
LECTURE 12, 5/4/2022

THE RIEMANN INTEGRAL

• The Riemann integral after B. Riemann. We introduced Rie-

mann sums in Lecture 10 and proved there in Corollary 3 that

every continuous function f : [a, b] → R is Riemann integrable.

In this lecture we develop this theory in full. We consider func-

tions of the type f : [a, b] → R, where a < b are real num-

bers, partitions P = (a0, a1, . . . , ak) of [a, b], where k ∈ N and

a = a0 < a1 < · · · < ak = b, test points t = (t1, . . . , tk) of P ,

where ti ∈ [ai−1, ai], and Riemann sums

R(P, t, f ) =

k∑
i=1

(ai − ai−1) · f (ti) .

We noted earlier that R(P, t, f ) is the signed area of the bar

graph Bf =
⋃k
i=1[ai−1, ai] × I(0, f (ti)) where I(c, d) is the closed

real interval with the endpoints c and d. For small norm ∆(P ) =

max1≤i≤k(ai − ai−1) of P the set Bf closely approximates the do-

main Df under the graph Gf of f and one uses limits of Riemann

sums (Definition 2 of Lecture 10) to define the area Af of Df (part 2

of Definition 5 of Lecture 10). We repeat the definition here in an-

other formulation and introduce by it the Riemann integral. It is

a fundamental definition in mathematical analysis, alongside with

those of derivative, continuity etc.
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Definition 1 (Riemann integral) We say that a func-

tion f : [a, b] → R is Riemann integrable, and write that

f ∈ R(a, b), if there exists a number L ∈ R such that for

∀ ε ∃ δ such that for any partition P of [a, b] and any test

points t of P it holds that

∆(P ) < δ ⇒ |R(P, t, f )− L| < ε .

Then we also write

(R)

∫ b

a

f = L or (R)

∫ b

a

f (x) dx = L

and say that the (Riemann) integral over [a, b] of the func-

tion f equals L.

For simplicity of notation we omit the qualification (R) when it

is clear that the integral is Riemann one. The latter notation∫ b
a f (x) dx, which is due to G. W. Leibniz, comes from Riemann

sums: the sign of sum
∑

morphed in the integral sign
∫

and dx de-

notes the common length ai−ai−1 of intervals in an equipartition P

of [a, b]. We extend the scope of the notation
∫ b
a f slightly by setting∫ a

a f := 0 for any a ∈ R and any function f , and
∫ a
b f := −

∫ b
a f if

f ∈ R(a, b). Since this definition is important, we state two other

equivalent forms of it. We leave the proof of the equivalence of all

three definitions to the interested reader.
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Proposition 2 (⇐⇒ definitions of R. integrability)

Let f : [a, b] → R be any function. The next three claims

are logically equivalent.

1. f ∈ R(a, b).

2. (Cauchy’s condition) ∀ ε ∃ δ such that for any parti-

tions P and Q of [a, b] with respective test points t and

u, if ∆(P ),∆(Q) < δ then |R(P, t, f )−R(Q, u, f )| < ε.

3. (Heine’s definition) For any sequence (Pn) of partitions

of [a, b] with test points t(n), if lim ∆(Pn) = 0 then the

sequence
(
R(Pn, t(n), f )

)
is convergent.

If 1 holds then every sequence of Riemann sums in 3 with

norms going to 0 has the limit lim R(Pn, t(n), f ) =
∫ b
a f .

In the next lecture we give yet another equivalent definition of Rie-

mann integrability via approach of J.-G. Darboux.

Finitely many changes in functional values have no influence on

the Riemann integral.

Proposition 3 (changing values) We suppose that f is

in R(a, b) and that g : [a, b] → R differs from f in only

finitely many values. Then g ∈ R(a, b) and
∫ b
a g =

∫ b
a f .

Proof. Let f ∈ R(a, b). We suppose that g differs from f in k

values on the points c1, . . . , ck ∈ [a, b]. Let (Pn) be any sequence

of partitions of [a, b] with ∆(Pn)→ 0 and let t(n) be test points of

Pn. Then

lim R(Pn, t(n), f ) =
∫ b
a f
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by the previous proposition. But for n ∈ N,

R(Pn, t(n), g) = R(Pn, t(n), f ) + O(k ·∆(Pn)) .

