
LECTURE 4, 3/9/2022

MORE ON SERIES. LIMITS OF FUNCTIONS. ELEMENTARY

FUNCTIONS

• Infinite series. Recall that the symbols∑
an =

∞∑
n=1

an = a1 + a2 + . . .

of a series denote the sequence (an) ⊂ R, whose terms an are now

called summands, and also the limit

lim sn = lim
n→∞

(a1 + a2 + · · · + an) ∈ R∗

of the sequence

(sn) = (a1 + a2 + · · · + an)

of partial sums sn, which is called the sum (of the series). If the

sum is finite we say that the series converges, else it diverges. Con-

vergence and divergence of any series do not depend on any change

of only finitely many summands but, in contrast with limits of se-

quences, the sum may change after the change of a single summand.

We keep the indices in sequences (an) to be n ∈ N, so that

(an) = (a1, a2, . . . ), but for series the summation index n often

runs through sets different from N and often we use for it other

letters. So one can encounter series like
∞∑
m=0

am,
100∑
j=6

bj,
+∞∑

n=−∞
anz

n,
∑
n∈A
n6=x

un,
∑
k≥0

ck ,

not speaking of double and multiple series. The next result follows

at once from the theorem on monotone sequences.
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Proposition 1 (nonnegative summands) Every series∑
an whose summands an ≥ 0 for every n ≥ n0, has a sum

that differs from −∞.

A similar proposition holds for series with almost all summands

non-positive.

Proposition 2 (necessary condition of convergence)

If the series
∑
an converges then lim an = 0.

Proof. If
∑
an converges then lim sn =: S ∈ R (here sn =∑n

j=1 aj). By limits of subsequences and by the arithmetic of limits,

lim an = lim (sn − sn−1) = lim sn − lim sn−1 = S − S = 0 .

2
By this proposition both series∑∞

n=1 1 = 1 + 1 + . . . and
∑∞

n=0(−1)n = 1− 1 + 1− 1 + . . .

diverge. The former has the sum +∞ (see Proposition 1) and the

latter (mentioned at the end of the last lecture) does not have a sum.

• Harmonic series. In the previous proposition the opposite im-

plication does not hold. We consider the series with the summands

a1 =
1

2
, a2 = a3 =

1

4
, a4 = a5 = a6 = a7 =

1

8
, . . .

. . . , a2k = a2k+1 = · · · = a2k+1−1 =
1

2k+1
, . . . .

Clearly, lim an = 0, but s1 < s2 < . . . and

s2k+1−1 =
1

2
+ 2 · 1

4
+ 4 · 1

8
+ · · · + 2k · 1

2k+1
=
k + 1

2
,

2



so that
∑
an = lim sn = +∞ (why?) and the series diverges.

Thus we have the following result.

Proposition 3 (harmonic series) So called harmonic se-

ries ∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . .

diverges and has the sum +∞.

Proof. Let (hn) be the partial sums of the harmonic series and (sn)

be the partial sums of the previous series
∑
an. Then 1/n > an for

every n, therefore also hn > sn for every n. Since lim sn = +∞,

the one cop theorem gives that lim hn = +∞ and the harmonic

series has the sum +∞. 2

Partial sums of the harmonic series are called harmonic numbers.

We mention without proof two interesting results on them.

Theorem 4 (on harmonic numbers) We consider the

harmonic numbers hn =
∑n

j=1 1/j, n ∈ N.

1. For every n ∈ N,

hn = log n + γ + ∆n ,

where γ = 0.57721 . . . is so called Euler’s constant and

the numbers ∆n ∈ R satisfy that |∆n| < c/n for a con-

stant c and every n.

2. hn ∈ N ⇐⇒ n = 1.

The conjecture that γ 6∈ Q is still unproven.
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• The Riemann theorem. At the beginning of the 1st lecture we

met in the paradox of infinite sums the series

1− 1 + 1
2 −

1
2 + 1

3 −
1
3 + · · · + 1

n −
1
n + . . .

that has an “obvious” sum 0. By changing the order of summands

we changed this sum to a positive one. The original sum 0 is correct,

though, because the series has partial sums 1, 0, 1
2, 0, 1

3, 0, . . . going

in limit to 0.

Theorem 5 (Riemann’s) Let
∑∞

n=1 an be a series of the

same type, i.e.,

1. lim an = 0,

2.
∑
akn = +∞, where akn are positive summands of the

series, and

3.
∑
azn = −∞, where azn are negative summands of the

series.

Then ∀S ∈ R∗ there is a bijection π : N→ N such that

∞∑
n=1

aπ(n) = S

— by changing the order of summands we can get any sum.

There is of course also a bijection π such that the series∑∞
n=1 aπ(n) does not have a sum.

