
LECTURE 8, 4/6/2022

MEAN VALUE THEOREMS AND THEIR COROLLARIES

• Mean value theorems. We present three of them.

Theorem 1 (Rolle’s) Let a < b be real numbers and

f : [a, b] → R with f (a) = f (b) be a continuous function

that has finite or infinite derivative at each point of the

interval (a, b). Then

∃ c ∈ (a, b) : f ′(c) = 0 .

Proof. If f is constant, that is f (x) = f (a) = f (b) for every

x ∈ [a, b], then f ′(x) = 0 for every x ∈ (a, b). Let f not be

constant and f (x) > f (a) = f (b) for some x ∈ (a, b), the case

with f (x) < f (a) = f (b) is treated similarly. According to the

principle of minimum and maximum (in lecture 6), the function f

attains its greatest value in some c ∈ [a, b]. Clearly, c ∈ (a, b). By

the assumption about derivatives and Theorem 4 in the last lecture,

f ′(c) = 0. 2

Theorem 2 (Lagrange’s) Let a < b be real numbers and

f : [a, b] → R be a continuous function that has finite or

infinite derivative at each point of the interval (a, b). Then

∃ c ∈ (a, b) : f ′(c) =
f (b)− f (a)

b− a
.

Proof. Consider the function

g(x) := f (x)− (x− a) · f (b)− f (a)

b− a
: [a, b]→ R .
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It satisfies the assumptions of Rolle’s theorem, especially g(a) =

g(b) = f (a), therefore

0 = g′(c) = f ′(c)− (f (b)− f (a))/(b− a)

for some c ∈ (a, b) and we are done. 2

Geometrically, this theorem says that under the given assumptions

there is always a tangent to Gf at some point (c, f (c)), c ∈ (a, b),

which is parallel to the secant κ(a, f (a), b, f (b)).

Theorem 3 (Cauchy’s) Let a < b be real numbers and

f, g : [a, b] → R with g(b) 6= g(a) be continuous functions

that have derivative at each point of the interval (a, b).

Derivatives of the function f may be infinite, but deriva-

tives of the function g have to be finite. Then

∃ c ∈ (a, b) : f ′(c) =
f (b)− f (a)

g(b)− g(a)
· g′(c) .

Proof. Consider the function

h(x) := f (x)− (g(x)− g(a)) · f (b)− f (a)

g(b)− g(a)
: [a, b]→ R .

It satisfies the assumptions of Rolle’s theorem, especially h(a) =

h(b) = f (a), therefore

0 = h′(c) = f ′(c)− g′(c) · (f (b)− f (a))/(g(b)− g(a))

for some c ∈ (a, b) and we are done. 2

• Derivatives and monotonicity of functions. A non-negative

(resp. non-positive) derivative means that the original function
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does not decrease (resp. does not increase). A positive (resp. neg-

ative) derivative means that the original function increases (resp.

decreases). The following theorem gives details. For any setM ⊂ R
we denote by M 0 := {a ∈ M | ∃ δ : U(a, δ) ⊂ M} its interior.

The interior of an interval I is the open interval I0 ⊂ I obtained

from I by omitting the endpoints.

Theorem 4 (derivatives and monotonicity 1) Let

I ⊂ R be an interval and f : I → R be a continuous func-

tion that has finite or infinite derivative at each point in

the interior I0 of I. Then the following hold.

1. f ′ ≥ 0, resp. f ′ ≤ 0, on I0 ⇒ f is non-decreasing,

resp. non-increasing, on I.

2. f ′ > 0, resp. f ′ < 0, on I0 ⇒ f is increasing, resp.

decreasing, on I.

Proof. Let f ′ < 0 on I0 and x < y be in I . By Theorem 2,

f (y)− f (x)

y − x
= f ′(z) < 0

for some z ∈ (x, y) ⊂ I0. This inequality and y − x > 0 imply

that f (x) > f (y) — f decreases on I . The other three cases in 1

and 2 are treated similarly. 2

The proof of the following proposition is similar to the proof of

Theorem 4 in the last lecture and therefore we omit it.

3



Proposition 5 (derivative and monotonicity 2) Let

a ∈ M ⊂ R, f : M → R be a function and the one-sided

derivatives below may be infinite. The following hold.

1. When a is a left limit point of M and f ′−(a) < 0, resp.

f ′−(a) > 0, then there exists a δ such that

f [P−(a, δ) ∩M ] > {f (a)}, resp. < {f (a)} .

