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LECTURE 12 (May 7, 2025) NEWMAN’S PROOF OF

THE PRIME NUMBER THEOREM

• The Prime Number Theorem, abbreviated PNT, is the asympto-

tic estimate

π(x) ∼ x(log x)−1 (x→ +∞)

of the prime number counting function π(x), defined for any x ∈ R
as the number of primes p such that p ≤ x. For example, π(11.8) =

|{2, 3, 5, 7, 11}| = 5 and π(x) = 0 for every x < 2. In other words,

limx→+∞
π(x)

x/ log x = 1 .

• History. PNT was conjectured around 1800 by Carl Friedrich

Gauss (1777–1855). It was proved in 1896 by Jacques Hadamard

(1865–1963) and, in parallel, Charles J. de la Vallée Poussin

(1866–1962). In 1980 Donald J. Newman (1930–2007) discove-

red substantial simplifications in analytic proofs of PNT. His proof

is the topic of this lecture. I follow the article

D. Zagier, Newman’s short proof of the Prime Number

Theorem, Amer. Mathem. Monthly 104 (1997), 705–708,

and my lecture notes

Analytic and Combinatorial Number Theory I, KAM-

DIMATIA Series, preprint no. 968 (2010), v+92 pp.

• Equivalence of PNT to ϑ(x) ∼ x (x → +∞). We define the

function ϑ(x) =
∑

p≤x log p for x ∈ R.
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Proposition 1 (restating PNT) It is true that

PNT ⇐⇒ ϑ(x) ∼ x (x→ +∞) .

Proof. Clearly, ϑ(x) =
∑

p≤x log p ≤ π(x) log x. Also, for any

ε > 0 we have

ϑ(x) ≥
∑

x1−ε<p≤x log p ≥ (π(x)− x1−ε)(1− ε) log x .

The equivalence follows from these two bounds. 2

• Čebyšev’s bound. Around 1852 Pafnutij L. Čebyšev (1821–

1894) proved the weak form of PNT that

ϑ(x) = Θ(x) (x ≥ 2)

− c1x ≤ ϑ(x) ≤ c2x for every x ≥ 2 and constants ci > 0. We

make use of the upper bound.

Proposition 2 (ϑ(x) = O(x)) We have

ϑ(x) = O(x) (x ≥ 2)

− 0 < ϑ(x) ≤ cx for every x ≥ 2 and a constant c > 0.

Proof. For any n ∈ N,

exp(ϑ(2n)− ϑ(n)) =
∏

n<p≤2n p ≤
(2n)!
n!·n! =

(
2n
n

)
≤ (1 + 1)2n = 4n .

Hence ϑ(2n)− ϑ(n) ≤ (log 4)n. For x ≥ 2 let k ∈ N be such that

2k−1 ≤ x < 2k. Then

ϑ(x) ≤
∑k

j=1(ϑ(2j)− ϑ(2j−1)) ≤ (log 4)
∑k

j=1 2j−1 ≤ (2 log 4)x .

2

• Morera’s theorem. The following interesting theorem is due to

the Italian engineer and mathematician Giacinto Morera (1856–

1909). Recall that U ⊂ C is an open set.

2



Theorem 3 (Morera) Let f : U → C be continuous and such

that
∫
∂R f = 0 for every rectangle R ⊂ U . Then f is holomor-

phic.

Proof.

2

Corollary 4 (holomorphic limits) Let fn : U → C, n ∈ N,

be a sequence of holomorphic functions with pointwise limit

lim fn(z) = f (z) ( : U → C) .

If the convergence is uniform on every compact subset of U ,

then f is holomorphic.

Proof. It follows from Morera’s theorem − the uniform limit f is

continuous and for any rectangle R ⊂ U we have∫
∂R f =

∫
∂R lim fn = lim

∫
∂R fn = lim 0 = 0 .

2

Corollary 5 (removable singularity) If f : U → C is con-

tinuous, and if it is holomorphic on U \ {a} for some point

a ∈ U , then f is holomorphic on U .

Proof.

