
LAST LECTURE 13, 5/18/2022

THE RIEMANN INTEGRAL AND ITS UPGRADE THE

HENSTOCK–KURZWEIL INTEGRAL. USE OF INTEGRALS

• The Riemann integral after J.-G. Darboux. We give another

equivalent definition of the Riemann integral. For real numbers

a < b and for a partition P = (a0, a1, . . . , ak) of the interval [a, b]

we denote Ii := [ai−1, ai] and |Ii| := ai − ai−1. For a function

f : [a, b]→ R, the sums

s(P, f ) :=

k∑
i=1

|Ii| · inf(f [Ii]) and S(P, f ) :=

k∑
i=1

|Ii| · sup(f [Ii]) ,

s(P, f ) ∈ R ∪ {−∞} and S(P, f ) ∈ R ∪ {+∞} (infima and

suprema are taken in (R∗, <)), are called the lower and the upper

sum (for P and f), respectively. It is easy to see that f is un-

bounded from above if and only if every upper sum S(P, f ) = +∞,

and that f is unbounded from below if and only if every lower sum

s(P, f ) = −∞. We leave the following inequalities for these sums

as an exercise.

Proposition 1 (monotonicity of l. and u. sums)

Let P ⊂ Q be partitions of the interval [a, b] and let

f : [a, b]→ R. Then

s(P, f ) ≤ s(Q, f ) and S(P, f ) ≥ S(Q, f ) .

We prove equivalence of the fourth definition of the Riemann

integral.
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Proposition 2 (4th definition of the R.
∫

) Let a < b

be real numbers and f : [a, b]→ R. Then

f ∈ R(a, b) ⇐⇒ ∃ c ∀ ε ∃P ∀ t : |c−R(P, t, f )| < ε .

Proof. The implication of⇒ is trivial from the definition of (R)
∫

,

because we set c :=
∫ b
a f . We prove ⇐. It is easy to see (see

Proposition 8 in the last lecture) that f is bounded. Let d > 0 be

a bounding constant. We take by the hypothesis of the implication

the number c ∈ R and for the given ε we take the partition P =

(a0, . . . , ak) of the interval [a, b] with the stated property. We show

that for every partition Q of the interval [a, b] with a small norm

∆(Q) for any test points u of Q also R(Q, u, f ) differs slightly from

c. From this it is clear that f ∈ R(a, b) and that c =
∫ b
a f .

So let Q = (b0, . . . , bl) and u be test points of Q. We can assume

that ∆(Q) < 1
2 min1≤i≤k(ai − ai−1). For each i = 1, 2, . . . , k we

define ti := uj for (some) uj minimizing the values

{f (uj) | [bj−1, bj] ∩ [ai−1, ai] 6= ∅} .

LetX be the set of those intervals [bj−1, bj] that the interval (bj−1, bj)

contains (necessarily only one) point from P . Then

R(Q, u, f ) +
∑

[bj−1, bj ]∈X

(bj − bj−1)f (uj) ≥ R(P, t, f ) > c− ε ,

because all intervals [ai−1, ai] are simultaneously covered by inter-

vals [bj−1, bj] so that each [bj−1, bj] is used once, except for intervals

in X , which are used twice. So

R(Q, u, f ) > c− ε− l∆(Q)d .
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Similarly (by choosing maximizing uj in ti := uj and subtracting

the sum over [bj−1, bj] ∈ X) we see that also R(Q, u, f ) < c+ ε+

l∆(Q)d. So

|R(Q, u, f )− c| < ε + l∆(Q)d ,

as we promised. 2

Let a < b be real numbers and let D = D(a, b) denote the set of

all partitions of the interval [a, b]. Then∫ b

a

f := sup({s(P, f ) | P ∈ D}) ∈ R∗

and ∫ b

a

f := inf({S(P, f ) | P ∈ D}) ∈ R∗

(infima and suprema are again taken in (R∗, <)) is the so-called

lower and upper integral (of f over [a, b]), respectively.

Proposition 3 (
∫
≤
∫

) Let f : [a, b] → R be a function.

Then for every two partitions P,Q ∈ D(a, b),

s(P, f ) ≤
∫ b

a

f ≤
∫ b

a

f ≤ S(Q, f ) .

