
LECTURE 2, 2/23/2022

EXISTENCE THEOREMS FOR LIMITS OF SEQUENCES

• Review. Recall the real numbers R and recall the natural num-

bers N = {1, 2, . . . }. We denote the latter by the letters i, j, k, l,

m, m0, m1, . . . , n, n0, n1, . . . . The letters a, b, c, d, e, δ, ε and

θ, possibly with indices, denote real numbers. Always δ, ε, θ > 0

and we think of them as close to 0. Recall that (an) ⊂ R is a real

sequence.

• Computing with infinities. For the general notion of a limit we

add to R the infinities +∞ and −∞. We get the extended real

axis

R∗ := R ∪ {+∞,−∞} .
We compute with infinities according to the following rules.

We always take only all upper or all lower signs:

A ∈ R ∪ {±∞} ⇒ A + (±∞) = ±∞ + A := ±∞ ,

A ∈ (0, +∞) ∪ {+∞} ⇒ A · (±∞) = (±∞) · A := ±∞ ,

A ∈ (−∞, 0) ∪ {−∞} ⇒ A · (±∞) = (±∞) · A := ∓∞ ,

a ∈ R ⇒ a

±∞
:= 0 ,

−(±∞) := ∓∞, −∞ < a < +∞ and −∞ < +∞.

Subtraction of an element A ∈ R∗ reduces to adding −A and

division by a 6= 0 means multiplication by 1/a. All remaining

values of the operations, that is (A ∈ R∗)

A

0
, (±∞) + (∓∞), 0 · (±∞), (±∞) · 0, ±∞

±∞
and

±∞
∓∞

,
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are undefined, these are so called indeterminate expressions. Ele-

ments of R∗ are usually denoted by A, B, K and L.

• Neighborhoods of points and infinities. We remind the notation

for real intervals:

(a, b] = {x ∈ R | a < x ≤ b}, (−∞, a) = {x ∈ R | x < a}

etc.

Definition 1 (neighborhoods) For any ε > 0, the ε-

neighborhood of a point b and the deleted ε-neighborhood

of b is defined, respectively, as

U(b, ε) := (b−ε, b+ε) and P (b, ε) := (b−ε, b)∪ (b, b+ε) ,

so that P (b, ε) = U(b, ε)\{b}. An ε-neighborhood of infinity

is

U(−∞, ε) := (−∞, −1/ε) and U(+∞, ε) := (1/ε, +∞) .

We set P (±∞, ε) := U(±∞, ε).

The main property of neighborhoods is that if V, V ′ ∈ {U, P} then

A, B ∈ R∗, A < B ⇒ ∃ ε : V (A, ε) < V ′(B, ε) ,

i.e., a < b for every a ∈ V (A, ε) and every b ∈ V ′(B, ε). In

particular, A 6= B ⇒ ∃ ε : V (A, ε) ∩ V ′(B, ε) = ∅.
• Limits of sequences. By (an), (bn), (cn) ⊂ R we denote real se-

quences. The next definition belongs to fundamental ones in anal-

ysis (and in mathematics).
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Definition 2 (limit of a sequence) Let (an) be a real

sequence and L ∈ R∗. If

∀ ε ∃n0 : n ≥ n0 ⇒ an ∈ U(L, ε) ,

we write that lim an = L and say that the sequence (an) has

the limit L.

For L ∈ R we speak of a finite limit, and for L = ±∞ of an infinite

limit. Sequences with finite limits converge, else they diverge. If

lim an = a ∈ R then for every real (and arbitrarily small) ε > 0

there is an index n0 ∈ N such that for every index n ∈ N at least

n0 the distance between an and a is smaller than ε:

|an − a| < ε .

If lim an = −∞ then for every (negative) c ∈ R there is an index

n0 such that for every index n at least n0,

an < c .

Similarly, with the inequality reversed, for the limit +∞. We will

use also the notation limn→∞ an = L and an → L. The simplest

convergent sequence is the eventually constant sequence (an) with

an = a for every n ≥ n0, then of course lim an = a. The popular

image of a limit that “a sequence gets closer and closer to the limit

but never reaches it (possibly only in infinity)”, is a poetic one but

is incorrect.