2. When a is a right limit point of M and f ′+(a) < 0, resp.

f ′+(a) > 0, then there exists a δ such that

f [P+(a, δ) ∩M ] < {f (a)}, resp. > {f (a)} .

Last time we calculated that (|x|)′−(0) = −1 and (|x|)′+(0) = 1.

Thus, according to the previous proposition, the function |x| has

a strict local minimum in 0. Of course, this is clear even without

any theory.

• Extending derivatives by limits.

Proposition 6 (extending derivatives) Let a, b ∈ R
with a < b, f : [a, b)→ R be a continuous function that has

finite derivative on the interval (a, b) and let limx→a f
′(x) =:

L ∈ R∗. Then

f ′+(a) = L .

Proof. Let a, b, f and L be as stated, and let an ε be given. There

exists a δ ≤ b− a such that x ∈ P+(a, δ)⇒ f ′(x) ∈ U(L, ε). Let

x ∈ P+(a, δ) be arbitrary. According to Theorem 2, there exists

4



a y ∈ (a, x) ⊂ P+(a, δ) such that

f (x)− f (a)

x− a
= f ′(y) ∈ U(L, ε) .

Thus f ′+(a) = L. 2

A similar proposition holds for left derivatives.

• l’Hospital’s rule. This is a method for calculating limits of ratios

of functions f (x)/g(x) leading to indefinite expressions 0/0 and

±∞/±∞.

Theorem 7 (l’Hospital’s rule) Let A ∈ R. Let for

some δ functions f, g : P+(A, δ) → R have finite deriva-

tives on P+(A, δ), g′ 6= 0 on P+(A, δ), and let

1. limx→A f (x) = limx→A g(x) = 0 or

2. limx→A g(x) = ±∞.

Then

lim
x→A

f (x)

g(x)
= lim

x→A

f ′(x)

g′(x)

if the last limit exists. This theorem also holds for left

neighborhoods P−(A, δ), ordinary neighborhoods P (A, δ)

and for A = ±∞.

Proof. 1. Let limx→A f (x) = limx→A g(x) = 0, limx→A
f ′(x)
g′(x) =:

L ∈ R∗ and A ∈ R. We define f (A) = g(A) := 0. A is a limit

point of the definition domain of the fraction f (x)/g(x): it is not

possible that g = 0 on some P+(A, θ), for then also g′ = 0 on

P+(A, θ). We set

P+
0 (A, δ) := {x ∈ (A, A + δ) | g(x) 6= 0} .
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By Theorem 3, there is a function c : P+
0 (A, δ) → P+(A, δ) such

that for every x ∈ P+
0 (A, δ),

c(x) ∈ (A, x) and
f (x)

g(x)
=
f (x)− f (A)

g(x)− g(A)
=
f ′(c(x))

g′(c(x))
.

Clearly, limx→A c(x) = A. Since A 6∈ P+(A, δ), condition 1 in the

theorem on limits of composite functions is satisfied. According to

this theorem, we get that

lim
x→A

f (x)

g(x)
= lim

x→A

f ′(c(x))

g′(c(x))
= lim

y→A

f ′(y)

g′(y)
= L .

The proof for functions defined on P−(A, δ) is similar. We reduce

P (A, δ) to two one-sided neighborhoods. Finally, let A = +∞, the

case with A = −∞ is treated similarly. By substituting x := 1/y

and using the theorem on limits of composite functions we reduce

it to the limit at 0 and the definition domain P+(0, δ):

lim
x→+∞

f (x)

g(x)
= lim

y→0

f (1/y)

g(1/y)

and

lim
x→+∞

f ′(x)

g′(x)
= lim

y→0

f ′(1/y)

g′(1/y)
= lim

y→0

f ′(1/y) · (−y−2)
g′(1/y) · (−y−2)

= lim
y→0

(f (1/y))′

(g(1/y))′
,

where the first equality holds due to the theorem on limits of com-

posite functions and the last due to the formula for derivatives of

composite functions.

2. Let limx→A g(x) = ±∞ and limx→A
f ′(x)
g′(x) =: L ∈ R∗. We will

prove this case later using integrals. 2
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In the theorem, the slightly confusing notation limx→A+ is some-

times used. But thanks to the definition domain P+(A, δ) we can

use the simpler ordinary limits limx→A.