The implicit constant in O can be taken to be max1≤i≤k |g(ci) −
f (ci)|. Since lim ∆(Pn) = 0, also

lim R(Pn, t(n), g) =
∫ b
a f .

We are done by the previous proposition. 2

Of course, if f, g : [a, b] → R, f is not Riemann integrable and g

differs from f in only finitely many values then it is not Riemann in-

tegrable either (why?). This stability of (R)
∫ b
a f is in stark contrast

with the fact that (N)
∫ b
a f can be destroyed by a single change in

functional value (if the Darboux property of f is destroyed). Using

the proposition we extend the definition of Riemann integral to any

nontrivial bounded interval.

Definition 4 (
∫ b
a f for f defined on (a, b)) Let a < b be

real numbers and f : I → R for an interval of type I = (a, b)

or I = (a, b] or I = [a, b). We extend f to f0 : [a, b]→ R by

arbitrary values on a and on b and define∫ b

a

f :=

∫ b

a

f0 ,

if the right-hand side exists.

Like for the Newton integral, restriction preserves Riemann inte-

grability. For simplicity of notation we omit in the next proposition

the obvious restriction symbols f | [a, b] and f | [b, c].
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Proposition 5 (on restrictions) If a < b < c are real

numbers and f : [a, c]→ R then

f ∈ R(a, c) ⇐⇒ f ∈ R(a, b) ∧ f ∈ R(b, c) .

In the positive case,
∫ c
a f =

∫ b
a f +

∫ c
b f .

Proof. The implication ⇒. Let f ∈ R(a, c) and let an ε be

given. We prove for the restriction of f to [a, b] Cauchy’s condition

of Proposition 2. Let P0 and Q0 be two partitions of [a, b] with re-

spective test points t(0) and u(0) and such that ∆(P0),∆(Q0) < δ,

where δ guarantees satisfaction of Cauchy’s condition for R(a, c)

and ε. We extend P0 and Q0 to partitions P and Q of [a, c] arbi-

trarily but so that ∆(P ),∆(Q) < δ and that the intervals of P and

Q contained in [b, c] are identical. We also extend t(0) and u(0)

identically to test points t and u of, respectively, P and Q. Then

indeed

|R(P0, t(0), f )−R(Q0, u(0), f )| = |R(P, t, f )−R(Q, u, f )|
< ε .

The proof of Cauchy’s condition for the restriction f to [b, c] is sim-

ilar. The identity
∫ c
a f =

∫ b
a f +

∫ c
b f follows by merging partitions

of [a, b] and [b, c] with norms going to 0 in partitions of [a, c] (with

norms going to 0) and using the last claim in Proposition 2.

The implication⇐. Let f ∈ R(a, b)∩R(b, c). It follows that f is

bounded and we denote by d > 0 the bounding constant. Let P be

any partition of [a, c] with test points t. We split P in the partitions

P1 and P2 of, respectively, [a, b] and [b, c] and with respective test

points t(1) and t(2) as follows. If b ∈ P we do the splitting in the
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obvious way. If b 6∈ P , we obtain P1 and P2 by splitting the interval

[ai−1, ai] of P such that b ∈ (ai−1, ai) in the intervals [ai−1, b] and

[b, ai], and get t(1) and t(2) by selecting two arbitrary test points

in the two new intervals. Then

R(P, t, f ) = R(P1, t(1), f ) + R(P2, t(2), f ) + O(∆(P )d) .

Thus satisfaction of Cauchy’s condition for R(a, c) follows from its

satisfaction for R(a, b) and R(b, c). The identity
∫ c
a f =

∫ b
a f+

∫ c
b f

follows by the same argument as for the opposite implication. 2

In the last lecture we stated for the Newton integral only the ana-

logue of ⇒. Now we state also the opposite implication and leave

its proof to the interested reader.

Proposition 6 (⇐ for the Newton
∫

) Let A < C <

B < D be in R∗, f : (A,D) → R and let f ∈ N(A,B) ∩
N(C,D). Then f ∈ N(A,D) ∩ N(C,B) and

(N)

∫ D

A

f = (N)

∫ B

A

f + (N)

∫ D

C

f − (N)

∫ B

C

f .

We give the fourth definition of the area under graph; see Lec-

ture 10 for the definitions of Df and Gf .

