
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2024/25

lecturer: Martin Klazar

LECTURE 10 (April 23, 2025) INTRODUCTION TO

COMPLEX ANALYSIS 2

• The Cauchy–Goursat theorem for rectangles. It is the main

result of this lecture:∫
∂R f = 0 whenever R ⊂ U and f : U → C is holomorphic .

• Linear functions. We begin with a simple proof of the C.–G.

theorem for rectangles in the case that the function f (z) is linear.

Let k ∈ N and u = ab (⊂ C) be a segment. The k-equipartition of

u is the partition of u into k subsegments of the same length 1
k |u|.

It is the image of the partition 0 < 1
k <

2
k < · · · <

k−1
k < 1 of the

interval I = [0, 1].

Exercise 1 Let a, b, α, β ∈ C with a 6= b. Prove from the defi-

nition of the Cauchy integral that∫
ab(αz + β) = α

(
b2

2 −
a2

2

)
+ β(b− a) = g(b)− g(a) ,

where g(z) = 1
2αz

2 + βz. Hint − use equipartitions of ab.

Corollary 2 (the easy C.–G. theorem) Let α, β ∈ C and

R ⊂ C be a rectangle. Then∫
∂R(αz + β) = 0 .

Proof. Let a, b, c, d be the canonical vertices of R and f (z) =

αz + β. By the definition of
∫
∂R and the previous exercise,

∫
∂R f is

g(b)− g(a) + g(c)− g(b) + g(d)− g(c) + g(a)− g(d) = 0. 2
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• Contour integration. We express the Cauchy integral
∫
u f in

terms of real Riemann integrals.

Exercise 3 Prove the next proposition.

Proposition 4 (
∫
u via Riemann

∫
) Let a, b ∈ C, a 6= b,

f : ab→ C be continuous and ϕ(t) = t(b− a) + a : [0, 1]→ C be

the parametrization of the segment u = ab. Then∫
u f =

∫ 1

0 f (ϕ(t)) · ϕ′(t) dt = (b− a)
∫ 1

0 f (ϕ(t)) dt

= (b− a)
( ∫ 1

0 re
(
f (ϕ(t))

)
dt + i ·

∫ 1

0 im
(
f (ϕ(t))

)
dt
)

− except for the first
∫

, all other are Riemann
∫

s.

To relate our approach to the standard one, we define the contour

integral
∫
ϕ f . Let f : U → C and ϕ : [a, b] → U be a continuous

and piece-wise smooth function. The integral of the function f

along the curve ϕ is given by∫
ϕ f =

∫ b
a f (ϕ(t)) · ϕ′(t) dt

=
∫ b
a re
(
f (ϕ(t)) · ϕ′(t)

)
dt + i ·

∫ b
a im

(
f (ϕ(t)) · ϕ′(t)

)
dt ,

if the last two real Riemann integrals exist. By Proposition 4, the

Cauchy integral
∫
u is a particular case of

∫
ϕ.

Exercise 5 Let ϕ(t) = e2πit : [0, 12]→ C be given by

ϕ(t) =
∑∞

n=0
(2πit)n

n! .

It is a parametrization of the upper unit semicircle. Let f (z) =

z2. Find
∫
ϕ f .

• The constant ρ (= 2πi). If the constant ρ defined in the next

theorem were 0, the complex analysis would collapse.
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Theorem 6 (ρ) Let S be the square with the vertices ±1 ± i.
Then ρ =

∫
∂S

1
z 6= 0, in fact im(ρ) ≥ 4.

Proof. The canonical vertices of S are a = −1 − i, b = 1 − i,

c = 1 + i and d = −1 + i. Let

pn = (a0, a1, . . . , an)

be the n-equipartition of ab. Multiplication by i counter-clockwisely

rotates pn around the origin by 1
2π:

qn = ipn = (ia0, ia1, . . . , ian)

is the n-equipartition of bc. Similarly, rn = iqn = −pn is the n-

equipartition of cd and sn = irn = −ipn is the n-equipartition of

da. But for f (z) = 1
z we have

C(f, pn) = C(f, qn) = C(f, rn) = C(f, sn) .

Indeed, extending the fraction by i gives

C(f, pn) =
∑n

j=1
(b−a)/n

a+j(b−a)/n =
∑n

j=1
(ib−ia)/n

ia+j(ib−ia)/n

=
∑n

j=1
(c−b)/n

b+j(c−b)/n = C(f, qn)

and similarly for the other two equalities. As b − a = 2 and a =

−1− i, extending the fraction by 2j
n − 1 + i we get

im(C(f, pn)) = im
(∑n

j=1
2/n

−1−i+2j/n

)
= im

(
2
n

∑n
j=1

2j/n−1+i
(2j/n−1)2+1

)
= 2

n

∑n
j=1

1
(2j/n−1)2+1

≥ 2
n

∑n
j=1

1
2 = 1 .