We calculate by means of l’Hospital’s rule a few limits. For ex-

ample,

lim
x→0

√
x log x = lim

x→0

(log x)′

(1/
√
x)′

= lim
x→0

1/x

(−1/2)x−3/2

= −2 lim
x→0

x1/2 = 0 ,

and more generally limx→0 x
c log x = 0 for every c > 0. Or

lim
x→0

x2

cosx− 1
= lim

x→0

(x2)′

(cosx− 1)′
= lim

x→0

2x

− sinx

= −2 lim
x→0

(x)′

(sinx)′
= −2 lim

x→0

1

cosx
= −2 .

• Higher order derivatives. Definition domains of function will

now mostly be open sets. Each point of such a set is its TLP.
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Definition 8 (f (n)(x)) Let M ⊂ R be a nonempty open

set and f = f (x) : M → R be a function. For n ∈ N0 =

{0, 1, . . . } we define by induction a finite or infinite se-

quence of functions f (n)(x) : M → R.

1. At the beginning we set f (0)(x) := f (x).

2. For n > 0, when the function f (n−1)(x) is defined and

has finite derivative at each point a ∈M , we define for

each a ∈M the value of the n-th function as

f (n)(a) := (f (n−1)(x))′(a) .

The function f (n) is called the order n derivative of the

function f or the n-th derivative of f .

So the function f (0) is f itself and f (1) is its derivative f ′. If

f (n−1) : M → R is defined and has derivative at a point b ∈ M ,

finite or infinite, we still write

f (n)(b) := (f (n−1))′(b) ∈ R∗

and call it the n-th derivative of the function f at the point b.

The function f (2), the second derivative of f , is also denoted as

f ′′. For example, for M = R, (x sinx)′′ = (sin x + x cosx)′ =

2 cosx − x sinx. Second derivatives can be used to justify the

existence of extremes of functions.
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Proposition 9 (f ′′ and extremes) Suppose that a ∈M ,

that M ⊂ R is an open set, and that f : M → R is a func-

tion with finite f ′ : M → R, f ′(a) = 0 and f ′′(a) ∈ R∗,
possibly infinite. Then the following hold.

1. f ′′(a) > 0 ⇒ f has at a a strict local minimum.

2. f ′′(a) < 0 ⇒ f has at a a strict local maximum.

It is clear that the set M can be taken in the form U(a, δ).

Proof. We prove only part 1, for part 2 the argument is similar.

So let M = U(a, δ), on U(a, δ) there exists finite f ′, f ′(a) = 0

and f ′′(a) > 0. By Proposition 5 there exists a θ ≤ δ such that

f ′ < f ′(0) = 0 on P−(a, θ) and f ′ > f ′(0) = 0 on P+(a, θ).

Let x ∈ P−(a, θ) be arbitrary. By Theorem 2 there exists a y ∈
(x, a) ⊂ P−(a, θ) such that

f (a)− f (x)

a− x
= f ′(y) < 0 .

Because the denominator is positive, the numerator is negative and

f (a) < f (x). For x ∈ P+(a, θ) one has that f ′(y) > 0 and the

denominator is negative, so the numerator is again negative and

again f (a) < f (x). Thus f has at a a strict local minimum. 2

The proposition says nothing about the case f ′′(a) = 0. This case

can be partially resolved by generalizing the proposition to deriva-

tives with orders > 2.

• Convexity and concavity of functions. Let B := (c, d) ∈ R2

be a point in the plane and ` be a non-vertical line, given by the

equation y = sx+ b. If the inequality d ≥ sc+ b, resp. d > sc+ b,
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holds, we write B ≥ `, resp. B > `, and say that B lies above

`, resp. that B lies strictly above `. By reversing the inequalities

we define that B lies below `, resp. that B lies strictly below `,

symbolically B ≤ `, resp. B < `.

Definition 10 (convex and concave) Let f : I → R be

a function defined on an interval I ⊂ R. The function is

convex (on I) if for every three numbers a < b < c in I the

“inequality”

(b, f (b)) ≤ κ(a, f (a), c, f (c))

holds. If this “inequality” is strict, f is strictly convex (on

I). If the opposite “inequalities” hold, we call the function

f concave, resp. strictly concave, (on I).

Recall that κ(a, f (a), c, f (c)) is the secant of the graph Gf going

through the points (a, f (a)) and (c, f (c)). A typical example of

a strictly convex function is

f (x) = x2 : R→ R .

