
LECTURE 3, 3/2/2022

ARITHMETIC OF LIMITS. LIMITS AND ORDER. INFINITE

SERIES

• Arithmetic of limits. Last time we considered existence of limits

of real sequences. Now we look at relations between limits and

arithmetical operations, and between limits and ordering. Recall

that (an), (bn) and (cn) denote real sequences and that R∗ is the

extended real line. Recall how to compute with infinities. The

variant form of the ∆-inequality |a + b| ≤ |a| + |b| is that

|a− b| ≥ |a| − |b| .

The next theorem is useful for finding limits. In its proof we use

a reformulation of existence of finite limits: if (an) ⊂ R and a ∈ R
then

lim an = a ⇐⇒ an =: a + en︸︷︷︸
error term

where en → 0

(so en = an − a).
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Theorem 1 (arithmetic of limits). Let lim an = K ∈
R∗ and lim bn = L ∈ R∗. Then

1. lim (an + bn) = K + L whenever the right-hand side is

defined,

2. lim anbn = KL whenever the right-hand side is defined

and

3. lim an/bn = K/L whenever the right-hand side is de-

fined. For bn = 0 we set an/bn := 0.

RS in 1 is not defined ⇐⇒ K = −L = ±∞. RS in 2 is

not defined ⇐⇒ K = 0 and L = ±∞ or K = ±∞ and

L = 0. RS in 3 is not defined ⇐⇒ L = 0 or K = ±∞
and L = ±∞.

Proof. 1. Let K,L ∈ R and an ε be given. There is an n0 such

that n ≥ n0 ⇒ an =: K + cn and bn =: L+ dn with |cn|, |dn| < ε
2.

Thus n ≥ n0⇒ an+bn = K+L+

en︷ ︸︸ ︷
cn + dn with |en| ≤ |cn|+|dn| <

ε
2 + ε

2 = ε. So an + bn → K + L.

Let K 6= −∞, L = +∞ and a c be given. Then an > d for

every n and some d, and bn > −d + c for every n ≥ n0. Thus

n ≥ n0 ⇒ an + bn > d + (−d + c) = c and an + bn → +∞. The

case that K = −∞ and L 6= +∞ is similar.

2. Let K,L ∈ R and an ε ∈ (0, 1) be given. There is an n0 such

that n ≥ n0 ⇒ an =: K + cn and bn =: L+ dn with |cn|, |dn| < ε.
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Thus n ≥ n0 ⇒ anbn = KL +

en︷ ︸︸ ︷
cnL + dnK + cndn and

|en|
∆-ineq.

≤ ε(|K| + |L| + 1)→ 0 pro ε→ 0 .

So anbn → KL.

Let K > 0, L = −∞ and a c < 0 be given. Then an > d > 0

for every n ≥ n0 and some d > 0, and bn < c/d for every n ≥ n0.

Thus n ≥ n0 ⇒ anbn < d(c/d) = c and anbn → −∞. The other

cases with K = ±∞ or L = ±∞ are similar.

3. Let K,L ∈ R with L 6= 0 and an ε be given. There is an n0

such that n ≥ n0 ⇒ an =: K + cn and bn =: L+ dn with |cn| < ε

and |dn| < min(ε, |L|/2). For every n ≥ n0 we then have that

an
bn

=
K + cn
L + dn

=
K/L + cn/L

1 + dn/L
=
K

L
−Kdn/L

2

1 + dn/L
+

cn/L

1 + dn/L︸ ︷︷ ︸
en

and, due to |1 + dn/L| ≥ 1− |dn|/|L| ≥ 1− 1/2 = 1/2,

|en|
∆-ineq. and its variant

≤ |K|ε/L2

1/2
+
ε/|L|
1/2

= ε ·
(

2|K|
L2

+
2

|L|

)
→ 0

for ε→ 0. Thus an/bn → K/L.

Let K ∈ R, L = −∞ and an ε be given. Hence (an) is bounded,

|an| < c for every n and some c > 0, and there is an n0 such that

n ≥ n0 ⇒ bn < −c/ε. Hence n ≥ n0 ⇒ |an/bn| < c/|bn| <
c/(c/ε) = ε and an/bn → 0. The other cases when L 6= 0 and

either K = ±∞ or L = ±∞ are similar. 2

The theorem of course does not give complete characterization of

arithmetic of limits. Even when its assumptions are not met, i.e.,
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K or L does not exist or the right-hand side is not defined, the

(unique) limit on the left-hand side may still exist. Below we list

several such cases without proof.

Proposition 2 (supplement 1) Even when K = lim an
does not exist, the following hold.

1. (an) bounded and L = lim bn = ±∞ ⇒ lim (an +

bn) = L.

2. (an) bounded and L = lim bn = 0 ⇒ lim anbn = 0.