By Exercise 7,

im
( ∫

∂S
1
z

)
= 4 · im

(∫
ab

1
z

)
= 4 · lim

n→∞
im(C(1z , pn)) ≥ 4 · 1 = 4 .

Indeed ρ 6= 0. 2
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Exercise 7 Let (zn) be a convergent sequence of complex num-

bers. Prove that im(lim zn) = lim im(zn).

Exercise 8 The previous proof gives that re(ρ) = 0.

Exercise 9 (ρ = 2πi) Again, let a = −1−i and b = 1−i. Com-

pute by Proposition 4 that
∫
ab

1
z = 1

2πi. Thus, by the previous

proof,

ρ = 4 · 12πi = 2πi .

Exercise 10 Let ϕ(t) : [0, 1] → C, ϕ(t) = e2πit and f (z) = 1
z .

Show that
∫
ϕ f = 2πi.

• Nested sets and quarters. Recall that a set X ⊂ C has diameter

diam(X) = sup({|x− y| : x, y ∈ X}) (∈ [0, +∞) ∪ {+∞}) .

Exercise 11 Let An 6= ∅ be closed sets such that C ⊃ A1 ⊃
A2 ⊃ . . . and lim diam(An) = 0. Then⋂∞

n=1An 6= ∅ .

Hint − see the proof of Baire’s theorem.

Let R be a rectangle with the canonical vertices (a, b, c, d). We

define the quarters of R. Let e = a+b
2 , f = b+c

2 , g = c+d
2 and

h = d+a
2 be the midpoints of the sides of R and j = a+c

2 be the

center point of R. The four quarters of R are the rectangles A, B,

C and D with the canonical vertices, respectively,

(a, e, j, h), (e, b, f, j), (j, f, c, g) and (h, j, g, d) .

So R is divided into four quarters by cutting along the segments eg

and hf . For each quarter E we have

per(E) = 1
2 · per(R) and diam(E) = 1

2 · diam(R) .
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• The Cauchy–Goursat theorem for rectangles. This is the next

theorem, which we already stated at the beginning.

Theorem 12 (the C.–G. theorem for R) Let f : U → C be

a holomorphic function and R ⊂ U be a rectangle. Then∫
∂R f = 0 .

Proof. Let f , U and R be as stated. We define rectangles

R = R0 ⊃ R1 ⊃ R2 ⊃ . . .

such that always Rn+1 is a quarter of Rn and∣∣ ∫
∂Rn+1

f
∣∣ ≥ 1

4

∣∣ ∫
∂Rn

f
∣∣ . (1)

Suppose that R0, R1, . . . , Rn have been already defined. Let A, B,

C and D be the quarters of the rectangle Rn. We claim that∫
∂Rn

f =
∫
∂A f +

∫
∂B f +

∫
∂C f +

∫
∂D f . (2)

This follows from parts 3 and 4 of the last theorem in the previous

lecture. We express each of the integrals
∫
∂A f ,

∫
∂B f ,

∫
∂C f and∫

∂D f as the sum of four integrals over the sides. On the right-hand

side of equality (2) we get 16 terms. Eight of them correspond to the

sides of quarters lying inside Rn. They mutually cancel out because

they form four pairs of opposite orientations of the same segment.

The remaining eight terms correspond to the sides of the quarters

lying on ∂Rn. These add to the integral on the left-hand side of

equality (2). Inequalities (1) follow from the triangle inequality: for

some quarter E ∈ {A,B,C,D} we have∣∣ ∫
∂E f

∣∣ ≥ 1
4 ·
∣∣ ∫

∂Rn
f
∣∣
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and can set Rn+1 = E.

By Exercise 11 there exists a point z0 such that

z0 ∈
⋂∞
n=0Rn .

Since R0 = R ⊂ U , we have z0 ∈ U . Let an ε > 0 be given. Since

f ′(z0) exists, there is a δ > 0 and a function ∆: B(z0, δ)→ C such

that B(z0, δ) ⊂ U , and that on B(z0, δ) we have |∆(z)| ≤ ε and

f (z) = f (z0) + f ′(z0) · (z − z0)︸ ︷︷ ︸
g(z)

+ ∆(z) · (z − z0)︸ ︷︷ ︸
h(z)

.

We consider functions g(z) and h(z). It is clear that g(z) is linear

and h(z) (= f (z)−g(z)) is continuous onB(z0, δ). Let n ∈ N0 be so

large that Rn ⊂ B(z0, δ) − only here we need that lim diam(Rn) =

0, for the existence of the point z0 it is not essential, see Exercise 14.