The theorem is named after the German mathematician Bernhard

Riemann (1826–1866). He also invented an integral of real func-

tions which we will study in this course later.
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• Absolutely convergent series. We introduce a class of series

whose sums do not change under reordering of summands.

Definition 6 (AC series) A series
∑
an is absolutely

convergent, abbreviated AC, if the series
∑
|an| converges.

The class of AC series is the correct generalization of finite sums to

infinitely many summands.

Proposition 7 (on AC series) Every AC series con-

verges.

Proof. Let
∑
an be an AC series and (sn) be its partial sums.

We show that (sn) is a Cauchy sequence. This suffices because by

the theorem on Cauchy condition then (sn) converges. For every

two indices m ≤ n we have that

|sn − sm| = |am+1 + am+2 + · · · + an|
∆-ineq.

≤ |am+1| + |am+2| + · · · + |an| = tn − tm = |tn − tm| ,
where (tn) are partial sums of the series

∑
|an|. But the sequence

(tn) is Cauchy (by the mentioned theorem) and therefore also (sn)

is Cauchy. 2

Theorem 8 (commutativity of AC series) If
∑
an is

an AC series, then for every bijection π : N → N the se-

ries
∑
aπ(n) is AC. The sums of the original and reordered

series are equal,

∞∑
n=1

an =

∞∑
n=1

aπ(n) .
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• Geometric series. These are the series
∞∑
n=0

qn = 1 + q + q2 + · · · + qn + . . .

with the parameter q ∈ R called the quotient.

Theorem 9 (on geometric series) For q ≤ −1 the ge-

ometric series does not have a sum. For −1 < q < 1 the

geometric series converges and has the sum

∞∑
n=0

qn =
1

1− q
.

For q ≥ 1 the geometric series has the sum +∞.

Proof. For every q ∈ R \ {1} and every n ∈ N,

sn := 1 + q + q2 + · · · + qn−1 =
1− qn

1− q
=

1

1− q
+

qn

q − 1
.

So for q < −1 we have by the arithmetic of limits that lim s2n−1 =

+∞, lim s2n = −∞ and therefore lim sn does not exist — the ge-

ometric series does not have a sum. For q = −1 we have similarly

that s2n−1 = 1, s2n = 0 and the geometric series again does not

have a sum. For −1 < q < 1 one has that lim qn = 0 and by the

arithmetic of limit the geometric series has the sum lim sn = 1
1−q .

For q = 1 one has that sn = n and the geometric series has the sum

lim sn = +∞. For q > 1, lim qn = +∞ and by the arithmetic of

limits the geometric series has the sum lim sn = +∞. 2
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A quick application of the formula for the sum of geometric series:

27.272727 · · · = 27(1 + 10−2 + 10−4 + . . . ) = 27 · 1

1− 10−2

=
27 · 100

99
=

300

11
.

It is easy to see that for q ∈ (−1, 1) and m ∈ Z one has the

more general formula

qm + qm+1 + qm+2 + · · · = qm

1− q
.

It is also clear that every convergent geometric series is absolutely

convergent.

• Zeta function ζ(s). This is a function ζ(s) : C\{1} → C defined

by a series. Here we define it only for real s > 1. We use real powers

ab for a > 0 which will be defined in the second half of this lecture.

So for s ∈ R we take the series

ζ(s) :=

∞∑
n=1

1

ns
.

Theorem 10 (on zeta function) For s ≤ 1 the series

ζ(s) has the sum +∞. For s > 1 it (absolutely) converges.

The first claim follows from the divergence of harmonic series. L. Eu-

ler derived formulas for all values ζ(2n) for every n, for example

ζ(2) = π2/6 and ζ(4) = π4/90. No formula is known for ζ(2n− 1)

for any n ≥ 2. It is known that ζ(3) 6∈ Q.
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• Limits of functions. For any A ∈ R∗ and any ε > 0, recall

the ε-neighborhood U(A, ε) of A and the deleted ε-neighborhood

P (A, ε) = U(A, ε) \ {A} of A.

Definition 11 (limit points) We say that L ∈ R∗ is

a limit point of a set M ⊂ R if ∀ ε : P (L, ε) ∩M 6= ∅.

In other words, L ∈ R∗ is a limit point of a set M ⊂ R if and only

if there is a sequence (an) ⊂ M \ {L} with lim an = L. Now we

generalize the notion of limit from sequences to functions. Recall

that for f : A→ B and C ⊂ A, f [C] = {f (x) | x ∈ C} ⊂ B.

Definition 12 (limits of functions) Let A,L ∈ R∗,
M ⊂ R, A be a limit point of M and let f : M → R be

a function. If

∀ ε ∃ δ : f [P (A, δ) ∩M ] ⊂ U(L, ε) ,

we write limx→A f (x) = L and say that the function f has

at A the limit L.