Proposition 3 (uniqueness of lim) Limits are unique,

lim an = K and lim an = L ⇒ K = L.
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Proof. Let lim an = K, lim an = L and let an ε be given. By

Definition 2 there is an n0 such that n ≥ n0 ⇒ an ∈ U(K, ε) and

an ∈ U(L, ε). Thus ∀ ε : U(K, ε) ∩ U(L, ε) 6= ∅. By the main

property of neighborhoods mentioned above, K = L. 2

• Two limits. We show that lim 1
n = 0. It is clear because for

every ε and every n ≥ n0 := 1 + d1/εe,

0 <
1

n
≤ 1

1 + d1/εe︸ ︷︷ ︸
> 1/ε

<
1

1/ε
= ε; 1/n ∈ U(0, ε) .

Here dae ∈ Z denotes the upper integral part of the number a, the

least v ∈ Z such that v ≥ a. Similarly, the lower integral part bac
of the number a is the largest v ∈ Z such that v ≤ a. Our second

example is that
3
√
n−
√
n→ −∞ .

Indeed, for any given c < 0 and every n ≥ n0 > max(4c2, 26),

non-trivial︷ ︸︸ ︷
3
√
n−
√
n =

trivial︷ ︸︸ ︷
n1/2 · (n−1/6 − 1)︸ ︷︷ ︸

n > 26 ⇒ · · · < −1/2

< −n1/2︸ ︷︷ ︸
· · · < −2|c|

/2 < −2|c|/2 = c .

It is not necessary to find an optimum n0 in terms of ε or c. This

is easy to do only in the simplest cases like lim 1
n, and else it may

be complicated. It fully suffices to have some value n0 such that

for every n ≥ n0 the inequality (i.e., the membership) in the defi-

nition of limit holds. But to achieve it one still needs some skill in

manipulating inequalities and estimates.

• Subsequences of sequences.
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Definition 4 (subsequence) A sequence (bn) is a subse-

quence of a sequence (an) if there is a sequence (of natural

numbers) m1 < m2 < . . . such that for every n,

bn = amn .

We will use the notation that (bn) � (an).

It is clear that the relation � on the set of sequences is reflexive

and transitive. It is easy to find sequences (an) and (bn) such that

(an) � (bn) and (bn) � (an) but (an) 6= (bn).

Proposition 5 (� preserves limits) Let (bn) � (an)

and let lim an = L ∈ R∗. Then also lim bn = L.

Proof. It follows at once from Definitions 2 and 4 because the

sequence (mn) in the last definition has the property that mn ≥ n

for every n. 2

The following useful proposition holds. Later we prove part 1 of it.
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Proposition 6 (on subsequences) Let (an) be a real se-

quence and let A ∈ R∗. The following hold.

1. There is a sequence (bn) such that (bn) � (an) and (bn)

has a limit.

2. The sequence (an) does not have a limit ⇐⇒ (an) has

two subsequences with different limits.

3. It is not true that lim an = A ⇐⇒ there is a sequence

(bn) such that (bn) � (an) and (bn) has a limit different

from A.

Therefore we can always refute that a sequence has a limit by ex-

hibiting two subsequences of it that have different limits. For ex-

ample,

(an) := ((−1)n) = (−1, 1, −1, 1, −1, . . . )

does not have a limit because (1, 1, . . . ) � (an) and (−1,−1, . . . ) �
(an).

• The limit of the n-th root of n. One should be able to recognize

when the computation of the given limit is “trivial” and when it

is “non-trivial”. The former is the case when in the expression

whose limit one computes no two growths fight each other, else the

latter case occurs. For instance, to compute the limits lim (2n + 3n)

and lim 4
5n−3 is trivial, but to compute the limits lim (2n − 3n)

and lim 4n+7
5n−3 is non-trivial. Often we compute a non-trivial limit

by transforming the expression algebraically in a trivial form, like

in the above example with 3
√
n −
√
n. The next limit of n1/n is

non-trivial because n → +∞ but 1/n → 0 and (+∞)0 is another
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indeterminate expression. We will see that the exponent prevails

and n1/n → 1.

Proposition 7 (n1/n → 1) It holds that

lim
n→∞

n1/n = lim
n→∞

n
√
n = 1 .