2

• The zeta function ζ(s). Using Morera’s theorem we introduce

the most important function of analytic number theory. For a ∈ R
we define the half-planes

U>a = {z ∈ C : re(z) > a} and U≥a = {z ∈ C : re(z) ≥ a} ,
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and similarly for the halfplanes U<a and U≤a. Recall that for real

a > 0 and z ∈ C we have az := exp(z log a). For any s ∈ U>1 we

define the zeta function as the sum

ζ(s) =
∑∞

n=1
1
ns =

∑∞
n=1 n

−s .

The series absolutely converges because |ns| = nre(s).

Corollary 6 (defining ζ(s)) ζ(s) is holomorphic on U>1.

Proof. This follows from Corollary 4. Let A ⊂ U>1 be compact.

Then there is a δ > 0 such that A ⊂ U>1+δ. Let an ε > 0 be

given. Then there is n0 such that for every n ≥ m ≥ n0 we have∑n
j=m j

−1−δ ≤ ε. Then for the same n and m and every s ∈ A,∣∣∑n
j=m

1
js

∣∣ ≤∑n
j=m

1
jre(s)
≤
∑n

j=m
1

j1+δ
≤ ε .

Thus the series defining ζ(s) converges uniformly on A. 2

• Extending ζ(s). The function ζ(s) has a meromorphic extension

to C \ {1}. For our purposes an extension to U>0 \ {1} suffices.

Proposition 7 (extending ζ(s)) There exists a holomorphic

function f (s) : U>0 → C such that on U>1 we have equality

ζ(s) = f (s) + (s− 1)−1 .

The right-hand side extends ζ(s) to the meromorphic function

ζ(s) : U>0 \ {1} → C .

Proof. We obtain a holomorphic function f : U>0 → C such that

ζ(s) − 1
s−1 = f (s) for every s ∈ U>1. To this end we define, for

n ∈ N and s ∈ C with s 6= 1, functions

gn(s) =
∫ n+1

n (n−s − x−s) dx = 1
ns −

1
s−1
(

1
ns−1 −

1
(n+1)s−1

)
.
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The middle integral formula works also for s = 1 and shows that

gn(s) : C→ C is continuous. The last algebraic formula shows that

gn(s) is holomorphic on C \ {1}. By Corollary 5 the function gn(s)

is entire. The algebraic formula shows that for every s ∈ U>1,
ζ(s)− 1

s−1 =
∑∞

n=1 gn(s) .

For n ∈ N, s ∈ C and x ∈ [n, n+ 1] an integral ML estimate gives

the bound

|n−s − x−s| =
∣∣s ∫ xn du

us+1

∣∣ ≤ |s| · 1 · 1
nre(s)+1 = |s|

nre(s)+1 .

Using an integral ML estimate again we get the bound

|gn(s)| ≤ 1 · |s|
nre(s)+1 = |s|

nre(s)+1 .

We may define f (s) =
∑∞

n=1 gn(s) for any s ∈ U>0 because by

the bound on |gn(s)| this series absolutely converges. As in Co-

rollary 6, this convergence is uniform on any compact set A ⊂ U>0.

By Corollary 4 the function f (s) : U>0 → C is holomorphic and is

therefore the desired function. 2

In the previous proof we made an effort to obtain the standard

extension argument for ζ(s) in a completely clear and rigorous form.

• The Euler product. We denote by p1 = 2 < p2 = 3 < . . . the

increasing sequence (pn) of prime numbers.

Theorem 8 (Euler product for ζ(s)) For any s ∈ U>1,
ζ(s) = limn→∞

∏n
j=1

(
1− p−sj

)−1
=:
∏

p
1

1−1/ps .

Proof. We denote the above n-th partial product by P (n, s). Let

n ∈ N and s ∈ U>1. Then

|ζ(s)− P (n, s)| =
∣∣∑∞

m=1
1
ms −

∏n
j=1

∑∞
m=0(p

m
j )−s

∣∣
≤
∑

m≥pnm
−re(s) =: T (n, s) .
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We used the Fundamental Theorem of Arithmetic by which every

natural number has a unique expression as a product

qa11 q
a2
2 . . . q

ak
k (ai ∈ N)

of powers of distinct primes qi. Since limn→∞ T (n, s) = 0 for every

s ∈ U>1, the Euler product for ζ(s) follows. 2

• The logarithmic derivative of ζ. In this passage we rigorously

deduce the formula that for any s ∈ U>1,
ζ ′(s)
ζ(s) =

∑
p

log p
1−ps .