By the linearity of the integral
∫
∂R and Corollary 2 we have that∫

∂Rn
f =

∫
∂Rn

g +
∫
∂Rn

h
Cor. 2

=
∫
∂Rn

h . (3)

Thus ∣∣ ∫
∂Rn

h
∣∣ ML estimate

≤ max
z∈∂Rn

|∆(z) · (z − z0)| · per(Rn)

≤ ε · diam(Rn) · per(Rn)

= ε · diam(R)
2n · per(R)2n

≤ ε · per(R)
2

4n . (4)

We used that quartering halves diameters and perimeters, and that

the diameter of a rectangle is smaller than its perimeter. According

to the previous results we have that

1
4n

∣∣ ∫
∂R f

∣∣ ineq. (1)≤
∣∣ ∫

∂Rn
f
∣∣ eq. (3)=

∣∣ ∫
∂Rn

h
∣∣ ineq. (4)≤ ε · per(R)

2

4n .
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Hence |
∫
∂R f | ≤ ε · per(R)2. It holds for every ε > 0, and we have∫

∂R f = 0. 2

Exercise 13 What is the value of the function ∆(z) in the proof

at z = z0?

Exercise 14 Prove that for non-emptiness of the intersection

in Exercise 11, it suffices to assume that the set A1 is bounded

(instead of the zero limit of diameters). Show that it does not

hold in general metric spaces.

The theorem originates with the French mathematician Augustin-

Louis Cauchy (1789–1857). For several years he lived in Prague

in political exile. Cauchy assumed continuity of the derivative f ′.

It was Édouard Goursat (1858–1936) who proved the theorem

in 1900 only with the assumption of existence f ′, in the article

E. Goursat, Sur la definition générale des fonctions analytiques,

d’après Cauchy, Trans. Amer. Math. Soc. 1 (1900), 14–16.

The C.–G theorem for rectangles suffices for our purposes. The

theorem holds for general curves and we only outline the proof.

Theorem 15 (Cauchy–Goursat) Let f : U → C be a holo-

morphic function and ϕ : [a, b]→ U be a continuous and piece-

wise smooth function. Suppose that ϕ is injective, except that

ϕ(a) = ϕ(b), and that the interior of ϕ— the bounded connected

component of C \ ϕ[ [a, b] ] — is a subset of U . Then∫
ϕ f = 0 .

Sketch of the proof. We draw in C, with the help of horizontal

and vertical lines, a fine square grid M. A simple closed curve
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ψ : [a, b]→ U runs along the sides of the gridM and satisfies that

(i) for a given ε > 0 it holds that |
∫
ϕ f −

∫
ψ f | ≤ ε (the curve ψ

closely approximates the curve ϕ) and (ii) the interior of the curve

ψ is a subset of the set U . Then∫
ψ f =

∑
R∈M

∫
∂R f =

∑
R∈M 0 = 0 ,

where M is the set of elementary rectangles of the grid M lying

inside the curve ψ. The first equality holds for the same reason as

equality (2) and the first equality in (5) below. The second equality

follows from (ii) and the preceding C.–G. theorems for rectangles.

By (i), |
∫
ϕ f | ≤ ε. This is true for every ε and

∫
ϕ f = 0. 2

Exercise 16 As in Exercise 10, let ϕ(t) : [0, 1]→ C, ϕ(t) = e2πit

(now we parameterize the whole unit circle) and f (z) = zk,

where k ∈ Z \ {−1}. Show that∫
ϕ f = 0 .

This does not follow from the C.–G. theorem!

• Independence of
∫
∂R on R. We show that in some situations

the integral
∫
∂R f does not depend much on the rectangle R. Recall

that compact sets A ⊂ C are exactly the closed and bounded sets.

Proposition 17 (independence of
∫
∂R f on R) Let R, S ⊂

C be rectangles and let A ⊂ int(R) ∩ int(S) be a compact. Let

f : C \ A→ C be a holomorphic function. Then∫
∂R f =

∫
∂S f .

Proof. Let A, R, S, and f be as given, and let first S ⊂ int(R).

By extending the sides of S, we divide R into nine rectangles R1,

8



R2, . . . , R8, S. Then indeed∫
∂R f

as in (2)
=

∑8
j=1

∫
∂Rj

f +
∫
∂S f

Thm. 12, Rj ⊂ C \ A
=

∫
∂S f . (5)

We reduce the case of general rectangles R and S to the previous

case. By Exercises 18 and 19, for any rectangles R and S and any

nonempty compact set A ⊂ int(R) ∩ int(S) there is a rectangle T

such that

A ⊂ int(T ) and T ⊂ int(R) ∩ int(S) .

By the already proven case,∫
∂R f =

∫
∂T f =

∫
∂S f .

2

Exercise 18 Prove that every nonempty intersection of two

rectangles is a rectangle.

Exercise 19 Prove that for every rectangles R and S and every

nonempty compact set A ⊂ int(R) ∩ int(S) there is a rectangle

T such that

A ⊂ int(T ) and T ⊂ int(R) ∩ int(S) .

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz)

by the end of the coming Sunday solutions to the Exercises 1, 5, 9,

16 and 19.

9