Proof. Always n1/n ≥ 1. If n1/n 6→ 1, there would be a number

c > 0 and a sequence 2 ≤ n1 < n2 < . . . such that for every i one

has that n
1/ni
i > 1 + c. By the Binomial Theorem we would have

for every i that

ni > (1 + c)ni =
∑ni

j=0

(
ni
j

)
cj = 1 +

(
ni
1

)
c +

(
ni
2

)
c2 + · · · +

(
ni
ni

)
cni

≥ ni(ni−1)
2 · c2

and so, for every i,

ni >
ni(ni − 1)

2
· c2 ; 1 +

2

c2
> ni .

This is a contradiction, the sequence n1 < n2 < . . . cannot be

upper-bounded. 2

• When a sequence has a limit. We present four theorems (9, 10,

13 and 15) in this spirit, the second one will not be included in the

exam. It is clear that existence of the limit of a sequence and its

value are not influenced by changing only finitely many terms in

the sequence. Thus properties ensuring existence of limits should

be also robust in this sense, they should be independent of changes

of finitely many terms in the sequence. For instance boundedness of

sequences, which we define later, is a robust property. The following

theorem on monotone sequences is often stated only for sequences
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(an) monotone for every n, which is not a robust property. In the

mentioned four theorems we employ robust properties.

• Monotone (or monotonous) sequences.

Definition 8 (monotonicity) A sequence (an) is

• non-decreasing if an ≤ an+1 for every n,

• non-decreasing from n0 if an ≤ an+1 for every n ≥ n0,

• non-increasing if an ≥ an+1 for every n,

• non-increasing from n0 if an ≥ an+1 for every n ≥ n0,

• monotonous if it is non-decreasing or non-increasing,

• monotonous from n0 if it is non-decreasing from n0 or

non-increasing from n0.

The inequalities an < an+1, respectively an > an+1, yield

a (strictly) increasing, respectively a (strictly) decreasing,

sequence.

A sequence (an) is bounded from above (BFA) if ∃ c ∀n : an <

c, else (an) is unbounded from above (UFA). Taking the reverse

inequality we get boundedness, resp. unboundedness, of (an) from

below (BFB and UFB). The sequence is bounded, if it is bounded

both from above and from below. Each of these five properties of

sequences is robust.
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Theorem 9 (on monotone sequences) Any real se-

quence (an) that is monotone from n0 has a limit. If (an)

is non-decreasing from n0 then

lim
n→∞

an =

{
sup({an | n ≥ n0}) . . . (an) is BFA and

+∞ . . . (an) is UFA.

If (an) is non-increasing from n0 then

lim
n→∞

an =

{
inf({an | n ≥ n0}) . . . (an) is BFB and

−∞ . . . (an) is UFB.

Proof. We consider only the first case of a sequence that is non-

decreasing from n0, the other case is similar. If (an) is unbounded

from above then for any given c there exists an m such that am >

max(c, a1, a2, . . . , an0). Thus am > c and m > n0. Therefore for

every n ≥ m,

an ≥ an−1 ≥ · · · ≥ am > c; an > c

and an → +∞.

For (an) bounded from above we set s := sup({an | n ≥ n0}).
Suppose that an ε > 0 is given. By the definition of supremum

there exists an m ≥ n0 such that s− ε < am ≤ s. Thus for every

n ≥ m,

s− ε < am ≤ · · · ≤ an−1 ≤ an ≤ s; s− ε < an ≤ s

and an → s. 2

• Quasi-monotonous sequences (not included in the exam). We

say that a sequence (an) is quasi-monotone from n0 if

n ≥ n0 ⇒ every set {m | am < an} is finite
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or

n ≥ n0 ⇒ every set {m | am > an} is finite .

Clearly, any sequence monotonous from an n0 is quasi-monotonous

from the same n0. It is not hard to devise a sequence that is not

monotonous from n0 for any n0, but is quasi-monotonous from some

n0.

In the next theorem we use the quantities lim sup and lim inf of

a sequence. They are always defined, may attain values ±∞ and

will be introduced in the next lecture.

Theorem 10 (on quasi-mon. sequences) Every se-

quence (an) ⊂ R that is quasi-monotonous from n0 has

a limit. If (an) satisfies the 1st, resp. the 2nd, condition

in the definition, then

lim an = lim sup an ∈ R∗, resp. lim an = lim inf an ∈ R∗ .

