LECTURE 6, 3/23/2022
PROPERTIES OF CONTINUOUS FUNCTIONS

e Heine’s definition of continuity at a point. From the last lec-
ture we know that continuity of a function f: M — R at a point
a € M C R means that

Veds: flU(a, §)N M| C Uf(a), ) .

In this lecture we will refer frequently (9%, to be precise) to the
next result.

Proposition 1 (Heine’s definition) f: M — R is con-
tinuous at a point a € M C R if and only if

V(a,) C M: lim a, = a = lim f(a,) = f(a) .

Proof. We proved this equivalence as 1 <= 3 in Proposition 5
in the last lecture for limit points. If a € M is an isolated point of
M then f is continuous at a by Proposition 7 in the last lecture.
But then lim a,, = a means that a,, = a for every n > ny. Hence
fla,) = f(a) for every n > ny and lim f(a,) = f(a). O

Definition 2 (continuity on a set) Let M C R and let
f: M — R. The function [ is continuous (on M) if f is
continuous at every point of M.

e Dense sets. We introduce the relation of density of a set in
another set.



Definition 3 (dense sets) Let N ¢ M C R. We say
that the set N 1s dense in the set M if

Vae MYé: Ula,))NN #0D.

Let N ¢ M C R. Clearly, N is dense in M iff for every point
a € M there is a sequence (b,) C N such that lim b, = a. For
example, the set of fractions Q is dense in R.

Proposition 4 (density and continuity) Suppose that
N C M CR, that N 1s dense in M and that f, g: M — R
are two continuous functions such that Vx € N: f(x) =
g(x). Then

=y

— the functions f and g coincide.

Proof. Let y € M be any point and (a,,) C N be a sequence with
lim a, =y. Then

fly) = f(lim a,) = lim f(a,) = lim g(a,) = g (lim a,) = g(y) .

Here the 2nd and 4th equality follow from Proposition 1. The 3rd
equality follows from the assumption that f and g are equal on N.
Thus f = g completely. O

Recall that it A C B and C aresets and f: B — C'is a function,
its restriction to A is the function f|A: A — C given by Vx €

A (fIA) @) = flx).



Theorem 5 (H. Blumberg, 1922) For any function
f: R — R there i1s a set M C R dense in R and such
that the restriction f| M is a continuous function.

Henry Blumberg (1886-1950) was an American mathematician
who was born in Lithuania.

e Counting continuous functions. For M C R we introduce the
notation

C(M):={f: M — R | f is continuous} .

[t is the set of all continuous real functions defined on the set M.
The next theorem is a basic result in set theory.

Theorem 6 (Cantor—Bernstein) If there exist injec-
tions f: X — Y and g: Y — X then there is a bijection

h: X —-Y.

The map h can be chosen so that for every r € X one has
that h(z) = f(z) or h(z) = g ().

How many continuous functions f: R — R are there? That many
as the real numbers.

Theorem 7 (counting cont. functions) There exists
a bijection h: R — C(R).

Proof. By the previous theorem it suffices to find injections
f:R— C(R) and g: C(R) — R. The former one is obvious,

fla) = (b a),
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i.e., f(a) is the constant function with the value a.

We describe the latter injection g: C(R) — R. We view the
numbers in R as infinite decimal expansions, for instance —m =
—3.141592 . .. or 2022.00000. .. . By Proposition 4 every function
j € C(R) is completely determined by the countably many values
j(x), z € Q. Let r: N - Q and s: N — N x N be bijections, for
example (k,[,n € N)

s(n) = s(2871. (21 = 1)) = (s1(n), sa(n)) = (k, 1) .

We encode the decimal digits 0, 1, ..., 9, the decimal point . and
the minus sign — by two decimal digits:

c(0) :== 00, ¢(1) :==01, ..., ¢(9) :== 09, ¢(.) := 10 and ¢(—) :=11.
The map ¢g: C(R) — R has at the function j € C(R) the value
g(j) =0.a1a2a3 ... asp_1a9, ... = .

The digits a,, € {0,1,...,9} are defined as follows. For k,l € N
we consider the decimal expansions

J(r(k)) =:b(1, k)b(2, k) ... b(l, k) ...
of the values j(r(k)) of the function j on the fractions r(k) € Q,
with symbols b(l, k) € {0,1,...,9, ., —}. Then we set
Aon—1 Aoy = c(b(l, k) := c(b(s1(n), so(n))) .

