are the same as in R. This is a non-trivial geometric property

of the Euclidean distance, and you can prove a generalization of it

in Exercise 4. So it suffices to prove the triangle inequality in R2.

Let A,B,C ∈ R2 be three different non-collinear points (otherwise

the triangle inequality holds for them trivially) and assume that

e2(A,B) ≥ e2(A, C), e2(C, B) .

It suffices to prove that e2(A,B) ≤ e2(A,C)+e2(C,B). According

to Exercise 3, the heel D of the height from C to the line AB

lies inside the segment AB. We consider two right-angled triangles

ADC and BDC, with a right angle at vertex D. Then, using the

Exercise 3 twice, we have

e2(A, B) = e2(A, D) + e2(D, B) < e2(A, C) + e2(C, B) .

2

Exercise 3 Prove the claim on the heel and that if ABC ⊂
R2 is a right triangle with a right angle at the vertex B, then

e2(A,B), e2(B,C) < e2(A,C).

Exercise 4 Let m ≤ n be natural numbers and R ⊂ Rn be

an affine subspace in Rn of dimension m, e.g. for m = 1 R is

a straight line and for m = 2, R is a plane. Show that the MSs

(R, en) and (Rm, em) are isometric.

Exercise 5 Let G = (V,E) be a connected (and not necessarily

finite) graph and let a function d : V ×V → N0 (= {0, 1, 2, . . . })
be defined as

d(u, v) = # edges on the shortest path in G from u to v .

Decide whether (V, d) is a MS.
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Exercise 6 Let M = R(a, b) be the set of functions that have

a Riemann integral on the interval [a, b] ⊂ R, and for f, g ∈M
let

d(f, g) =

∫ b

a

|f (t)− g(t)| dt .

Decide whether (M,d) is a MS.

Exercise 7 Let A 6= ∅ be a set (an alphabet) and

M = An = {u = u1u2 . . . un | ui ∈ A}, n ∈ N ,

be the set of words over the alphabet A of length n. We define

the function d : M ×M → N0 as

d(u, v) = #{i ∈ {1, 2, . . . , n} | ui 6= vi} .
Prove that (M,d) is a MS.

Exercise 8 Let X 6= ∅ be a set and let

M = {f | (f : X → R) ∧ ∃ c > 0
(
x ∈ X ⇒ |f (x)| < c

)
}

be the set of bounded real functions defined on X. For f, g ∈M
we define

d(f, g) = sup({|f (x)− g(x)| | x ∈ X}) .
Prove that (M,d) is a MS.

Spherical metric. We denote by

S = {(x1, x2, x3) ∈ R3 | x21 + x22 + x23 = 1}
the unit sphere (a sphere with radius 1) in the Euclidean space R3.

The function s : S × S → [0, π] is defined for x, y ∈ S as

s(x, y) =

{
0 . . . x = y and

ϕ . . . x 6= y ,
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where ϕ is the angle subtended by two straight lines passing through

the origin 0 = (0, 0, 0) and the points x and y, respectively. This

angle is actually the length of the shorter of the arcs between the

points x and y on the unit circle cut on S by the plane determined

by the points 0, x and y. We call the function s the spherical

metric.

To prove that s is a metric, we introduce the following termi-

nology. For A ∈ R3, an A-ray is an half-line in R3 starting in A,

and u(p, q) ∈ (0, π) is the angle between two different and non-

antipodal A-rays p and q. For an A-ray q and β ∈ (0, π) we mean

by the cone K = K(q, β) (with the axis q and vertex A) the surface

K =
⋃
{p | p is an A-ray and u(p, q) = β} .

Proposition 9 (S is a MS) (S, s) is a metric space.

Proof. Clearly, the function s has the properties 1 and 2 of a met-

ric. It suffices to prove property 3 for any three points on S. We

assume that they are mutually different and that no two of them

are antipodal (symmetric about the origin), for else the triangle

inequality holds for them trivially. We prove that if p, q and r are

three different and non-antipodal 0-rays (determined by the given

points), u(p, q) = α, u(q, r) = β and u(p, r) = γ, then γ ≤ α+ β.

We assume that p, q, α and β are given and find r ⊂ K(q, β) such

that the angle γ is maximized. By Exercise 10, r is equal to one of

the two 0-rays forming the intersection of R ∩K(q, β), where R is

the plane determined by p and q. In R we are in a planar situation

and it is clear that for three different and non-antipodal half-lines

in R2 starting from the origin (0, 0) and the angles α, β, γ ∈ (0, π)

determined by their pairs the inequality γ ≤ α + β always holds
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(Exercise 11). 2

Exercise 10 Let p and q be two different non-antipodal 0-rays,

β ∈ (0, π) and R ⊂ R3 be the plane determined by p and q.

Then the largest angle

max
r⊂K(q, β)

u(p, r)

is attained on one of the 0-rays forming K(q, β) ∩R.