Proof. Let f be as stated, and let P and Q be partitions of the

interval [a, b]. We already know the trick with R := P ∪Q. Then

P,Q ⊂ R and, by Proposition 1,

s(P, f ) ≤ s(R, f ) ≤ S(R, f ) ≤ S(Q, f ) a s(P, f ) ≤ S(Q, f ) .

We now use the fact that in any linear order (X,≺), for every two

sets A,B ⊂ X with A � B we have sup(A) � inf(B), if these
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elements exist. Every a ∈ A is a lower bound of the set B, so

A � {inf(B)}. Thus inf(B) is an upper bound of the set A and

sup(A) � inf(B). 2

Proposition 4 (Riemann = Darboux) A function f

from [a, b] to R is

f ∈ R(a, b) ⇐⇒
∫ b
a f =

∫ b
a f ∈ R .

In the positive case, (R)
∫ b
a f =

∫ b
a f =

∫ b
a f .

Proof. The implication ⇒. Let f ∈ R(a, b). Then f is bounded

and infima in s(P, f ) and suprema in S(P, f ) are finite. We can

thus approximate them arbitrarily closely by functional values and

get that for every ε and every P ∈ D(a, b) there are test points t

of P such that

|s(P, f )−R(P, t, f )| < ε ,

and that for every ε and every P ∈ D(a, b) there are test points t

such that

|S(P, f )−R(P, t, f )| < ε .

Hence, by Proposition 3 here and Definition 1 in the last lecture,

the implication and the last part of the statement follow.

The implication ⇐. Let I :=
∫ b
a f =

∫ b
a f ∈ R, so f is bounded,

and let an ε be given. By this assumption and by Proposition 3

we take P,Q ∈ D(a, b) such that s(P, f ) ≤ I ≤ S(Q, f ) and

0 ≤ S(Q, f )−s(P, f ) < ε. We put R := P ∪Q. By Propositions 1

and 3,

s(P, f ) ≤ s(R, f ) ≤ I, R(R, t, f ) ≤ S(R, f ) ≤ S(Q, f )
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for all test points t in R. Thus also |R(R, t, f ) − I| < ε and

f ∈ R(a, b) by Proposition 2. 2

• The Henstock–Kurzweil integral — the correct definition of the

Riemann integral. Last time we saw that (N)
∫ 1

0 1/
√
x = 2, but

that (R)
∫ 1

0 1/
√
x does not exist, because the integrand 1/

√
x is

unbounded. The inability of the Riemann integral to integrate un-

bounded functions is its serious shortcoming. In 1957 the Czech

mathematician Jaroslav Kurzweil (1926–2022) and a little later

the English mathematician Ralph Henstock (1923–2007) modified

the condition ∆(P ) < δ and improved the Riemann integral to be

able to integrate unbounded functions. We present the definition of

their integral and prove one basic theorem about it. The necessary

change in the definition in the last lecture is optically small but

substantial.

Let I ⊂ R be an interval. We call each function δc : I → (0,+∞)

a gauge (on I). A partition P = (a0, a1, . . . , ak) of the interval

[a, b] and its test points t = (t1, . . . , tk), ti ∈ [ai−1, ai], are δc-fine

if

∀ i = 1, 2, . . . , k : ai − ai−1 < δc(ti) .

For example, if ∆(P ) < δ, then the partition P together with any

test points t are δc-fine for the constant gauge δc = δ.
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Proposition 5 (Cousin’s Lemma) Let a < b be in R.

For every gauge δc : [a, b] → (0,+∞) there exist δc-fine

partition P ∈ D(a, b) with test points t. Even every fi-

nite system [ai, bi], i ∈ I, of mutually disjoint subinter-

vals [ai, bi] ⊂ [a, b] with test points ti ∈ [ai, bi], for which

bi − ai < δc(ti) for ∀ i ∈ I, can be completed to a δc-fine

partition of [a, b] with test points t.

