
LECTURE 5, 3/16/2022

PROPERTIES OF LIMITS OF FUNCTIONS. CONTINUITY

OF A FUNCTION AT A POINT

• One-sided limits of functions. In contrast with C or with the

spaces Rn of dimension n ≥ 2, deletion of one point disconnects

the real axis in two separated pieces. So in R there are exactly

two directions to approach in limit the given point, and hence the

left-sided and right-sided limits. They only concern finite points,

not infinities.

Definition 1 (one-sided neighborhoods) For ε, b ∈ R,

the left, resp. right, ε-neighborhood of the point b is

U−(b, ε) := (b− ε, b], resp. U+(b, ε) := [b, b + ε) .

The left, resp. right, deleted ε-neighborhood of b is

P−(b, ε) := (b− ε, b), resp. P+(b, ε) := (b, b + ε) .

So again P−(b, ε) = U−(b, ε)\{b} and P+(b, ε) = U+(b, ε)\{b}.
By means of these neighborhoods we define one-sided limit points.

Definition 2 (one-sided limit points) A point b ∈ R is

a left, resp. right, limit point of M ⊂ R if

∀ δ > 0 : P−(b, δ) ∩M 6= ∅ ,

resp.

∀ δ > 0 : P+(b, δ) ∩M 6= ∅ .

As before b is a left (resp. right) limit point of M iff there is

a sequence (an) in (−∞, b)∩M (resp. in (b,+∞)∩M) such that
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lim an = b. A left (resp. right) limit point of a set is its limit point.

Any limit point of a set is its left or right limit point, but it need

not be its left and right limit point.

Definition 3 (one-sided limits) Let a ∈ R, L ∈ R∗,
M ⊂ R, a be a left (resp. right) limit point of M and

let

f : M → R .

We write limx→a− f (x) = L, resp. limx→a+ f (x) = L, and

say that the function f has at the point a the left-sided,

resp. right-sided, limit L if

∀ ε ∃ δ : f [P−(a, δ) ∩M ] ⊂ U(L, ε) ,

resp. f [P+(a, δ) ∩M ] ⊂ U(L, ε) .

It always holds that

lim
x→a

f (x) = L⇒ lim
x→a±

f (x) = L

or the one-sided limit of f at a is not defined because a is not

the respective left or right limit point of the definition domain. It

always holds that

lim
x→a−

f (x) = L ∧ lim
x→a+

f (x) = L⇒ lim
x→a

f (x) = L .

But it may be that limx→a− f (x) = L 6= L′ = limx→a+ f (x). Then

limx→a f (x) does not exist. For instance, the function signum

sgn(x) : R→ {−1, 0, 1} ,

defined as sgn(x) = −1 for x < 0, sgn(0) = 0 and sgn(x) = 1 for
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x > 0, has at 0 different one-sided limits

lim
x→0−

sgn(x) = −1 and lim
x→0+

sgn(x) = 1 .

Hence limx→0 sgn(x) does not exist. Like two-sided limits, one-sided

limits are unique and have equivalent Heine definitions.

• Continuity at a point. The next definition is fundamental.

Definition 4 (continuity of a function at a point)

Let a ∈ M ⊂ R and let f : M → R. The function f is

continuous at the point a if

∀ ε ∃ δ : f [U(a, δ) ∩M ] ⊂ U(f (a), ε) .

Compared to the limit of f at a, the element L is replaced

with the value f (a), and P (a, δ) is replaced with the larger

neighborhood U(a, δ).

In other words, f : M → R is continuous at a ∈M iff

∀ ε ∃ δ : x ∈M ∧ |x− a| < δ ⇒ |f (x)− f (a)| < ε .

Else we say that f is discontinuous at a. For example, sgn(x) is

discontinuous at 0, but is continuous at every x 6= 0.
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Proposition 5 (on continuity at a point) Suppose

that b ∈ M ⊂ R, that b is a limit point of M and that

a function f : M → R is given. The following three claims

are mutually equivalent.