It is usually obtained by taking logarithm of the Euler product and

differentiating the result. It is a challenge to do this really rigorously

because in the complex domain logarithm behaves badly. In fact, I

did it in my LN cited on p. 1. Now, 15 years later, I take a different

route.

Proposition 9 (ζ ′) For any s ∈ U>1,

ζ ′(s) =
∑∞

n=1 log n · n−s .

Proof.

2

Proposition 10 (product of Dirichlet series) Let A(s) =∑∞
n=1 ann

−s and B(s) =
∑∞

n=1 bnn
−s be Dirichlet series, ab-

solutely convergent on U>1, and let cn =
∑

de=n adbe. Then

C(s) =
∑∞

n=1 cnn
−s absolutely converges on U>1 and

A(s) ·B(s) = C(s) (s ∈ U>1) .

6



Proof.

2

Proposition 11 (µ) For any s ∈ U>1,

ζ(s) ·
∑∞

n=1 µ(n) · n−s = 1 .

Proof.

2

Corollary 12 (ζ 6= 0 on U>1) We have ζ(s) 6= 0 for every s

in U>1 and

1
ζ(s) =

∑∞
n=1 µ(n) · n−s (s ∈ U>1) .

Proof.

2

Proposition 13 (ζ ′/ζ) For any s ∈ U>1,
ζ ′(s)
ζ(s) = −

∑∞
n=1 Λ(n) · n−s =

∑
p

log p
1−ps .

Proof.

2

• Non-vanishing of ζ(s) on U≥1. In every analytic proof of PNT1

the following property of ζ(s) is crucial.

Theorem 14 (ζ 6= 0) For any s ∈ U≥1 \ {1} we have ζ(s) 6= 0.

Proof. Will be added later. 2

1This does not apply to the elementary proofs of PNT which do not use complex analysis.
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Corollary 15 (extending ζ ′/ζ) The function

ζ ′(s)
ζ(s) + 1

s−1

has a holomorphic extension to some U ⊃ U≥1.

Proof. Proposition 7 and Theorem ?? show that ζ ′(s)
ζ(s) extends

holomorphically to some U ⊃ (U≥1\1). By Proposition 7, on U>0\
{1} we have expression ζ(s) = f (s)+ 1

s−1 where f (s) is holomorphic

on U>0. Then on a deleted open disc B(1, δ) \ {1} we have

ζ ′(s)
ζ(s) + 1

s−1 = −(s−1)−2+f ′(s)
(s−1)−1+f(s) + 1

s−1 = f(s)+(s−1)f ′(s)
1+(s−1)f(s) .

The latter fraction is holomorphic on B(1, δ). 2

• Newman’s proof. The contribution of D. J. Newman to PNT

is in his simple proof of the following version of theorems obtai-

ned earlier by Norbert Wiener (1894–1964) and Shikao Ikehara

(1904–1984).

Theorem 16 (Wiener–Ikehara) Let

f : [0, +∞)→ R

be a bounded function that for every number a > 0 has the

Riemann integral
∫ a
0 f . Let the holomorphic function

g(z) = lima→+∞
∫ a
0 f (t) exp(−zt) dt : U>0 → C

have a holomorphic extension to some U ⊃ U≥0. Then

lima→+∞
∫ a
0 f = g(0) .

Before we plunge in the proof we justify that g(z) : U>0 → C is

correctly defined and is holomorphic. It follows from Morera’s the-

orem (details will be added later). Now we can prove the theorem.

8



Proof. (Newman) For real a > 0 we set

ga(z) =
∫ a
0 f (t) exp(−zt) dt .

By ... this is an entire function. We show that

lim
a→+∞

ga(0) = g(0) .