The limit does not depend on the value f (A) and f need not, and for

A = ±∞ even cannot, be defined at A. For a sequence (an) ⊂ R,

lim an = lim
x→+∞

a(x) ,

where on the right-hand side we understand the sequence as a func-

tion a : N → R. When A is not a limit point of M then for some

δ one has that M ∩ P (A, δ) = ∅. Then

∅ = f [P (A, δ) ∩M ] ⊂ U(L, ε)

pro every L ∈ R∗ and every ε, which is not good.
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Proposition 13 (uniqueness of limits) Limits of func-

tions are unique: if M ⊂ R, f : M → R, K,L, L′ ∈ R∗ and

Kis a limit point of the set M , then

lim
x→K

f (x) = L ∧ lim
x→K

f (x) = L′ ⇒ L = L′ .

Proof. We prove it directly, like for limits of sequences. For ev-

ery ε there is a δ such that the nonempty set f [P (K, δ) ∩M ] is

contained in both neighborhoods U(L, ε) and U(L′, ε). In partic-

ular, ∀ ε : U(L, ε) ∩ U(L′, ε) 6= ∅. Thus (by the main property of

neighborhoods mentioned earlier) L = L′. 2

The next theorem shows how to reduce limits of functions to

limits of sequences.

Theorem 14 (Heine’s definition) Let M ⊂ R, K,L be

in R∗, K be a limit point of the set M and let f : M → R.

Then

lim
x→K

f (x) = L ⇐⇒

⇐⇒ ∀ (an) ⊂M \ {K} : lim an = K ⇒ lim f (an) = L .

Thus L is the limit of the function f at K iff for every

sequence (an) in M that has the limit K but never equals

K, the values (f (an)) have the limit L.

Proof. Implication ⇒. We assume that limx→K f (x) = L, that

(an) ⊂ M \ {K} has the limit K and that an ε is given. Then

there exists a δ such that for every x ∈M ∩ P (K, δ) one has that

f (x) ∈ U(L, ε). For this δ there is an n0 such that n ≥ n0 ⇒ an ∈
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P (K, δ) ∩M . Hence n ≥ n0 ⇒ f (an) ∈ U(L, ε) and f (an)→ L.

Implication ¬ ⇒ ¬. We assume that limx→K f (x) = L does not

hold and deduce from this that the right-hand side of the equiv-

alence does not hold. So there is an ε > 0 such that for ev-

ery δ > 0 there is a point b = b(δ) ∈ M ∩ P (K, δ) such that

f (b) 6∈ U(L, ε). We set δ = 1
n for n ∈ N and for every n chose

a point bn := b(1/n) ∈M ∩P (K, 1/n) such that f (bn) 6∈ U(L, ε).

The sequence (bn) lies in M \{K} and has the limit K, but the se-

quence of values (f (bn)) does not have the limit L. The right-hand

side of the equivalence therefore does not hold. 2

In the proof of the implication ⇐ we used the so called axiom of

choice from the set theory.

One example on the limit of a function: due to the identity

a2 − b2 = (a− b)(a + b),

lim
x→+∞

(√
x +
√
x−
√
x
) (

√
...−
√
x)·(√...+

√
x)

√
...+
√
x

= lim
x→+∞

√
x√

x +
√
x +
√
x

···/
√
x

···/
√
x

= lim
x→+∞

1√
1 + 1/

√
x + 1

=
1

1 + 1
=

1

2
.

• The exponential function. This is the most important elemen-

tary function.

Definition 15 (the exponential) For any x ∈ R we set

ex = exp(x) :=

∞∑
n=0

xn

n!
= 1 + x +

x2

2
+
x3

6
+ . . . : R→ R .
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This series is AC for every real (even complex) x, due to an estimate

by geometric series: |x/n| < 1 whenever n > |x|.

Proposition 16 (the exponential identity) For every

x, y ∈ R,

exp(x + y) = exp(x) · exp(y) .

Proposition 17 (on the exponential function) It

holds that

1. exp(0) = 1,

2. ∀x ∈ R : exp(x) > 0 ∧ exp(−x) = 1/ exp(x),

3. exp increases, x < y ⇒ exp(x) < exp(y),

4. limx→−∞ exp(x) = 0,

5. limx→+∞ exp(x) = +∞ and

6. exp is a bijection from R to (0,+∞).

Definition 18 (the number e) We define e := exp(1) =

1 + 1
1! + 1

2! + 1
3! + · · · = 2.71828 . . . , it is called the Euler

number.

It is not very hard to show that e is irrational, e 6∈ Q.

The logarithm log x is the inverse to the exponential function,

log := exp−1 : (0,+∞)→ R .