1. The function f is continuous at the point b.

2. limx→b f (x) = f (b).

3. For every sequence (an) ⊂ M with lim an = b also

lim f (an) = f (b).

Proof. Implication 1 ⇒ 2. We assume that f is continuous at

b according to Definition 4 and that an ε is given. Thus there is

a δ such that f [U(b, δ) ∩M ] ⊂ U(f (b), ε). Thus also f [P (b, δ) ∩
M ] ⊂ U(f (b), ε) and, by the definition of limit of a function,

limx→b f (x) = f (b).

Implication 2 ⇒ 3. We assume that limx→b f (x) = f (b) and

that a sequence (an) ⊂ M with lim an = b is given, as well as an

ε. By the definition of limit of a function there is a δ such that

f [P (b, δ) ∩M ] ⊂ U(f (b), ε) . (*)

We take an n0 such that n ≥ n0 ⇒ an ∈ U(b, δ). Hence n ≥ n0
⇒ f (an) ∈ U(f (b), ε): either an 6= b, and we can use inclusion (∗),

or an = b but then f (an) = f (b) ∈ U(f (b), ε). Thus lim f (an) =

f (b).

Implication 3 ⇒ 1, i.e., ¬1 ⇒ ¬3. We assume that f is not

continuous at b according to Definition 4. Thus there is an ε

such that for every δ there is an a = a(δ) ∈ U(b, δ) ∩ M with

f (a) 6∈ U(f (b), ε). We choose for every n some such an :=
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a(1/n) and get the sequence (an) ⊂ M such that lim an = b but

f (an) 6∈ U(f (b), ε) for every n— (f (an)) does not have the limit

f (b). Therefore part 3 does not hold. 2

In the proof of the last implication we used again the so called

axiom of choice of set theory.

We consider continuity of a function at a point that is not a limit

point of the definition domain.

Definition 6 (isolated points) A point b ∈ M ⊂ R is

an isolated point of M if

∃ ε : U(b, ε) ∩M = {b} .

For b ∈M ⊂ R we see at once that

b is not a limit point of M ⇐⇒ b is an isolated point of M .

Proposition 7 (continuity at an isolated point) Let

b ∈M ⊂ R, b be an isolated point of M and let

f : M → R

be any function. Then f is continuous at b.

Proof. Let b, M and f be as stated. Then for some δ, U(b, δ) ∩
M = {b}. For this δ the inclusion

f [U(b, δ) ∩M ] = {f (b)} ⊂ U(f (b), ε)

holds for every ε. Hence f is continuous at b according to Defini-

tion 4. 2
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So, for example, every sequence (an) ⊂ R when viewed as a function

a from N to R is continuous at every point n ∈ N ⊂ R of its

definition domain N.

• One-sided continuity. Let a ∈ M ⊂ R and f : M → R. The

function f is left-continuous, resp. right-continuous, at the point

a if

∀ ε ∃ δ : f [U−(a, δ) ∩M ] ⊂ U(f (a), ε) ,

resp. f [U+(a, δ) ∩M ] ⊂ U(f (a), ε) .

It is easy to see that

f is cont. at a ⇐⇒ f is left-cont. at a ∧ f is right-cont. at a .

• The Riemann function. This function

r : R→ {0} ∪ {1/n | n ∈ N}

is defined by

r(x) =

{
0 . . . x is an irrational number and
1
n . . . x = m

n ∈ Q and m
n is in lowest terms .

Proposition 8 (on r(x)) The Riemann function is con-

tinuous at x if and only if x is irrational.

Proof. Let x = m
n ∈ Q, where m

n is in lowest terms, and let

ε ≤ 1
n. For every δ there is an irrational number α ∈ U(x, δ). But

r(α) = 0 6∈ U(r(x), ε) = U( 1n, ε), and r is not continuous at the

point x.