The function

f (x) = −x2 : R→ R
is then strictly concave. In general, f : I → R is (strictly) convex

⇐⇒ −f is (strictly) concave. (Strict) convexity, resp. (strict) con-

cavity, is preserved when the function is restricted to a subinterval.

We present without proof the interesting fact that convexity and

concavity imply continuity, in fact even one-sided differentiability.

10



Theorem 11 (∃ one-sided derivatives) Every convex,

resp. concave, function f : I → R that is defined on an

open interval I ⊂ R has finite one-sided derivatives

f ′−, f
′
+ : I → R .

They are non-decreasing, resp. non-increasing.

By Proposition 5 in the last lecture, such function f is left- and

right-continuous at each point in I and is therefore continuous on

I . However, the (two-sided) derivative f ′ may not exist at some

points, as the convex function |x| shows.

Theorem 12 (f ′′, convexity and concavity) Let I ⊂
R be an interval and let f : I → R be a continuous func-

tion that has at each point b ∈ I0 possibly infinite second

derivative f ′′(b) ∈ R∗. Then the following hold.

1. f ′′ ≥ 0, resp. f ′′ ≤ 0, on I0 ⇒ f is convex, resp.

concave, on I.

2. f ′′ > 0, resp. f ′′ < 0, on I0 ⇒ f is strictly convex,

resp. strictly concave, on I.

To prove this theorem, we need the following geometric lemma, the

proof of which is left as an exercise. It says that if we go from left

to right and append to a non-vertical straight segment (a, a′)(b, b′)

another non-vertical straight segment (b, b′)(c, c′) with the same or

greater slope, then the common point (b, b′) lies below the line going

through the extreme points (a, a′) and (c, c′).
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Lemma 13 (on slopes) Let (a, a′), (b, b′) and (c, c′) be in

R2 and a < b < c. Then

b′ − a′

b− a
≤ c′ − b′

c− b
⇒ (b, b′) ≤ κ(a, a′, c, c′) .

Furthermore, strict inequality implies strict “inequality”

and both of these implications hold with opposite inequali-

ties and “inequalities”.

Proof of Theorem 12. The assumption on the existence of f ′′

means that there exists finite f ′ : I0 → R. We still have to assume

the continuity of f so that it holds also in endpoints of I . Let

f ′′ ≥ 0 on I0, the other three cases in 1 and 2 are treated similarly.

Let a < b < c be any three numbers in I . By Theorem 2 there

exist a y ∈ (a, b) and a z ∈ (b, c) such that

s :=
f (b)− f (a)

b− a
= f ′(y) and t :=

f (c)− f (b)

c− b
= f ′(z) .

By Theorem 4, f ′ is non-decreasing on I0 because f ′′ is non-negative.

As y < z, the slope s = f ′(y) of the straight segment (a, f (a))

(b, f (b)) is at most the slope t = f ′(z) of the straight segment

(b, f (b)) (c, f (c)). According to the previous lemma, the point

(b, f (b)) lies below the line

κ(a, f (a), c, f (c)) .

Thus the condition in Definition 10 holds and f is convex on I . 2

• Inflection points. They can be defined in various ways, but for

us they are the points of the graph where it passes from one side of

the tangent to the other. The precise definition follows.
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Definition 14 (inflection) Let a ∈ M ⊂ R, where a is

a TLP of the set M , f : M → R and ` be tangent to Gf at

(a, f (a)). The point (a, f (a)) is called the inflection point

of the graph of f , if there exists a δ such that for every

x ∈ P−(a, δ) ∩M and every x′ ∈ P+(a, δ) ∩M ,

(x, f (x)) ≤ ` and (x′, f (x′)) ≥ ` ,

or the reversed “inequalities” always hold.

For example, the point (0, 0) is the inflection point of the graph of

the function

f (x) = x3 : R→ R ,

because in it Gf goes from the lower to the upper side of the tangent

y = 0 (this example falls under Theorem 16).

The following proposition provides a necessary condition for in-

flection: the function is differentiable at the given point (so that

the tangent exists) and the second derivative at the point does not

exist or is zero.

Proposition 15 (no inflection) Let f : U(a, δ)→ R and

∃ f ′′(a) ∈ R∗, but it is not zero. Then

(a, f (a)) is not an inflection point of the graph of f .