A short meditation reveals that the map ¢ is injective: the single
decimal expansion « stores all values of the function 7 on all rational
numbers. O

o Attaining intermediate values by continuous functions. The
image of the function sgn(x) is {—1,0, 1}, but nothing else between
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these three points. Images of intervals by continuous functions can-
not look like this.

Theorem 8 (on intermediate values) Let a,b,¢c € R,
a < b, f:la,b] = R be a continuous function and let
fla) <c< f(b) or f(a) > ¢ > f(b). Then

dd € (a,b): f(d) =c.

Proof. We suppose that f(a) < ¢ < f(b), the case that f(a) >
c > f(b) is treated similarly. Let

A={x€la,b]| f(z) <c} and d:=sup(A) € |a, b] .

The number d is correctly defined because the set A is nonempty
(a € A) and bounded from above (for instance, b is an upper
bound). We show that both f(d) < c and f(d) > ¢ lead to contra-
diction, so that f(d) = ¢. The continuity of f at a and b implies
that d € (a,b). Let f(d) < c¢. The continuity of f at d implies that
there is a § such that z € U(d,d) Na,b] = f(x) < c¢. But then A
contains numbers larger than d, in contradiction with the fact that
d is an upper bound of A. Let f(d) > ¢. In the same vein, there
is a ¢ such that x € U(d,d) N |a,b] = f(x) > c¢. But then every
x € |a,d) sufficiently close to d lies outside of A, in contradiction
with the fact that d is the smallest upper bound of A. O



Corollary 9 (cont. image of an interval) Let I C R
be an interval (i.e., a convex set) and f: I — R be a con-
tinuous function. Then

fl] ={f(z) [z eI} CR

15 an interval too.

Proof. Theorem 8 shows that the set f[/] is convex. O

You may wish to attempt the following corollary of the theorem
on intermediate values as an exercise.

Corollary 10 (on climbing) A climber starts climbing
a mountain at midnight and reaches the summit exactly
after 24 hours, again at midnight. Then the climber de-
scends, again for exactly 24 hours, in the base camp. Prove
that there is a time ty € [0,24] when the climber is in both
days tn the same altitude.

We prove the next corollary. Recall that a function f: M — R
is increasing, resp. decreasing (on M C R), if for every x,y € M
one has that < y = f(x) < f(y), resp. f(x) > f(y).

Corollary 11 (continuity and inject. on an interval)
Suppose that I C R is an interval and that f: I — R
1s a continuous injective function. Then f 1is either
mncreasing or decreasing.

Proof. If f neither increases nor decreases then there exist three
number a < b < ¢ in [ such that f(a) < f(b) > f(c) or f(a) >
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f(b) < f(c). In the former case every d satisfying f(a), f(c) <
d < f(b) is attained, by Theorem 8, as d = f(z) = f(y) for some
x € (a,b) and y € (b, c). This contradicts the injectivity of f. In
the latter case we get a very similar contradiction. O

e Continuous functions on compact sets. Compact sets play in
analysis and elsewhere (e.g., in optimization) an important role.

Definition 12 (compact sets) A set M C R is compact
if every sequence (a,) C M has a convergent subsequence
(am,, ) with lim a,, € M.

By the Bolzano—Weierstrass theorem and the theorem on limits of
sequences and order we know that every interval [a, b] is compact.
We characterize compact sets later and now prove on them an im-
portant theorem.

Theorem 13 (the min-max principle) Let M C R be
a nonempty compact set and f: M — R be a continuous
function. Then there exist points a,b € M such that

Ve e M: fla) < f(x) < f(b) .

We say that f attains at a € M its minimum (smallest
value) f(a) on M and that f attains at b € M its mazimum
(largest value) f(b) on M.