Proof. (abridged) The set

M := [a, b] \
⋃
i∈I

(ai, bi)

is compact and therefore we can select from its (open) cover

M ⊂
⋃
x∈M

U(x, δc(x)/2)

a finite subcover U(xi, δc(xi)/2), i = 1, 2, . . . , n. We add to the

intervals [ai, bi], i ∈ I , suitable closed subintervals of the intervals

(xi−δc(xi), xi+δc(xi)) (containing the corresponding point xi) and

obtain a partition of [a, b]. The obtained test points t are the ti,

i ∈ I , and x1, . . . , xn. The result is δc-fine. 2

The definition of the Henstock–Kurzweil integral follows. The pre-

vious proposition shows that the implication in it can always be

satisfied non-vacuously, by a valid assumption. The definition is

therefore correct and does not allow logical fallacy like computing

the limit of a function at a point which is not the limit point of the

definition domain.
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Definition 6 (Henstock–Kurzweil integral) A func-

tion f : [a, b] → R is Henstock–Kurzweil integrable, sym-

bolically written f ∈ HK(a, b), if there is a number L ∈ R
such that for ∀ ε ∃ δc, where δc is a gauge on [a, b], such

that for every partition P of [a, b] and test points t of P it

holds that

P and t are δc-fine⇒ |R(P, t, f )− L| < ε .

Then we also write

(HK)

∫ b

a

f = L or (HK)

∫ b

a

f (x) dx = L

and say that the Henstock–Kurzweil integral of the function

f over the interval [a, b] equals L.

It is clear from the definition that R(a, b) ⊂ HK(a, b).

The following theorem1 shows that the Henstock–Kurzweil inte-

gral is finally the right partner for the Newton integral.

Theorem 7 (HK.
∫

and N.
∫

) Let a < b be in R,

F : [a, b] → R be a continuous function and let F ′ = f

on (a, b) (the values f (a) and f (b) are arbitrary). Then

f ∈ HK(a, b) and

(HK)

∫ b

a

f = F (b)− F (a) = (N)

∫ b

a

f .

Proof. Let ε and x ∈ (a, b) be given. Due to the equality F ′(x) =
1Together with proof it is taken from J. Lukeš and J. Malý, Measure and integral, matfyzpress, Praha

2013, pp. 96–97.
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f (x) there is a value δc(x) > 0 such that for every y ∈ [a, b],

y ∈ U(x, δc(x))⇒ |F (y)−F (x)− f (x)(y−x)| ≤ ε|y−x| . (∗)

Moreover, there exist values δc(a) > 0 and δc(b) > 0 such that

|f (a)δc(a)|, |f (b)δc(b))| < ε and that |F (y) − F (a)|, |F (z) −
F (b)| < ε for every y ∈ [a, a + δc(a)) and every z ∈ (b− δc(b), b].
If the partition P = (a0, . . . , ak) ∈ D(a, b) with test points t are

δc -fine, then for every test point in an interval ti ∈ [ai−1, ai], with

ti 6= a, b, one has that

|F (ai)− F (ai−1)− f (ti)(ai − ai−1)|
∆ -ineq.

≤ |F (ai)− F (ti)−
− f (ti)(ai − ti)| + |F (ti)− F (ai−1)− f (ti)(ti − ai−1)|
(∗)
≤ ε|ai − ti| + ε|ti − ai−1| = ε(ai − ai−1) .

If ti ∈ [ai−1, ai] and ti ∈ {a, b}, then

|F (ai)− F (ai−1)− f (ti)(ai − ai−1)|
∆ -ineq.

≤ |F (ai)− F (ai−1)| + |f (ti)(ai − ai−1)|
Moreover, there . . .

< 2ε

because i = 1 and t1 = a or i = k and tk = b. According to these

two estimates, we have that

|F (b)− F (a)−R(P, t, f )|
∆ -ineq.

≤

≤
k∑
i=1

|F (ai)− F (ai−1)− (ai − ai−1)f (ti)| < ε(b− a) + 4ε

so that F (b)− F (a) = (HK)
∫ b
a f . 2
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Corollary 8 Let 1/
√

0 := 1. Then (HK)
∫ 1

0 1/
√
x = 2.

• Integration by parts and by substitution for (R)
∫ b
a f . We

present the third version of these two integration formulae. The

first one was for primitive functions, the second one for the Newton

integral, and this one is for the Riemann integral. Substitution now

turns out to be surprisingly non-trivial. In the following theorem,

the values f (a), f (b), g(a) and g(b) are arbitrary.