For real R, δ > 0 we consider the set

C(R, δ) = {z ∈ C : |z| ≤ R ∧ re(z) ≥ −δ} (⊂ C) ,

where δ = δ(R) is so small that g(z) extends holomorphically to

an open set containing C(R, δ); for every R > 0 such δ > 0 exists

due to the assumption on g(z) and compactness of the half-disc

{z ∈ C : |z| ≤ R ∧ re(z) ≥ 0} .
Let C = C(R) be the boundary ∂C(R, δ). By the Cauchy for-

mula,

g(0)− ga(0) = 1
2πi

∫
C(g(z)− ga(z)) exp(za)

(
1 + z2R−2

)
z−1 dz

=: 1
2πi

∫
C(g(z)− ga(z))G(z) = 1

2πiI(R, a) .

In order to show that I(R, a) → 0 as a → +∞, we express the

integral I(R, a) as a sum of three contributions which we separately

estimate. With C− = C ∩U≤0, K = {z ∈ C : |z| = R, re(z) ≤ 0}
and C+ = C ∩ U≥0 we define

I(R, a) = I1(R, a) + I2(R, a) + I3(R, a)

:=
∫
C+(g(z)− ga(z))G(z) +

∫
C− g(z)G(z)−

−
∫
K ga(z)G(z) .

In I3(R, a) we could replace C− with the half-circle K without

changing the integral because the integrand is holomorphic on C \
{0}.
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The integral I1(R, a) =
∫
C+(g(z) − ga(z))G(z). Let B ≥ 0 be

such that |f (t)| ≤ B for every t ≥ 0. For z ∈ U≥0 we have

|g(z)− ga(z)| ≤ B
∫ +∞
a

∣∣e−tz∣∣ dt = Be−re(z)·a

re(z) .

For z ∈ C with |z| = R we have

|G(z)| =
∣∣eza(z+z)

R2

∣∣ = 2ere(z)a · |re(z)| ·R−2 .

The curve C+ has length πR and we get the ML estimate

|I1(R, a)| ≤ 2πB
R .

The integral I3(R, a) =
∫
K ga(z)G(z). For z ∈ U≤0 we have

|ga(z)| ≤
∣∣ ∫ a

0 f (t)e−tz dt
∣∣ ≤ B

∫ a
−∞

∣∣e−tz dt
∣∣ = Be−re(z)·a

|re(z)| .

The curve K has length πR and we get the same ML estimate

|I3(R, a)| ≤ 2πB
R .

The integral I2(R, a) =
∫
C− g(z)G(z). We write

I2(R, a) =
∫
C− g(z)z−1(1 + z2R−2) · eza =:

∫
C− J(z) · eza .

Let M1 = M1(R) = maxC− |J(z)|. Then

|I2(R, a)| ≤M1

∫
C−

∣∣eza∣∣ dz .
From the definition of C− we see that for every ε > 0 there is

a κ > 0 such that on C− we have
∣∣eza∣∣ ≤ e−κa, except the part

of C− near to the imaginary axis whose length is the ε-fraction of

the length |C−| ≤ 3R. On this part of C− we use the trivial bound∣∣eza∣∣ ≤ 1. Thus

|I2(R, a)| ≤M1

(
e−κa + ε

)
· |C−| ≤ 3M1R

(
e−κa + ε

)
.
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Hence for every fixed R > 0 we have lima→+∞ |I2(R, a)| = 0.

We combine these three bounds. Let an ε > 0 be given. We

fix an R > 8πBε and the corresponding curve C = C(R). Then

|I1(R, a)| + |I3(R, a)| ≤ ε
2 for every a. Then we take an a0 ≥ 0

such that if a ≥ a0 then |I2(R, a)| ≤ ε
2. For any such a we have

|I(R, a)| ≤ |I1(R, a)| + |I3(R, a)| + |I2(R, a)| ≤ ε
2 + ε

2 = ε .

2

• Extending F (z+1
z+1 −

1
z . We introduce the function

F (s) =
∑

p
log p
ps : U>1 → C .

By Corollary 4 the function F (s) is holomorphic.