Proof. The assumption on f ′′ means that (after possibly decreas-

ing δ) there exists finite f ′ : U(a, δ) → R. Let f ′′(a) > 0, the

case with f ′′(a) < 0 is treated similarly. Let ` be tangent to Gf

at (a, f (a)), so that it has the slope f ′(a) and passes through the

point (a, f (a)). By Proposition 5 there exists a θ ≤ δ such that for
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every x ∈ P−(a, θ) and every x′ ∈ P+(a, θ),

f ′(x) < f ′(a) and f ′(x′) > f ′(a) . (1)

Let x ∈ P−(a, θ) and x′ ∈ P+(a, θ) be arbitrary and let s and t

be the slopes of the secants

κ(x, f (x), a, f (a)) and κ(a, f (a), x′, f (x′))

of Gf , respectively. Due to the inequalities (1) and the mean value

Theorem 2 we can easily see that s < f ′(a) < t. Hence

(x, f (x)) > ` and (x′, f (x′)) > `

and the condition in Definition 14 is not met. 2

We give without proof a sufficient condition for inflection.

Theorem 16 (inflection exists) Let f : U(a, δ) → R,

for every b ∈ U(a, δ) there exists finite f ′′(b), f ′′(a) = 0,

f ′′ ≥ 0 on P−(a, δ) and f ′′ ≤ 0 on P+(a, δ) or opposite

inequalities hold. Then

(a, f (a)) is an inflection point of the graph of f .

• Asymptotes of functions. An asymptote of a function is a line,

possibly vertical, to which the graph of the function gets in infinity

arbitrarily close.

14



Definition 17 (vertical asymptotes) Let M ⊂ R, b ∈
R be a left limit point of M and f : M → R. If

lim
x→b−

f (x) = ±∞ ,

we call the line x = b the left vertical asymptote of f . Right

vertical asymptotes are defined similarly.

For example, the line x = 0 is both the left and right vertical

asymptote of f (x) = 1/x : R \ {0} → R. It is also the right

vertical asymptote of f (x) = log x : (0,+∞)→ R.

Definition 18 (asymptotes in infinity) Let M ⊂ R,

+∞ be a limit point of M , s, b ∈ R and f : M → R. If

lim
x→+∞

(f (x)− sx− b) = 0 ,

we call the line y = sx + b the asymptote of the function

f in +∞. Asymptotes in −∞ are defined similarly.

Obviously, y = sx + b is the asymptote of a function f in +∞ iff

limx→+∞ f (x)/x = s and limx→+∞(f (x) − sx) = b. Similarly for

asymptotes in −∞. For example, y = 0 = 0x+ 0 is the asymptote

of the function f (x) = 1/x both in +∞ and in −∞.

• Graphing functions. To graph a function f (i.e., to make a pic-

ture of Gf), usually given by a formula, we first determine its def-

inition domain, the set M ⊂ R maximal to inclusion such that

f : M → R. Almost always it is a union of at most countably

many intervals. We determine whether f is of a special form (even,

odd, periodic, . . . ). We determine where f is continuous and where
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f ′ exists. We find one-sided limits at the points of discontinuity of

f and at the limit points of M lying outside M . We calculate

one-sided derivatives, then Proposition 6 helps. Using Theorem 4

we determine maximum intervals of monotonicity. We find local

and global extremes. We determine intersections of Gf with the

coordinate axes and the image f [M ].

We determine where f ′′ exists and, using Theorem 12, deter-

mine maximum intervals of convexity and concavity. Using Propo-

sition 15 and Theorem 16 we find inflection points of the graph.

We determine asymptotes of the function f and draw its graph by

hand or computer.

Example 1 Let

f (x) := tanx =
sinx

cosx
.

The definition domain is

M =
⋃
n∈Z

(πn− π/2, πn + π/2) .

It is a π-periodic function, sin(π + x) = − sinx and cos(π + x) =

− cosx. Due to the continuity of sine and cosine and due to the

arithmetic of continuity, f is continuous on M . For b(n) := πn+ π
2 ,

n ∈ Z, one has the limits

lim
x→b(n)−

f (x) = +∞ and lim
x→b(n)+

f (x) = −∞

— each line x = b(n) is both the left and right vertical asymptote

of f . There are no asymptotes in −∞ and +∞, nor the limits

limx→±∞ f (x) exist. Because

f ′(x) = 1/ cos2 x > 0 on M ,
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f increases on each interval (b(n) − π, b(n)). Because of this and

the periodicity, f has no extremes. Gf intersects the y-axis only in

the origin (0, 0) and the x-axis exactly in the points (b(n)− π
2 , 0) =

(πn, 0), n ∈ Z. By the above infinite limits and continuity of f

(attaining intermediate values) we see that

f [M ] = f [(b(n)− π, b(n))] = R .