Theorem 9 (integration by parts for R.
∫

) Let a <

b be in R, let the functions F,G, f, g : (a, b) → R satisfy

on (a, b) that F ′ = f and G′ = g, and let Fg, fG ∈ R(a, b).

Then the equality holds that∫ b

a

Fg =
[
FG
]b
a
−
∫ b

a

fG .

Proof. By the linearity of the Riemann integral also fG + Fg ∈
R(a, b). From this linearity, from (FG)′ = fG + Fg on (a, b) and

from FTC 2 (Theorem 15 of Lecture 12) we have that

(R)

∫ b

a

fG + (R)

∫ b

a

Fg = (R)

∫ b

a

(fG + Fg)

= (N)

∫ b

a

(fG + Fg) =
[
FG
]b
a
,

which is a rearrangement of the stated equality. 2

A simple but not completely satisfactory formula for Riemann

integration by substitution is this.
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Theorem 10 (R.
∫

by substitution) Let G : [a, b] →
R have on [a, b] continuous derivative G′ and let

f : G[ [a, b] ] → R be continuous. Then the equality of Rie-

mann integrals holds that∫ G(b)

G(a)

f =

∫ b

a

f (G)G′ .

Proof. For x ∈ G[ [a, b] ] we consider the function

F (x) :=

∫ x

G(a)

f

(by the results of the last lecture it is well defined). According to

FTC 1 (Theorem 16 of the last lecture) and derivatives of composite

functions, the function F (G) is on [a, b] a primitive function of

f (G)G′. By FTC 2 (Theorem 15 of the last lecture) and definition

of the function F we have that (F (G(a)) = 0)∫ b

a

f (G)G′ =
[
F (G)

]b
a

= F (G(b))− F (G(a)) =

∫ G(b)

G(a)

f .

2

Unsatisfactory, however, is that here we are working only with New-

ton integrals, and that this theorem is already contained in part 1

of Theorem 5 on substitution in the Newton integral in Lecture 11.

A theorem on substitution directly for the Riemann integral was

proven by H. Kestelman only in 1961. We present here an im-

proved version with equivalence for Riemann integrability, due to

the Czech mathematicians D. Preiss and J. Uher in 19702.
2Poznámka k větě o substituci pro Riemann̊uv integrál, Časopis pěst. mat. 95 (1970), 345–347.
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Theorem 11 (D. Preiss and J. Uher, 1970) Let g ∈
R(a, b), for x ∈ [a, b] let G(x) :=

∫ x
a g and let f : G[ [a, b] ]→

R be bounded. Then f is Riemann integrable on the interval

G[ [a, b] ] if and only if f (G)g ∈ R(a, b), and in the positive

case the equality of Riemann integrals holds that∫ G(b)

G(a)

f =

∫ b

a

f (G)g .

For proofs see the original article https://eudml.org/doc/19168

or the recent https://arxiv.org/abs/1105.5938 and https:

//arxiv.org/abs/1904.07446.

• Use of integrals in formulas for lengths, areas and volumes.

We denote by the symbol |uv| (always ≥ 0) the length of the

straight segment with endpoints u, v ∈ R2.

Definition 12 (length of Gf) We say that f : [a, b]→ R
has rectifiable graph if the supremum

`(f ) := sup
(
{
∑k

i=1

∣∣(ai−1, f (ai−1)
) (
ai, f (ai)

)∣∣ |
| (a0, . . . , ak) ∈ D(a, b)}

)
is finite. The number `(f ) is then called the length of the

graph of the function f .

This supremum is actually the supremum of lengths of broken lines

inscribed in the graph Gf of f .

Using the following formula for `(f ), we are able to calculate, for

example, perimeters of rectangles and can match by this results of

the elementary school mathematics. We just divide the perimeter
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into four sides and rotate the vertical ones by π/2 (or just by ε) to

get four graphs of functions.

Theorem 13 (length of Gf) Suppose that f : [a, b] → R
is a continuous function that has on (a, b) finite derivative

f ′ ∈ R(a, b). Then f has a rectifiable graph with length

`(f ) =

∫ b

a

√
1 + (f ′)2 .