Proof. We consider only the case that (an) satisfies the 1st con-

dition for some n0, the other case is similar. We suppose that (an)

is unbounded from above and that a c is given. Hence there is an

m ≥ n0 such that am > c. By the 1st condition there exist a k such

that an ≥ am > c for every n ≥ k. Thus an → +∞ = lim sup an.

Suppose that (an) is bounded from above, that s := lim sup an ∈ R
and that an ε is given. By the definition of lim sup an, in

s− ε < am < s + ε

the first inequality holds for infinitely many m and the second one

for almost all m. By the 1st condition there exists a k such that

s− ε < an < s + ε holds for every n ≥ k. Thus an → s. 2
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Quasi-monotonous sequences, in which n0 = 1, were introduced

by the English mathematician Godfrey H. Hardy (1877–1947).

• The Bolzano–Weierstrass theorem. For its proof we need the

next result that is of independent interest.

Proposition 11 (existence of mon. subsequences)

Any sequence of real numbers has a monotonous subse-

quence.

Proof. For a given (an) we consider the set

M := {n | ∀m : n ≤ m⇒ an ≥ am} .

If it is infinite, M = {m1 < m2 < . . . }, we have the non-increasing

subsequence (amn). IfM is finite, we take a numberm1 > max(M).

Then certainly m1 6∈ M and there is a number m2 > m1 such

that am1 < am2. As m2 6∈ M , there is an m3 > m2 such that

am2 < am3. And so on, we get a non-decreasing, even strictly

increasing, subsequence (amn). 2

The theorem on monotone sequences and the previous proposi-

tion have the following two immediate corollaries. The first one is

part 1 of Proposition 6.

Corollary 12 (subsequence with a limit) Any real se-

quence has a subsequence that has a limit.

Theorem 13 (Bolzano–Weierstrass) Any bounded se-

quence of real numbers has a convergent subsequence.
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Proof. Let (an) be a bounded sequence and (bn) � (an) be its

monotonous subsequence guaranteed by the previous proposition.

It is clear that (bn) is bounded and by Theorem 9 it has a finite

limit. 2

Karl Weierstrass (1815–1897) was a German mathematician, he

was the “father of the modern mathematical analysis”. The priest,

philosopher and mathematician Bernard Bolzano (1781–1848)

had Italian, German and Czech roots. In Prague there is a street

named after him (near Hlavńı nádraž́ı), in the Celetná street a plaque

commemorates him and his grave is in Oľsanské hřbitovy (ceme-

tery).

• The Cauchy condition.

Definition 14 (Cauchy sequences) A sequence (an) ⊂
R is Cauchy if

∀ ε ∃n0 : m, n ≥ n0 ⇒ |am − an| < ε ,

i.e., am ∈ U(an, ε).

The property that a sequence of real numbers is Cauchy is a robust

one. It is clear that every Cauchy sequence is bounded.

Theorem 15 (Cauchy condition) A sequence (an) ⊂ R
converges if and only if (an) is Cauchy.

Proof. The implication⇒. Let lim an = a and let an ε be given.

Then there is an n0 such that n ≥ n0 ⇒ |an − a| < ε/2. Thus

m, n ≥ n0 ⇒ |am − an| ≤ |am − a| + |a− an| < ε/2 + ε/2 = ε
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and (an) is a Cauchy sequence. (We have used that am − an =

(am−a)+(a−an) and that the triangle inequality |c+d| ≤ |c|+|d|
holds.)

The implication ⇐. Let (an) be a Cauchy sequence. We know

that (an) is bounded, and therefore by the Bolzano–Weierstrass

theorem it has a convergent subsequence (amn) with a limit a. For

a given ε we have an n0 such that n ≥ n0 ⇒ |amn − a| < ε/2 and

that m,n ≥ n0 ⇒ |am− an| < ε/2. Always mn ≥ n and therefore

n ≥ n0 ⇒ |an − a| ≤ |an − amn| + |amn − a| < ε/2 + ε/2 = ε .

Thus an → a. 2

Also the French mathematician Augustin-Louis Cauchy (1789–

1857) lived in Prague, in political exile in 1833–1838.

THANK YOU FOR YOUR ATTENTION
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