Exercise 11 Let p, q, r ⊂ R2 be three half-lines that are diffe-

rent, non-antipodal and start from the origin (0, 0) and α, β, γ ∈
(0, π) be the angles determined by their pairs. Then γ ≤ α+ β.

We prove that the spherical metric differs substantially from the

Euclidean metric.

The (upper) hemisphere H is the set

H = {(x1, x2, x3) ∈ S | x3 ≥ 0} ⊂ S .

Theorem 12 (H is not flat) The metric space (H, s) is not

isometric to any Euclidean space (X, en) with X ⊂ Rn.

Proof. The following property of distances between four points t,

u, v and w in the Euclidean space (Rn, en) is not satisfied in (H, s):

en(t, u) = en(t, v) = en(u, v) > 0 ∧
∧ en(t, w) = en(w, u) = 1

2en(t, u)⇒
⇒ en(w, v) =

√
3
2 en(t, v) (< en(t, v)) .

According to the assumption of implication, the points t, u and v

form an equilateral triangle with a side of length x > 0, and w
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has from t and from u distance x
2 . According to Exercise 13, then

w is the center of the segment tu. These four points are therefore

coplanar (they all lie in the same plane) and the line segment vw is

the height dropped from the vertex v of the equilateral triangle tuv

to the side tu. According to the Pythagorean theorem, its length

e2(v, w) = en(v, w) (see Exercise 4) equals to
√
3
2 x, which is exactly

the conclusion of the implication.

We find on the hemisphere (H, s) four different points t, u, v

and w satisfying the assumption of the previous implication, but not

its conclusion. It follows that the isometry between the hemisphere

and the Euclidean space does not exist, because every isometry

preserves by its definition the implication. These points are

t = (1, 0, 0), u = (0, 1, 0), v = (0, 0, 1) a w =
(

1√
2
, 1√

2
, 0
)
.

Clearly, s(t, u) = s(t, v) = s(u, v) = π
2 and s(t, w) = s(w, u) =

1
2s(t, u) = π

4 . Point v is the
”
north pole“ (x3 = 1), t, u and w lie

on the “equator” (x3 = 0) and w is the center of the arc tu. But

all points on the equator have the same distance π
2 from the pole v.

So s(w, v) = s(t, v) and the conclusion of the implication does not

hold. 2

Could not the previous proof be simplified so that we only argue

with three-point configurations (Exercise 15)? And what if instead

of the whole hemisphere we take only a small spherical cap (Exer-

cise 16)?

Exercise 13 When a, b, c ∈ Rn are different points in an Euc-

lidean space with distances en(c, a) = en(c, b) = 1
2en(a, b), then c

is the midpoint of the segment ab.
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Exercise 14 Does the analogy of the previous result hold in the

MS (S, s)?

Exercise 15 Can any spherical triangle be isometrically reali-

zed in the Euclidean plane (R2, e2)?

Exercise 16 Prove that no spherical cap (portion of the sphere

S cut off by a plane) with spherical metric is isometric to the

Euclidean space (X, en).

The metric d in a MS (M,d) is called an ultrametric, or a non-

Archimedean metric, if it satisfies the strong triangle inequality

∀x, y, z ∈M
(
d(x, y) ≤ max({d(x, z), d(z, y)})

)
.

Since max(d(x, z), d(z, y)) ≤ d(x, z) + d(z, y), every ultrametric is

a metric. In the following proposition and exercise, we will see that

when working in ultrametric spaces, abbreviated UMS, one cannot

rely on the intuition developed in Euclidean spaces.

Proposition 17 (triangles in UMS) In the ultrametric space

(M,d), every triangle is isosceles, that is, it has two sides of

equal length.

Proof. Let x, y, z ∈ M be three different points in the UMS

(M,d). Let d(x, y) ≥ d(x, z), d(z, y). Since d is an ultrametric, it

follows from

d(x, y) ≤ max({d(x, z), d(z, y)})
that d(x, y) = d(x, z) or d(x, y) = d(z, y). 2

An (open) ball (with center a ∈ M and radius r > 0) in a MS

(M,d) is the subset

B(a, r) = {x ∈M | d(x, a) < r} ⊂M .
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Always B(a, r) 6= ∅ because a ∈ B(a, r).

Exercise 18 Prove that for every ball in a UMS, every point

of it is its center.

Exercise 19 Prove an important supplement to the strong tri-

angle inequality: if d(x, z) 6= d(z, y) then the equality holds.

UMSs may appear bizarre when first encountered, but the strong

triangle inequality actually simplifies many things. For example −
unlike in general MSs − infinite series in an UMS converges iff

its summand goes to 0. Basic examples of ultrametrics are p-adic

distances of fractions, and so we now define them.

p-adic metrics. Let p ∈ {2, 3, 5, 7, 11, . . . } be a prime number and

let n ∈ Z be a nonzero integer. We define the p-adic order of the

number n as

ordp(n) = max({m ∈ N0 | pm |n}) .