Proof. We only prove the existence of the maximum of f, the
proof for the minimum is very similar. Clearly, f[M] # 0 and
we show that this set is bounded from above. Suppose not, then
there is a sequence (a,) C M such that lim f(a,) = +o0o. By the
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compactness of M the sequence (a,) has a convergent subsequence
(am,, ) with a :=lim a,,, € M. Then lim f(a,,,) = +o0o0 too. But
this contradicts the fact that by Proposition 1, lim f(a,,, ) = f(a).
Thus we can define

s :=sup(f[M]) € R

and by the definition of supremum there is a sequence (a,) C M
with lim f(a,) = s. Due to compactness of M the sequence (a,,)
has a convergent subsequence (a,,,) with b := lim a,,, € M. By
Proposition 1 one has that lim f(a,,,) = f(b) = s. Since s = f(b)
is an upper bound of f[M], we have that f(b) > f(x) for every
x € M. O

For non-compact M the theorem need not hold. For example,
the function f: [0,1) — R, f(z) = =, is continuous but not
bounded from above and does not have maximum. The function
f:10,1) = R, f(x) = x, is continuous and bounded from above
but still does not have maximum. We review the standard classifi-

cation of minima and maxima of functions as “global” and “local”.



Definition 14 (global and local) Let « € M C R and
let f: M — R be any function. The function f has on M
a global mazximum, resp. a global minimum, at a if

Vo e M: f(r) < fla), resp. f(z) 2 fla).

The function f has on M a local maximum, resp. a local
mimimum, at a if

d6VaxeUla, )N M: f(x) < f(a), resp. f(x)> f(a).

When strict inequalities (<, resp. >) hold for every x # a,
we speak of a strict global mazximum, etc.

e Compact sets in R. We know when a set M C R is bounded:
deVae M: |a| <c Itis closed if

V(a,) C M: lima,=a=a€ M.

It is open if
Vae M 36§: Ula, §) C M .

Proposition 15 (closed sets) A set M C R is closed if
and only if the set R\ M is open.

Proof. R\ M is not open iff there is a point a« € R\ M such
that for every 0, U(a,d) N M # (). Equivalently (choosing for every
n some a, € U(a,1/n) N M), there is a point a € R\ M and
a sequence (a,) C M such that lim a,, = a. Equivalently, M is not
closed. O

Using the following structural description of open sets one can rel-
atively easily imagine them. By open intervals we mean in it the
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intervals (—oo, a), (a,+00) and (a, b) for a < b.

Proposition 16 (structure of open sets) A set M C
R is open if and only if there is a system of open inter-
vals {I; | j € X} such that the index set X is at most
countable, the intervals I; are mutually disjoint and

UQ:M.

jeX

Closed sets are complements of open sets and therefore they are
unions of “gaps” between the above intervals [;. If | X| =n € Ny,
there are at most n + 1 gaps. What is hard to imagine is that for
countable X the set of gaps may be uncountable. This is the reason
that it is harder to imagine closed sets.

Theorem 17 (compact sets) Let M C R. Then M is
compact if and only if M is closed and bounded.

Proof. Let M C R be closed and bounded and let (a,) C M be
any sequence. Since (a,) is bounded, by the Bolzano—Weierstrass
theorem it has a convergent subsequence (a,,, ) with a := lim a,,, €
R. Since M is closed, a € M. Thus M is compact.

Suppose that M C R is not bounded. We construct a sequence
(a,) C M such that |a,, — a,| > 1 for every two indices m # n.
This property is inherited by every subsequence which therefore
cannot be convergent and M is not compact. The first term a; € M
is taken arbitrarily. Suppose that aq, as, ..., a, have been defined
such that |a; — a;| > 1 for every ¢, j with 1 <7 < j < n. Since M
is not bounded, there is a point a,+1 € M such that |a,.1| > 1+
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max(|ay|, ..., |an|). Then |a, 1 —a;| > 1 foreveryi=1,2,...,n.
In this way we define the whole (a,).

Suppose that M C R is not closed. Then there is a convergent
sequence (a,) C M such that a = lim a,, € R\ M. Every
subsequence has the same limit a, and so it does not have limit in
M. Thus M is not compact. O

o Continuity and vartous operations. We present several opera-
tions which produce new continuous functions from old ones. Recall
that for two functions f,g: M — R their sum, product and ratio
function is defined as (z € M)

(f +9)(z) = f(z)+g(x)
(fg)(x) = f(z)-g(z) and
(f/9)(x) = f(x)/g(z),

respectively.

Proposition 18 (arithmetic of continuity) Let M C
R and f,g: M — R be continuous functions. Then the
sum and product function

f+g, fg: M - R
are continuous. If g # 0 on M then also the ratio function
f/lg: M — R

18 continuous.