Proof. Let g :=
√

1 + (f ′)2. By the results of the last lecture

the Riemann integral
∫ b
a g exists. The sum in Definition 12, which

we denote as K(P, f ), does not decrease under subdivision of P =

(a0, . . . , ak), so for any sequence (Pn) ⊂ D(a, b) with lim ∆(Pn) =

0 one has that

lim K(Pn, f ) = `(f )

or, for a non-rectifiable graph, this limit is always +∞. But

K(P, f ) =

k∑
i=1

(ai − ai−1)
√

1 + [(f (ai)− f (ai−1))/(ai − ai−1)]2

and by the Lagrange mean value theorem,

f (ai)− f (ai−1)

ai − ai−1
= f ′(ti)

for some ti ∈ (ai−1, ai). Let us denote these test points as t. So for

(Pn) as above,∫ b

a

g = lim
n→∞

R(Pn, t(n), g) = lim
n→∞

K(Pn, f ) = `(f ) .

2
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This formula can be extended to curves of the form ϕ : [a, b]→ Rn.

We did not define areas of planar regions independently of the

integral, the same for the volume in R3, and so the following two

formulas are — at least in our our lectures — unlike the length of

the graph only at the level of definitions.

Definition 14 (area between two graphs) Let f, g ∈
R(a, b) and f ≤ g on [a, b]. Then

area
(
{(x, y) ∈ R2 | x ∈ [a, b] ∧ f (x) ≤ y ≤ g(x)}

)
:=

∫ b

a

(g − f ) .

For any non-negative function f : [a, b]→ R we define the solid

of revolution (obtained by rotating Gf around the axis x) as

V (a, b, f ) := {(x, y, z) ∈ R3 | x ∈ [a, b] ∧ y2 + z2 ≤ f (x)2} .

Definition 15 (solid of revolution) Let f ∈ R(a, b) be

nonnegative. Then

volume
(
V (a, b, f )

)
:= π

∫ b

a

f 2 .

Intuitively — or as a mnemonic — the Riemann integral∫ b

a

π · f (x)2 dx

for the volume of the body V (a, b, f ) follows from the formula πr2

for the area of the circle with radius r > 0. For x running in [a, b]
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the integral adds the volumes

π · f (x)2 dx

of thin pancakes with radii f (x) and thickness dx. As an exercise,

derive a formula for the surface, that is, the surface area, of the

solids V (a, b, f ). By it one can calculate the surface of the sphere

V (−r, r,
√
r2 − x2) with radius r > 0.

• Estimates of sums using integrals. They are useful, for example,

in analytic number theory, where sums of the form
∑

n∈X f (n), for

sets X ⊂ Z and functions f (x) given by analytic formulas, appear

frequently. We start with an estimate that is simple but has a wide

scope.

Proposition 16 (
∑
f (n) for monotone f) Let a < b be

integers and f : [a, b]→ R be a monotone function. Then∑
a<n≤b

f (n) = (R)

∫ b

a

f + θ(f (b)− f (a)) ,

for some number θ ∈ [0, 1].

Proof. The integral exists due to the monotonicity of the function

f (Theorem 14 in the previous lecture). We assume that f is non-

decreasing, the case of non-increasing f is solved similarly. So now

we prove the inequalities

0 ≤
∑
a<n≤b

f (n)−
∫ b

a

f ≤ f (b)− f (a) .

For b = a + 1 they hold: the sum is f (a + 1) and because f (a) ≤
f (x) ≤ f (a + 1) for x ∈ [a, a + 1], by the monotonicity of (R)

∫
14



(which we probably did not treat explicitly) one has that f (a) =

f (a) · 1 ≤
∫ a+1

a f ≤ f (a + 1) · 1 = f (a + 1). Adding these

simple inequalities with the limits a = m, b = m + 1 for m =

a, a + 1, . . . , b− 1 we get the general case. 2

For example, for the harmonic numbers Hn :=
∑n

i=1 1/i we get the

estimate that for n ≥ 3,

Hn = 1 +

n∑
i=2

1

i
= 1 +

∫ n

1

1/x + θ(1/n− 1) = [log x]n1 + δ

= log n + δ, 1/n ≤ δ ≤ 1 .