Here · | · denotes the divisibility relation on Z: for a, b ∈ Z one has

that

a | b def⇐⇒ ∃ c ∈ Z
(
b = ac

)
.

For every p we define ordp(0) = +∞. We extend the function ordp(·)
to fractions. For a nonzero fraction α = a

b ∈ Q, we define

ordp(α) = ordp(a)− ordp(b) ,

and else we put again ordp(0) = ordp(0/b) = +∞. E.g. we have

ord5(297/100) = −2, ord11(297/100) = 1 and ord3(297/100) = 3 .

Exercise 20 Show that a
b = c

d ⇒ ordp(a/b) = ordp(c/d).
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Proposition 21 (additivity of ordp(·)) It holds that

∀α, β ∈ Q
(
ordp(αβ) = ordp(α) + ordp(β)

)
.

Here (+∞) + (+∞) = (+∞) + n = n + (+∞) = +∞ for every

n ∈ Z.

Proof. Let α = a
b and β = c

d. The left side of the given equality is

then

ordp(ac)− ordp(bd)

and the right side is

ordp(a)− ordp(b) + ordp(c)− ordp(d) .

It therefore suffices to prove the above equality for α, β ∈ Z. There

it holds due to the Fundamental Theorem of Arithmetic (unique-

ness of decompositions of numbers into products of powers of prime

numbers). 2

p-adic norms are an intermediate step to the definition of p-adic

metrics. We fix a real constant c ∈ (0, 1) and define the function

| · |p : Q→ [0,+∞), so-called p-adic norm, as∣∣∣a
b

∣∣∣
p

= cordp(a/b) ,

where we put |0|p = c+∞ = 0. E.g. for c = 1
2, | 1

100|5 = 4. It is easy

to prove

Exercise 22 (multiplicativity of | · |p) Prove that for every

p, every two fractions α, β, and every c ∈ (0, 1),

|α · β|p = |α|p · |β|p .
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A normed field F = (F, 0F , 1F ,+F , ·F , |·|F ), abbreviated (F, |·|F ),

is any field F equipped with the norm | · |F : F → [0,+∞), which

satisfies the following three requirements.

1. ∀x ∈ F
(
|x|F = 0 ⇐⇒ x = 0F

)
.

2. ∀x, y ∈ F
(
|x ·F y|F = |x|F · |y|F

)
(multiplicativity).

3. ∀x, y ∈ F
(
|x +F y|F ≤ |x|F + |y|F

)
(triangle inequality).

Basic examples of normed fields are the field of fractions Q, the field

of real numbers R and the field of complex numbers C, where the

norm is the usual absolute value | · |.

Exercise 23 In every normed field (F, | · |F ), |1F |F = 1. For

every x ∈ F , |−x|F = |x|F . For every x 6= 0F , |x−1|F = 1/|x|F .

Exercise 24 Prove that for every normed field (F, | · |F ) the

function

d(x, y) = |x− y|F
is a metric on F . Prove that when |·|F satisfies a strong triangle

inequality (defined in an obvious way, see below), then d is an

ultrametric.

Other important examples of normed fields are provided by the field

of fractions Q equipped with p-adic norms.

Proposition 25 (on | · |p) For every prime p and constant c ∈
(0, 1), (Q, |·|p) is a normed field. The corresponding metric space

(Q, d), defined by Exercise 24, is an ultrametric space.

Proof. The multiplicativity of the norm | · |p is proved in Exer-

cise 22. It remains to prove the strong triangle inequality

∀α, β ∈ Q
(
|α + β|p ≤ max({|α|p, |β|p})

)
.
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This is equivalent to the inequality for p-adic orders

∀α, β ∈ Q
(
ordp(α + β) ≥ min(ordp(α), ordp(β))

)
.

Let α = a
b and β = c

d be nonzero fractions (when α = 0 or β = 0,

the inequality holds trivially as an equality) and ordp(α) =: m and

ordp(β) =: n are in Z. In other words,

a

b
= pm · a

′

b′
and

c

d
= pn · c

′

d′
,

where none of the integers a′, b′, c′ and d′ is divisible by p. Let us

say that m ≤ n. Then

a

b
+
c

d
= pm · a

′d′ + pn−mc′b′

b′d′
=: pm · e

f
.

Clearly, e, f ∈ Z and p does not divide f , so ordp(e/f ) ≥ 0. Due

to the additivity of p-adic order,

ordp(α + β) ≥ m = min(ordp(α), ordp(β)) .
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THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send me (klazar@kam.mff.cuni.cz) by

the end of this Sunday solutions to Exercises 3, 5, 6, 19 and 20.
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