Let x ∈ R be irrational and let an ε ∈ (0, 1) be given. We define

δ := min(M) for the set

M := {|x− m
n | |

m
n ∈ Q, mn ∈ U(x, 1), 1/n ≥ ε} .
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This δ > 0 exists because M 6= ∅ and M is a finite set of positive

numbers. (I explain this in detail orally.) Also y ∈ U(x, δ) ⇒
r(y) ∈ U(r(x), ε) = U(0, ε) because for every y ∈ U(x, δ) one has

that r(y) = 0 or r(y) = 1
n < ε. Therefore r is continuous at the

point x. 2

• Limits of monotonous functions. Monotonicity of functions is

similar to monotonicity of sequences.

Definition 9 (monotonous functions) Let M ⊂ R and

f : M → R. The function f

1. is non-decreasing (on M) if for every x, y ∈ M one

has that x ≤ y ⇒ f (x) ≤ f (y), and

2. is non-increasing (on M) if for every x, y ∈M one has

that x ≤ y ⇒ f (x) ≥ f (y).

The function f is monotonous (on M) if it is non-

decreasing or non-increasing.

Recall when a set of real numbers is bounded from above (or from

below) and when it is unbounded from above (or from below). We

explain after the proof of the next theorem why it is stated only for

one-sided limits and not for two-sided limits.
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Theorem 10 (limits of monotonous functions) Let

M ⊂ R, a ∈ R be a left limit point of M and let

f : M → R

be a function that is non-decreasing on P−(a, δ) ∩M for

some δ. Then the left-sided limit of the function f at the

point a exists. With N := f [P−(a, δ) ∩M ] ⊂ R we have

that

lim
x→a−

f (x) =

{
+∞ . . . N is unb. from above and

sup(N) ∈ R . . . N is bounded from above .

Proof. Suppose that N is unbounded from above and that an ε

is given. Thus there is an x ∈ P−(a, δ)∩M such that f (x) > 1/ε.

Since f is non-decreasing on P−(a, δ) ∩M , for θ := a− x it holds

that y ∈ P−(a, θ) ∩M ⇒ x < y < a ⇒ f (y) ≥ f (x) > 1/ε.

Thus f [P−(a, θ) ∩M ] ⊂ U(+∞, ε) and limx→a− f (x) = +∞.

Suppose thatN is bounded from above, s := sup(N) and that an

ε is given. By the definition of s there is an x ∈ P−(a, δ)∩M such

that s−ε < f (x) ≤ s. Since f is non-decreasing on P−(a, δ)∩M ,

for θ := a − x it holds that y ∈ P−(a, θ) ∩M ⇒ x < y < a ⇒
s − ε < f (x) ≤ f (y) ≤ s. Hence f [P−(a, θ) ∩M ] ⊂ U(s, ε) and

limx→a− f (x) = s. 2

There are several other obvious variants of the theorem: for lo-

cally non-increasing functions and/or infinite limit points and/or

right-sided limits. Existence of two-sided limits can be proven by

monotonicity by reducing them to one-sided limits.

But monotonicity by itself does not guarantee existence of two-
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sided limits: consider the function sgn(x) : R → {−1, 0, 1} (recall

that sgn(x) = −1 for x < 0, sgn(0) = 0 and sgn(x) = 1 for x > 0).

It is monotonous (non-decreasing) on the whole R, but

lim
x→0

sgn(x)

does not exist, limx→0− sgn(x) = −1 and limx→0+ sgn(x) = 1.

• Arithmetic of limits of functions. We state the next theorem

for two-sided limits and prove it by means of Heine’s definition of

limits of functions. Fortunately now we need not estimate sums,

products and ratios. Such estimates were dealt with in the proof of

the theorem on arithmetic of limits of sequences.

Theorem 11 (arithmetic of limits of functions) Let

M ⊂ R, A,K,L ∈ R∗, A be a limit point of M and let the

functions

f, g : M → R
have limits limx→A f (x) = K and limx→A g(x) = L. Then

the following hold.

1. limx→A(f (x) + g(x)) = K + L whenever the right-hand

side is defined.

2. limx→A f (x)g(x) = KL whenever the right-hand side is

defined.