Its basic properties derive from those of the exponential function.
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Proposition 19 (on logarithm) It holds that

1. log(1) = 0,

2. ∀x, y ∈ (0,+∞) : log(xy) = log x + log y,

3. log increases, x < y ⇒ log(x) < log(y),

4. limx→0 log(x) = −∞,

5. limx→+∞ log(x) = +∞ a

6. log is a bijection from (0,+∞) to R.

• The real power ab. Here we introduce only the simplified ver-

sion with nonnegative a. But everybody knows that, for example,

(−2)3 = (−2) · (−2) · (−2) = −8.

Definition 20 (real power) For a, b ∈ R with a > 0 we

set

ab := exp(b log a) .

For every b > 0 we set 0b := 0.

For the number e = exp(1) and every x ∈ R then indeed ex =

exp(x log(exp(1))) = exp(x · 1) = exp(x).

Proposition 21 (3 power identities) For any numbers

a, b, x, y ∈ R with a, b > 0,

(a · b)x = ax · bx, ax · ay = ax+y & (ax)y = ax·y .

Proof. 1. (ab)x = exp(x log(ab)) = exp(x log a + x log b) =

exp(x log a) exp(x log b) = axbx.
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2. axay = exp(x log a) exp(y log a) = exp(x log a + y log a) =

exp((x + y) log a) = ax+y.

3. (ax)y = exp(y log(exp(x log a))) = exp(yx log a) = axy. 2

But note that(
(−1)2

)1/2
= 11/2 = 1 6= −1 = (−1)1 = (−1)2·1/2 .

The power 00 is problematic because of the following reason.

Proposition 22 (00 is indeterminate) For every num-

ber c ∈ [0, 1] there exist sequences (an), (bn) ⊂ (0,+∞)

such that

lim an = lim bn = 0 and lim (an)bn = c .

Both sequences can be also selected so that lim (an)bn does

not exist.

• Cosine and sine. These functions can be defined by infinite

series too but their origin lies in geometry.

Definition 23 (cosine and sine) For every t ∈ R we de-

fine the functions

cos t :=

∞∑
n=0

(−1)nt2n

(2n)!
and sin t :=

∞∑
n=0

(−1)nt2n+1

(2n + 1)!
,

so that cos t = 1− t2

2 + t4

24− . . . and sin t = t− t3

6 + t5

120− . . . ,
going from R do R.

Again by geometric series estimates we see that both series are AC

for every t ∈ R. We frame the basic property of cosine and sine in
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the track and field terminology.

Theorem 24 (on a runner) Let t ∈ R and

S := {(x, y) ∈ R2 | x2 + y2 = 1}

be the plane unit circle (i.e., with radius 1) with center

in the origin. The runner that runs on the track S with

unit speed, starts at the point (1, 0) ∈ S and runs counter-

clockwisely for t > 0 and clockwisely for t ≤ 0, is in the

time |t| located in the point

(cos t, sin t) ∈ S .

Thus cosine and sine coincide with the geometricly defined functions

bearing the same names.

Definition 25 (the number π) We can informally de-

fine π = 3.14159 . . . so that the circumference of S, i.e., the

time when the runner again runs through the start, equals

2π. The formal definition is that the smallest positive zero

of the function cos t is π/2.

The definition by the circumference of S is informal because (in

these slides) we do not posses any precise definition of the length of

a circular arc. Here are the basic properties of cosine and sine.
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Proposition 26 (on sine and cosine) It holds that

1. cosine and sine are 2π-periodic functions, cos(t+2π) =

cos t and sin(t + 2π) = sin t for every t ∈ R,

2. sine increases on [0, π/2] from 0 to 1,

3. ∀ t ∈ [0, π] : sin(t) = sin(π−t) and ∀ t ∈ [0, 2π] : sin(t) =

− sin(2π − t),

4. ∀ t ∈ [0, 2π] : cos t = sin(t + π/2),

5. ∀ t ∈ R : cos2 t + sin2 = 1 and

6. ∀ s, t ∈ R : sin(s ± t) = sin s · cos t ± cos s · sin t and

cos(s± t) = cos s · cos t∓ sin s · sin t.

Parts 2–4 imply that cos, sin : R → [−1, 1]. Part 4 says that the

graph of cosine is just the shifted graph of sine.

Further trigonometric functions are the tangent tan t = sin t
cos t and

the cotangent cot t = cos t
sin t . The arcsine (inverse sine) and the

arccosine (inverse cosine) is the inverse of the restriction of sine

and cosine to the interval [−π/2, π/2] and [0, π], respectively. They

are the bijections

arcsin : [−1, 1]→ [−π/2, π/2] and arccos : [−1, 1]→ [0, π] .

Similarly, the arctangent and the arccotangent is the inverse of the

restriction of tangent and cotangent to the interval (−π/2, π/2)

and (0, π), respectively. They are the bijections

arctan : R→ (−π/2, π/2) and arccot : R→ (0, π) .

THANK YOU FOR YOUR ATTENTION
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