3. (an) satisfies an > c > 0 for n ≥ n0 and L = lim bn =

±∞ ⇒ lim anbn = L.

4. (an) bounded and L = lim bn = ±∞ ⇒ lim an/bn = 0.

5. (an) satisfies an > c > 0 for n ≥ n0, bn > 0 for n ≥ n0

and L = lim bn = 0 ⇒ lim an/bn = +∞.

But often it indeed happens that when the assumptions of the

theorem are not satisfied, the limit on the left-hand side is not

uniquely determined or does not exist.
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Proposition 3 (supplement 2) For every A ∈ R∗ there

exist sequences (an), (bn) such that

1. lim an = +∞, lim bn = −∞ and lim (an + bn) = A,

2. lim an = 0, lim bn = ±∞ and lim anbn = A and

3. lim an = lim bn = 0 or lim an = ±∞, lim bn = ±∞ and

lim an/bn = A.

The limits lim (an + bn), lim anbn and lim an/bn in 1–3 also

need not exist.

• Sequences given by recurrences. We meet the first real limits

of sequences, lim (n1/3 − n1/2), lim 2n−3
5n+4 etc. we saw earlier are in

reality problems on limits of functions. We explain how to compute

limits of recurrent sequences in the next proof. We use in it so called

AG inequality (the inequality between arithmetic and geometric

mean): for every two real numbers a, b ≥ 0,

a + b

2
≥
√
ab .

Proposition 4 (recurrent limit). Let (an) be given by

a1 = 1 and, for n ≥ 2,

an =
an−1

2
+

1

an−1
.

Then lim an =
√

2.

Proof. Suppose that L := lim an ∈ R exists and is finite. Since

limits are preserved by subsequences, lim an−1 = L. By parts 3, 2
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and 1 of the previous theorem we have that lim 1
an−1

= 1
L for L 6= 0,

always lim an−1
2 = L

2 and lim (an−12 + 1
an−1

) = L
2 + 1

L for L 6= 0. Thus

L =
L

2
+

1

L
; L2 − L2/2 = 1 ; L2 = 2

and we have two solutions L =
√

2 and L = −
√

2. If we prove that

(an) converges, we get that lim an =
√

2 because an > 0 for every

n and therefore L ≥ 0 (as we see in the next part of the lecture).

However, to exclude that L = 0 we need an inequality stronger

than L ≥ 0. But next we show that an ≥
√

2 for every n ≥ 2.

Thus L ≥
√

2 > 0, if L exists, and certainly L 6= 0.

In order that we can use the theorem on monotone sequences from

the last lecture, we show that (an) is non-increasing from n0 = 2.

So we need that for every n ≥ 2,

an ≥ an+1 =
an
2

+
1

an
⇐⇒ a2

n

2
≥ 1 ⇐⇒ an ≥

√
2 .

But for n ≥ 2 the AG inequality indeed shows that

an =
an−1

2
+

1

an−1
=
an−1 + 2a−1

n−1

2
≥
√
an−1 · 2a−1

n−1 =
√

2 .

Hence (an) is non-increasing from n0 = 2 and non-negative, so

bounded from below. By the theorem on monotone sequences, (an)

has a non-negative finite limit. Thus lim an =
√

2. 2

The initial computation, i.e., solving the equation obtained by re-

placing all an, an−1, . . . in the recurrence with the putative limit L,

is of any value only if we show that (an) converges. For instance,

the recurrence sequence (an) defined by a1 = 1 and an = −an−1

does not have the limit lim an = 0 although the equation L = −L
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has a unique solution L = 0, because (an) = (1,−1, 1,−1, . . . )

does not have a limit (as we noted earlier).

In the proof of the next proposition we use the simple observation

that

lim an = 0 ⇐⇒ lim |an| = 0 .

Indeed, an → 0 ⇐⇒ ∀ ε ∃n0 : n ≥ n0 ⇒ |an| < ε ⇐⇒ ∀ ε
∃n0 : n ≥ n0 ⇒ | |an| | < ε ⇐⇒ |an| → 0.

Proposition 5 (geometric sequences) For q ∈ R the

limit

lim
n→∞

qn


= 0 . . . |q| < 1, i.e., −1 < q < 1,

= 1 . . . q = 1,

= +∞ . . . q > 1 and

does not exist . . . q ≤ −1 .

Proof. 1. Let |q| < 1. By the observation we may assume that

q ≥ 0. Then (qn) is non-increasing, bounded from below (since

qn ≥ 0) and by the theorem on monotone sequences it has a non-

negative finite limit L. From qn = q · qn−1 we get the equation

L = q · L ; L = 0/(1− q) = 0.

2. For q = 1 we have the constant sequence (1, 1, . . . ) that has

the limit 1.