Corollary 17 (integral criterion) Suppose that m ∈
N and that f : [m,+∞) → R is a non-negative and non-

increasing function. Then the series

∞∑
n=m

f (n) converges ⇐⇒ lim
n→∞

∫ n

m

f < +∞ .

Proof. As we know, these Riemann integrals exist due to the

monotonicity of f . According to the previous proposition, for each

integer N ≥ m + 2 we have the identity
N∑

n=m

f (n) = f (m) +

∫ N

m

f + θ(f (N)− f (m))︸ ︷︷ ︸
∈[−f(m), 0]

.

Hence the stated equivalence for N →∞. 2

For example, the series
∑∞

n=2 1/n log n diverges, i.e., has the sum

+∞, because

lim
n→∞

∫ n

2

dy

y log y
= lim

n→∞

[
log(log y)

]n
2

= +∞ .
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Conversely, we prove convergence of the series
∑∞

n=2 1/n(log n)c for

every real c > 1 by the same method.

We present a variant of Proposition 16 for functions with inte-

grable derivative; then a more accurate estimate of the sum in the

form of an identity is obtained. Recall that bac is the lower integer

part of a ∈ R, the largest m ∈ Z with m ≤ a. We introduce the

notation 〈a〉 := a− bac − 1
2 ∈ [−1

2,
1
2).

Theorem 18 (
∑
f (n) for differentiable f) Let a < b

be real numbers and let f ∈ R(a, b) have on (a, b) the deriva-

tive f ′ ∈ R(a, b). Then the formula holds that∑
a<n≤b

f (n) =

∫ b

a

f +

∫ b

a

〈x〉f ′(x)︸ ︷︷ ︸
T

−
[
〈x〉f (x)

]b
a
.

Proof. 3 The formula is additive in intervals [a, b), so it is enough

to consider only the case that m ≤ a < b ≤ m+1 for some m ∈ Z.

Integration by parts (Theorem 9) then gives that

T =

∫ b

a

(x−m− 1/2)f ′(x) =
[
(x−m− 1/2)f (x)

]b
a
−
∫ b

a

f .

We substitute this in the right-hand side of the formula and see

that only (bbc−m)f (b) remains of it. For b < m+ 1 it is 0, which

agrees with the left-hand side. For b = m+ 1 it is f (m+ 1), again

in agreement with the left-hand side. 2

3E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Clarendon Press, Oxford 1986, pp.
13–14.
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For harmonic numbers, the more accurate estimate

Hn =

n∑
i=1

1

i
= log n + γ + O(1/n) (n ∈ N) ,

which we mentioned in part 1 of Theorem 4 of Lecture 4, is easily

derived with this formula.

We conclude the lecture and the whole course with Abel’s sum-

mation formula. For a sequence (an) = (a1, a2, . . . ) ⊂ R and

a number x ∈ R we define

A(x) :=
∑
n≤x

an ,

with an empty sum defined as 0.

Theorem 19 (Abel’sa summation) Let (an) ⊂ R, a <

b be positive real numbers and f : [a, b] → R be a function

that has on (a, b) derivative f ′ ∈ R(a, b). Then∑
a<n≤b

anf (n) =
[
A(x)f (x)

]b
a
−
∫ b

a

A(x)f ′(x)︸ ︷︷ ︸
T

.

aNamed after the Norwegian mathematician Niels Henrik Abel (1802–1829).

Proof. We use Titchmarsh’s trick from the previous proof. The

formula is again additive in intervals [a, b), so again it is enough to

consider only the case that m ≤ a < b ≤ m+ 1 for some m ∈ N0.

FTC 2 (Theorem 15 in the last lecture) then gives that

T =

∫ b

a

A(m)f ′(x) dx = A(m)
[
f (x)

]b
a
.
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We substitute it in the right-hand side of the formula and see that

it turns in (A(b)−A(m))f (b). For b < m+ 1 it is 0, in agreement

with the left-hand side. For b = m + 1 it is am+1f (m + 1), again

in agreement with the left-hand side. 2

THANK YOU FOR YOUR ATTENTION!
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