Proof. All three proofs are similar and we only prove the part
with the ratio function. Let a € M be any point and (a,) C M
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be any sequence with lim a,, = a. By Proposition 1 (implication
=) one has that lim f(a,) = f(a) and lim g(a,) = g(a). By the
theorem on arithmetic of limits of sequences,

lim (f/g)(an) = lim f(a,)/g(an) = lim f(a,)/lim g(a,)
— fla)/g(a) = (f/9)a).

By Proposition 1 (implication <), the function f/g is continuous
at the point a. O

Rational functions r(x) are ratios of two polynomials, i.e., func-

tion of the form
A" + -+ a1+ a
r(z) = — M SR,
bn$n+"'—|‘b13}—|—b0

where a;,b; € R, m,n € Ny and a,,b, # 0; in the numerator we

allow also the identically zero polynomial. The definition domain
M of this function is the set

M:R\{Zl, ZQ,...,Zk;},

where z; € R are all real roots of the polynomial in the denominator

(k € Nygand k < n).

Corollary 19 (continuity of rational functions)
Fvery rational function is continuous on its definition
domain.

Proof. Theidentical function f(x) = x and the constant functions
f(x) = ¢, ¢ € R, are continuous on R. Starting with them and
repeatedly applying the previous proposition we obtain that every
rational function is continuous. O
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All earlier mentioned elementary functions exp(z), logz, cosz,
sinz, a” (a > 0), arccoszx, arcsinz, tanx, arctanzx, cotx and
arccot x are continuous on their definition domains.

Proposition 20 (continuity and composition)  Let
M,N C R and let g: M — N and f: N — R be con-
tinuous functions. Then the composite function

flg): M - R

18 continuous.

Proof. Let a € M be any point and (a,) C M be any sequence
with lim a,, = a. By Proposition 1 (implication =) one has that
lim g(a,) = g(a) and also that

lim f(g)(an) = lim f(g(an)) = f(g(a)) = f(g)(a) .
By Proposition 1 (implication <), f(g) is continuous at a. O

We know that every injection f: A — B has the inverse function
(or inverse) f~1: f[A] — A that is given by

Vye flJAAVz e A: fTH(y) =2 < flx)=y.

Theorem 21 (continuity of inverses) Let M C R and
let f: M — R be a continuous injective function. Then the
inverse = fIM] — M is continuous if (i) M is compact
or (i) M is an interval.

Proof. (i) We assume that M is compact, b € f[M] is any
point and that (b,) C f[M] is any sequence with lim b, = b. We
set a == f~4(b) € M and a, = f~1(b,) € M. We show that
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lim a,, = a, which by Proposition 1 proves the continuity of !
at b. Let (a,,) be any subsequence of the sequence (a,) C M
with lim a,,, = L € R*. But L € M because M is bounded and
closed (by Theorem 17). By Proposition 1, lim f(a,,,) = f(L) =0
because (f(a,)) is a subsequence of the sequence (b,,). Due to the
injectivity of f, L = a. Thus the sequence (a,) does not have two
subsequences with different limits and by part 2 of Proposition 6 in
Lecture 2 (a,) has a limit. We have just proven that this limit is a.

(ii) Let M be an interval. By Corollary 11 the function f in-
creases or decreases. Suppose that f is decreasing, the increasing
case is similar. By Corollary 9 the image f[M] is an interval. Let
b € f[M] and let an € be given. We show that f~! is right-
continuous at b. This is trivial when b is the right endpoint of the
interval f[M] because then U (b,§) N f[M] = {b}. Suppose that
b is not the right endpoint of this interval. Since f~! is decreasing,
a = f~1(b) € M is not the left endpoint of the interval M and
we can assume that € is so small that [a — €,a] C M. We set
6= fla—e)— f(a) = f(a—e) —b. Since f~! decreases, it maps
b,b+ 9] C f[M] to [a —e,a] C M. Hence

FHUTb, )N fIM C U(f7(b), €) = Ula, €)

and f~! is right-continuous at b. The left continuity is proven
similarly and we see that f~! is continuous at b. O

The theorem also holds for (iii) open M and (iv) closed M if f
increases or decreases, but we skip these proofs here. Part (ii) of
the theorem implies that log x and inverse trigonometric functions
are continuous.
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THANK YOU FOR YOUR ATTENTION!
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