3. Let q > 1. By part 1 of this proposition and by part 5 of

proposition 2,

lim
n→∞

qn = lim
n→∞

1

(1/q)n
=

1

0+
= +∞ .

4. Let q ≤ −1. For q = −1, (qn) = (−1, 1,−1, 1, . . . ) does

not have a limit because it has a subsequence with limit 1, and
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a subsequence with limit −1. For q < −1, (qn) does not have

a limit because by part 3 of this proposition and by arithmetic of

limits it has a subsequence with limit +∞, and a subsequence with

limit −∞. 2

• Limits and (R∗, <). Relations between limits of real sequences

and the linear order (R∗, <) are described in the next two theorems.

Theorem 6 (lim and order). Suppose that K,L ∈ R∗
and that (an), (bn) are two real sequences with lim an = K

and lim bn = L. The following hold.

1. If K < L then there is an n0 such that for every two

(possibly distinct!) indices m,n ≥ n0 one has that

am < bn.

2. If for every n0 there are indices m and n such that

m,n ≥ n0 and am ≥ bn, then K ≥ L.

Proof. 1. Let K < L. As we know from the last lecture, there is

an ε such that U(K, ε) < U(L, ε). By the definition of limit there

is an n0 such that m,n ≥ n0 ⇒ am ∈ U(K, ε) and bn ∈ U(L, ε).

So m,n ≥ n0 ⇒ am < bn.

2. We get the proof of this for free by elementary logic: the

implication ϕ ⇒ ψ is equivalent with the variant ¬ψ ⇒ ¬ϕ. But

the variant of the implication in part 1 is exactly part 2. 2

Strict inequality between terms of two sequences may turn in limit

in equality of their limits: for (an) := (1/n) and (bn) := (0, 0, . . . )

we have that am > bn for every m and n, but

lim an = lim bn = 0 .
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The previous theorem is often (in fact, almost always) presented

in the weaker form that if K < L then there is an n0 such that

n ≥ n0 ⇒ an < bn. Similarly for part 2.

For a, b ∈ R we denote by I(a, b) the interval with endpoints a

and b:

I(a, b) = [a, b] for a ≤ b and I(a, b) = [b, a] for a ≥ b .

A set M ⊂ R is convex if ∀ a, b ∈M : I(a, b) ⊂M .

Proposition 7 (on intervals) Convex sets of real num-

bers are exactly: ∅, the singletons {a} for a ∈ R, the whole

R and the intervals (a, b), (−∞, a),

(a, +∞), (a, b], [a, b), [a, b], (−∞, a] and [a, +∞)

for real numbers a < b.

Every neighborhood U(A, ε) is convex. No deleted neighborhood

P (a, ε) is convex.

The next theorem is popular because of its name.

Theorem 8 (two cops theorem). Let a ∈ R and (an),

(bn) and (cn) be three real sequences such that

lim an = lim cn = a ∧ ∀n ≥ n0 : bn ∈ I(an, cn) .

Then lim bn = a too.

Proof. Let a, (an), (bn) and (cn) be as stated and an ε be given.

By the definition of limit there is an n0 such that n ≥ n0⇒ an, cn ∈
U(a, ε). Since U(a, ε) is convex, n ≥ n0 ⇒ I(an, cn) ⊂ U(a, ε).
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Due to the assumption we have that n ≥ n0 ⇒ bn ∈ U(a, ε) and

bn → a. 2

Two cops, the sequences (an) and (cn), lead a suspect, the sequence

(bn), to the common limit a. For infinite limit, one cop suffices: if

lim an = −∞ and bn ≤ an for every n ≥ n0, then also lim bn =

−∞. Similarly for the limit +∞. The two cops theorem is often

presented in a weaker form, with inequalities an ≤ bn ≤ cn in

place of the membership bn ∈ I(an, cn). Then the cops are firmly

positioned to the left and right sides of the suspect, whereas in our

version of the theorem they are allowed to exchange their places.

• Limes inferior and limes superior of a sequence. These are

residues of Latin mathematical terminology which mean “the least

limit” and “the largest limit”, respectively.

Definition 9 (limit point) Let A ∈ R∗ and (an) ⊂ R.

We say that A is a limit point of the sequence (an) if

lim amn = A for a subsequence (amn) of (an). We set

H(an) := {A ∈ R∗ | A is a limit point of (an)} ⊂ R∗ .

Limes inferior of a sequence (an), denoted lim inf an, is defined

as min(H(an)) in the linear order (R∗, <). Limes superior of the

sequence, denoted lim sup an, is the element max(H(an)). In the

next theorem we show that these elements exist.

Theorem 10 (liminf and limsup exist) For every real

sequence (an), the set H(an) is nonempty and it possesses

in the linear order (R∗, <) both minimum and maximum

element.
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Proof. Let (an) be a real sequence. Last time we proved that (an)

has a subsequence with a limit, so that H(an) 6= ∅. We prove the

existence of max(H(an)), for the minimum element one proceeds

similarly.