Proposition 17 (an extension) The holomorphic function

F (z+1)
z+1 −

1
z : U>0 → C

has a holomorphic extension to some U ⊃ U≥0.

Proof. For s ∈ U>1 we have by Corollary ?? that

−ζ ′(s)
ζ(s) =

∑
p

log p
ps−1 = F (s) +

∑
p

log p
ps(ps−1) .

Thus on U>1,

F (s) = −ζ ′(s)
ζ(s) −

∑
p

log p
ps(ps−1) .

By Corollary 4, the sum is holomorphic on U>1/2. By Corollary 15,

the function F (s) − (s − 1)−1 has holomorphic extension to some

U ⊃ U≥1. 2

• Convergence of the integral
∫ +∞
1 (ϑ(x)− x)x−2 dx. We deduce

from the previous theorem the existence and finiteness of the next

limit.
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Proposition 18 (convergence of an
∫

) The limit

α := lima→+∞
∫ a
1 (ϑ(x)− x)x−2 (∈ R)

exists and is finite.

Proof. For any s ∈ U>1,

s
∫ +∞
0 ϑ(et)e−st dt = s

∫ +∞
1 ϑ(x)x−s−1 dx

=
∑∞

n=1 ϑ(n) · s
∫ n+1

n x−s−1 dx

=
∑∞

n=1 ϑ(n)
(
n−s − (n + 1)−s

)
=
∑∞

n=1 n
−s(ϑ(n)− ϑ(n− 1))

=
∑

p
log p
ps = F (s) .

We set s = z + 1, divide by z + 1, subtract 1
z =

∫ +∞
0 e−zt dt and

get that ∫ +∞
0

(
ϑ(et)e−t − 1

)
e−zt dt = F (z+1)

z+1 −
1
z .

By Propositions 2 and 17, the functions f (t) = ϑ(et)e−t − 1 and

g(z) = F (z+ 1)(z+ 1)−1−z−1 satisfy assumptions of Theorem 16,

which gives

lima→+∞
∫ log a

0 f (t) = lima→+∞
∫ a
1 (ϑ(x)− x)x−2 = g(0) =: α .

2

Corollary 19 (a Cauchy condition) For every ε > 0 there

is a c ≥ 1 such that for every a, b ∈ R with b ≥ a ≥ c we have∣∣ ∫ b
a (ϑ(x)− x)x−2

∣∣ ≤ ε .

Proof. Let f (x) = (ϑ(x) − x)x−2 and let an ε > 0 be given. By

Proposition 18 there is a c ≥ 1 such that if a ≥ c then
∣∣ ∫ a

1 f−α
∣∣ ≤
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ε
2. We have by the additivity of integrals and the triangle inequality

that for every a, b ∈ R with b ≥ a ≥ c,∣∣ ∫ b
a f
∣∣ =

∣∣ ∫ b
1 f −

∫ a
1 f
∣∣ ≤ ∣∣ ∫ b1 f − α∣∣ +

∣∣α− ∫ a1 f ∣∣ ≤ ε
2 + ε

2 = ε .

2

• Conclusion: ϑ(x) ∼ x (x→ +∞). We finish the proof of PNT.

Proposition 20 (ϑ(x) ∼ x) limx→+∞ ϑ(x)x−1 = 1.

Proof. Suppose, for the contrary, that there is a λ > 1 such that
ϑ(x)
x ≥ λ for arbitrarily large x > 0. Then we have for any such x,

since ϑ(x) weakly increases, that∫ λx
x (ϑ(t)− t)t−2 ≥

∫ λx
x (λx− t)t−2 =

∫ λ
1
λ−u
u2

=: d > 0 (u = t
x) .

This contradicts Corollary 19. If there is a λ ∈ (0, 1) such that
ϑ(x)
x ≤ λ for arbitrarily large x > 0, we get a similar contradiction

. . . d < 0 by bounding the integral over the interval [λx, x]. 2

In view of the initial Proposition 1, this concludes the proof of PNT.

THANK YOU FOR YOUR ATTENTION!

No homework exercises in this lecture.
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