The second derivative is

f ′′(x) =
2 sinx

cos3 x
: M → R .

We have that f ′′(x) = 0 ⇐⇒ x = b(n) − π
2 , that f ′′ < 0 on

(b(n) − π, b(n) − π
2) and that f ′′ > 0 on (b(n) − π

2 , b(n)). Thus

f is strictly concave on (b(n) − π, b(n) − π
2 ], strictly convex on

[b(n)− π
2 , b(n)) and the inflection points are exactly(

b(n)− π
2 , 0
)

= (π(n), 0) , n ∈ Z .

For sketches ofGf go to https://www.desmos.com/calculator.

Example 2 (after the lecture notes R. Černý a M. Pokorný,

Základy matematické analýzy pro studenty fyziky. 1, Matfyz-

Press, Praha 2020, pp. 193–194). Let

f (x) := arcsin
(
2x/(1 + x2)

)
.

The definition domain is

M = R
because the definition domain of arcsin is [−1, 1] and 2|x| ≤ 1 +x2

for every x ∈ R (x2 ± 2x + 1 = (x ± 1)2 ≥ 0). This function is

odd, i.e., f (−x) = −f (x), because the functions sinx, arcsinx and
2x

1+x2
are odd. According to the theorems on continuity of inverse

17



functions, of rational functions and of composite functions, f is

continuous on M . Clearly,

lim
x→−∞

f (x) = lim
x→+∞

f (x) = arcsin(0) = 0 ,

because 2x
1+x2

→ 0 for x → ±∞, and so y = 0 = 0x + 0 is

the asymptote of f both in −∞ and +∞. There are no vertical

asymptotes. The formulas for derivatives of arcsin, of composite

functions and of ratios of functions yield that on the set {x ∈
R | 2x

1+x2
6= ±1} = R \ {−1, 1},

f ′(x) =
1√

1− (2x/(1 + x2))2
· 2 · (1 + x2)− 2x · 2x

(1 + x2)2

= 2 · (1− x2)/(1 + x2)2

|(1− x2)/(1 + x2)|
= 2 · 1− x2

|1− x2|
· 1

1 + x2

=
2 · sgn(1− x2)

1 + x2
.

Obviously, limx→1± f
′(x) = ∓1. By Proposition 6 we have that

f ′±(1) = ∓1. Since f is odd, f ′±(−1) = ±1. Because f ′ < 0

on (−∞,−1), f ′ > 0 on (−1, 1) and f ′ < 0 on (1,+∞), by

Proposition 4 the function f decreases on (−∞,−1], increases on

[−1, 1] and decreases on [1,+∞). Also f (x) < 0 for x < 0 and

f (x) > 0 for x > 0 (and f (0) = 0). According to these intervals of

monotonicity and signs and according to the above zero limits, we

see that f has at x = −1 the strict global minimum with the value

f (−1) = −π/2, that at x = 1 it has symmetrically (f is odd) the

strict global maximum with the value f (1) = π/2 and that f has no

other local extrema. It follows that Gf intersects both coordinate

axes only in (0, 0) and that

f [M ] = f [R] = [−π/2, π/2] .
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The second derivative is on R \ {−1, 1} equal to

f ′′(x) =
−4x · sgn(1− x2)

(1 + x2)2
.

Because f ′′ < 0 on (−∞,−1), f ′′ > 0 on (−1, 0), f ′′ < 0 on

(0, 1), f ′′ > 0 on (1,+∞) and f ′′(x) = 0 ⇐⇒ x = 0 (the second

derivatives f ′′(±1) do not exist), by Theorem 12, Proposition 15

and Theorem 16, f is strictly concave on (−∞,−1], strictly convex

on [−1, 0], strictly concave on [0, 1], strictly convex on [1,+∞)

and (0, 0) is the only inflection point (at the points (−1, f (−1))

and (1, f (1)) tangents do not exist). For sketches of Gf go to

https://www.desmos.com/calculator.

THANK YOU FOR YOUR ATTENTION!
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