In the following four cases, which cover all possibilities, we define

an element A ∈ R∗. (i) If H(an) = {−∞} then A := −∞. (ii)

If +∞ ∈ H(an) then A := +∞. (iii) If H(an) ∩ R 6= ∅ and

this set is unbounded from above then A := +∞. (iv) Finally, if

+∞ 6∈ H(an) and the set H(an) ∩ R is nonempty and bounded

from above, then

A := sup(H(an) ∩ R) ∈ R .

We show that always A = max(H(an)). In the cases (i) and (ii)

it clearly holds. In the cases (iii) a (iv) it is clear that A ≥ h for

every h ∈ H(an) and it suffices to show that A ∈ H(an). In the

cases (iii) and (iv) it is also clear that there is a sequence

(bn) ⊂ H(an) ∩ R such that lim bn = A .

Since every number bn is the limit of a subsequence of (an), we

easily find a subsequence (amn) such that

∀n : amn ∈ U(bn, 1/n) .

But then lim amn = lim bn = A and A ∈ H(an). 2
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Theorem 11 (properties of liminf and limsup). For

any real sequence (an) the following hold.

1. If lim an exists then H(an) = {lim an}.

2. Three exclusive cases occur and cover all possibilities:

(i) (an) is unbounded from above and lim sup an = +∞,

(ii) lim an = −∞ and lim sup an = −∞, (iii) lim sup an
is finite and

lim sup an = lim
n→∞

(
sup({am | m ≥ n})

)
∈ R .

3. Three exclusive cases occur and cover all possibilities:

(i) (an) is unbounded from below and lim inf an = −∞,

(ii) lim an = +∞ and lim inf an = +∞, (iii) lim inf an
is finite and

lim inf an = lim
n→∞

(
inf({am | m ≥ n})

)
∈ R .

4. Always lim inf an ≤ lim sup an and equality holds if and

only if lim an exists and then

lim inf an = lim sup an = lim an .

Proof. 1. This is obvious, any subsequence of a sequence with

a limit has the same limit.

2. The first two cases are more or less clear. Suppose neither

of them occurs. For every n we set An := {am | m ≥ n} and

bn := sup(An). Every set An is bounded from above and nonempty,

so that (bn) is a well defined real sequence that is obviously non-

increasing. By the theorem on monotone sequences it has a limit
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L := lim bn ∈ R∪{−∞}. Clearly, L 6= −∞ for else we would have

that lim an = −∞. Hence L ∈ R. By the definition of supremum,

∀n ∃m (≥ n) : bn − 1/n < am ≤ bn .

It follows from this that lim bn = L ∈ H(an). Suppose that L is

not the maximum of H(an). Then there is a δ > 0 such that for

infinitely many m one has that am > L + δ. Then we can take an

n such that bn < L + δ. But then there would be an m ≥ n such

that am > L + δ > bn, in contradiction with the definition of bn.

Thus L = max(H(an)) = lim sup an.

3. Proof of this is very similar to the previous proof.

4. The first claim is clear. To prove the second one it suffices to

prove that if lim inf an = lim sup an =: L then lim an = L. When

L = ±∞, lim an = L by case (ii) in part 2 or part 3. Let L ∈ R
and an ε be given. By case (iii) in parts 2 and 3 we take an n such

that

L− ε < inf({am | m ≥ n}) ≤ sup({am | m ≥ n}) < L + ε .

Then m ≥ n⇒ L− ε < am < L + ε so that an → L. 2

• Infinite series. We introduce basic notions of the theory of (in-

finite) series. You will hear more about series next time.
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Definition 12 (infinite series) An (infinite) series is

again a sequence (an) ⊂ R. Its sum is the limit∑
an =

∞∑
n=1

an = a1 + a2 + · · · := lim (a1 + a2 + · · · + an)

if it exists. The terms in the sequence (a1 + a2 + · · · + an)

are so called partial sums (of the series).

The symbols
∑
an,
∑∞

n=1 an and a1 + a2 + . . . are, however, often

used to denote also the sequence (an) itself. We met infinite series

in the first lecture in the first paradox. Is it true that

∞∑
n=1

(−1)n+1 = 1− 1 + 1− 1 + 1− 1 + · · · = 0 + 0 + 0 + · · · = 0 ?

No, this is not true. The first equality holds, it is an equality

between two sequences. The third equality holds as well, it says

that the sum of all zeros series is zero. But the second equality

does not hold: as an equality of two sequences it does not hold and

neither it holds as an equality of sums of two series, because the

series 1− 1 + 1− 1 + . . . does not have any sum, the sequence of

partial sums (1, 0, 1, 0, . . . ) does not have a limit.

THANK YOU FOR YOUR ATTENTION
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