3. limx→A f (x)/g(x) = K/L whenever the right-hand side

is defined. Here if g(x) = 0, f (x)/g(x) := 0.

Proof. All proofs of 1–3 are similar and we therefore give in detail

only the proof of 3. Let (an) ⊂ M \ {A} be any sequence with
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lim an = A. By Heine’s definition of limits of functions (implication

⇒), lim f (an) = K a lim g(an) = L. We assume that the right-

hand side is defined (so that L 6= 0 and g(an) 6= 0 for every n ≥ n0).

By the theorem on arithmetic of limits of sequences,

lim
f (an)

g(an)
=

lim f (an)

lim g(an)
=
K

L
.

Since this holds for every sequence

(f (an)/g(an))

with (an) as above, by Heine’s definition of limits of functions (im-

plication ⇐) also limx→A f (x)/g(x) = K/L. 2

There are obvious versions of the previous theorem for one-sided

limits.

• Limits of functions and order. We give functional versions of

the theorem on limits and order, and of the theorem on two cops.

Recall that for M,N ⊂ R the comparison M < N means that for

every a ∈M and b ∈ N one has that a < b.
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Theorem 12 (limits of functions and order) Let

A,K,L ∈ R∗, A be a limit point of M ⊂ R and let the

functions

f, g : M → R
have limits limx→A f (x) = K and limx→A g(x) = L. The

following hold.

1. If K < L then there is a δ such that f [P (A, δ) ∩M ] <

g[P (A, δ) ∩M ].

2. If for every δ there are x, y ∈ P (A, δ)∩M with f (x) ≥
g(y), then K ≥ L.

Proof. 1. Since K < L, there is an ε such that U(K, ε) <

U(L, ε). Then by the assumption on limits of f and g there exists

a δ such that f [P (A, δ) ∩M ] ⊂ U(K, ε) and g[P (A, δ) ∩M ] ⊂
U(L, ε). Hence

f [P (A, δ) ∩M ] < g[P (A, δ) ∩M ] .

2. We already know from the proof of this for sequences that

part 2 is a reformulation of part 1. If part 1 is the implication

ϕ⇒ ψ, then part 2 is ¬ψ ⇒ ¬ϕ. 2

Recall that for a, b ∈ R we denote by I(a, b) the closed real

interval with endpoints a and b.
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Theorem 13 (two functional cops) Let A,L ∈ R∗, A
be a limit point of M ⊂ R and let functions

f, g, h : M → R

be given such that limx→A f (x) = limx→A h(x) = L and that

there is a δ such that for any x ∈ P (A, δ) ∩ M , g(x) ∈
I(f (x), h(x)). Then also

lim
x→A

g(x) = L .

Proof. Let A, L, M , f , g and h be as stated and let an ε be

given. Thus there exists a δ such that the sets f [P (A, δ)∩M ] and

h[P (A, δ)∩M ] are contained in U(L, ε). Therefore and due to the

convexity of the neighborhood U(L, ε), for every x ∈ P (A, δ)∩M
one has that I(f (x), h(x)) ⊂ U(L, ε). By the assumption one has

that g[P (A, δ) ∩M ] ⊂ U(L, ε), hence limx→A g(x) = L. 2

• Limits of composite functions. Composition of functions has

no analogy for sequences. Therefore the next limit theorem on this

operation is more interesting than the previous four theorems. After

its proof we explain why our formulation is better than some other

formulations.
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Theorem 14 (limits of composite functions) Let

A,K,L ∈ R∗, M,N ⊂ R, A be a limit point of M and K

a limit point of N , and let functions

g : M → N and f : N → R

have limits limx→A g(x) = K and limx→K f (x) = L. Then

the composite function f (g) : M → R has the limit

lim
x→A

f (g)(x) = L

if and only if at least one the two conditions below holds.

1. If K ∈ N (so that K ∈ R) then f (K) = L (so that

L ∈ R).

2. There is a δ such that K 6∈ g[P (A, δ) ∩M ].

If neither 1 nor 2 holds then either limx→A f (g)(x) does not

exist or limx→A f (g)(x) = f (K) 6= L.

Proof. Let an ε be given. By the assumption on limits of f and g

there is a δ such that (i) f [P (K, δ) ∩N ] ⊂ U(L, ε), and a θ such

that (ii) g[P (A, θ) ∩M ] ⊂ U(K, δ).

Condition 1 holds. Then inclusion (i) strengthens to f [U(K, δ)∩
N ] ⊂ U(L, ε). Therefore in

f (g)[P (A, θ)∩M ] = f [g[P (A, θ)∩M ]] ⊂ f [U(K, δ)∩N ] ⊂ U(L, ε)

the second inclusion holds and limx→A f (g)(x) = L.

Condition 2 holds. We take the θ smaller than the δ in Condi-

tion 2 and strengthen inclusion (ii) to g[P (A, θ) ∩M ] ⊂ P (K, δ).

13



Therefore in

f (g)[P (A, θ)∩M ] = f [g[P (A, θ)∩M ]] ⊂ f [P (K, δ)∩N ] ⊂ U(L, ε)

the first inclusion holds and again limx→A f (g(x)) = L.

Neither condition 1 nor condition 2 holds. Then K ∈ N but

f (K) 6= L, and for every n there exists an an ∈ P (A, 1/n) ∩M
such that g(an) = K. Then the sequence (an) ⊂M \ {A}, has the

limit lim an = A and

lim f (g)(an) = lim f (g(an)) = lim f (K) = f (K) 6= L .

By Heine’s definition of limits of functions, either limx→A f (g)(x)

does not exist or limx→A f (g)(x) = f (K) 6= L. 2

If K 6∈ N , for example when K = ±∞, then Condition 1 always

holds. Elsewhere Condition 1 is not formulated as an implication as

here, but only as the requirement that f (K) = L. By our extension

of Condition 1 here we have obtained the underlined equivalence.

Another advantage of our formulation is that we say what happens

if neither of the two conditions holds.

• Asymptotic symbols O, o and ∼. These are the most frequently

used symbols denoting asymptotic relations between functions. One

uses also symbols Θ, �, Ω and other.

Definition 15 (big O) Let M ⊂ R, f, g : M → R and

N ⊂M . If

∃ c > 0 ∀x ∈ N : |f (x)| ≤ c · |g(x)| ,

we write f (x) = O(g(x)) (x ∈ N) and say that the function

f is big O of the function g on the set N .
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Examples.

1. Is x2 = O(x3) (x ∈ R)? No, there is a problem at 0.

2. Is x3 = O(x2) (x ∈ R)? No, there is a problem at infinities.

3. Is x3 = O(x2) (x ∈ (−20, 20))? Yes.

4. Is log x = O(x1/3) (x ∈ (0,+∞))? No, there is a problem at

0.

5. Is log x = O(x1/3) (x ∈ (1,+∞))? Yes.

The remaining two asymptotic symbols are defined by means of

limits.

Definition 16 (little o and ∼) Let A ∈ R∗ be a limit

point of M ⊂ R, let f, g : M → R and let g 6= 0 on

P (A, δ) ∩M for some δ.

1. If limx→A f (x)/g(x) = 0, we write f (x) = o(g(x)) (x→
A) and say that the function f is little o of g when x

goes to A.

2. If limx→A f (x)/g(x) = 1, we write f (x) ∼ g(x) (x→ A)

and say that the function f is asymptotically equal to

g when x goes to A.

Examples.

1. Is x2 = o(x3) (x→ +∞)? Yes.

2. Is x3 = o(x2) (x→ 0)? Yes.

3. Is x2 = o(x3) (x→ 0)? No.

15



4. Is (x + 1)3 ∼ x3 (x→ 1)? No, the ratio goes to 2.

5. Is (x + 1)3 ∼ x3 (x→ +∞)? Yes.

6. Is e−1/x
2

= o(x20) (x → 0)? No, e−1/x
2

goes to 0 faster than

any xn.

THANK YOU FOR YOUR ATTENTION!
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