Definition 7 (again Af) If f ∈ R(a, b) then we define the

area Af of the domain Df under the graph Gf of the func-

tion f : [a, b]→ R (or f : [a, b)→ R, . . . ) as

Af :=

∫ b

a

f (x) dx .
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• Existence and non-existence of the Riemann integral. We be-

gin with two non-existence results. Recall that for M ⊂ R a func-

tion f : M → R is bounded if ∃ c ∀x ∈ M : |f (x)| < c. Else f is

unbounded.

Proposition 8 (unbounded functions are bad) If the

function f : [a, b]→ R is unbounded then f 6∈ R(a, b).

Proof. We suppose that f : [a, b] → R is unbounded and show

that for every n there exists a partition P of [a, b] with test points

t such that

∆(P ) < 1/n and |R(P, t, f )| > n .

This refutes Cauchy’s condition for the Riemann integrability of f .

It follows from the unboundedness of f and from the compact-

ness of [a, b] that there is a convergent sequence (bn) ⊂ [a, b] with

lim bn = α ∈ [a, b] and with lim |f (bn)| = +∞. Let an n ∈ N be

given. For P we take any partition P = (a0, . . . , ak) of [a, b] with

∆(P ) < 1/n and such that there is a unique index j ∈ {1, . . . , k}
for which α ∈ [aj−1, aj]. Then we select arbitrary test points

ti ∈ [ai−1, ai] for all i 6= j and consider the incomplete Riemann

sum

s :=

k∑
i=1, i6=j

(ai − ai−1)f (ti) .

Now we can select the remaining test point tj ∈ [aj−1, aj] so that

|(aj − aj−1)f (tj)| > |s|+ n (because bn ∈ [aj−1, aj] for every large

enough n). We then define t as consisting of all these test points

and get (by the triangle inequality |u + v| ≥ |u| − |v|) that

|R(P, t, f )| ≥ |(aj − aj−1)f (tj)| − |s| > n ,
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as required. 2

Proposition 9 (so are too discontinuous functions)

If the function f : [a, b] → R is discontinuous at every

point of some subinterval [c, d] ⊂ [a, b] with c < d, then

f 6∈ R(a, b).

For example, since Dirichlet’s function d : [0, 1]→ {0, 1}, given by

d(x) = 0 for rational x and d(x) = 1 for irrational x, is discon-

tinuous everywhere, it is not Riemann integrable. This is easy to

see directly, try it as an exercise. To prove Proposition 9 in its

generality is harder than to prove Proposition 8 and we need for

it the next Theorem 10 which is of an independent interest. Let

a < b be real numbers. A set M ⊂ [a, b] is sparse (in [a, b]) if for

every neighborhood U(c, ε) with c ∈ [a, b] there is a neighborhood

U(d, δ) ⊂ U(c, ε) ∩ [a, b] such that U(d, δ) ∩M = ∅.

Theorem 10 (Baire’s) If a < b are real numbers and

[a, b] =
⋃∞
n=1Mn then some of the sets Mn is not sparse.

Proof. We suppose that in the countable union [a, b] =
⋃∞
n=1Mn

every set Mn is sparse and deduce a contradiction. Since M1 is

sparse, there is a subinterval [a1, b1] ⊂ [a, b] such that a1 < b1 and

[a1, b1]∩M1 = ∅. SinceM2 is sparse, there is a subinterval [a2, b2] ⊂
[a1, b1] such that a2 < b2 and [a2, b2] ∩M2 = ∅. Continuing this

way we obtain a sequence of nested intervals

[a, b] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [an, bn] ⊃ . . .

such that for every n, an < bn and [an, bn] ∩ Mn = ∅. Let

α := lim an ∈ [a, b]. This limit exists and lies in [a, b] because
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the sequence (an) is non-decreasing and is bounded from below by

a and from above by b. In fact, an < bm for every n and every m,

which implies that α ∈ [an, bn] for every n. But this means that

α 6∈Mn for every n, which is a contradiction as α ∈ [a, b]. 2

Proof of Proposition 9. Let f , a, b, c and d be as stated (in

the hypothesis of the implication). We show that there is an ε > 0

such that for every n there exists a partition P of [a, b] with test

points t and u and such that

∆(P ) < 1/n and R(P, t, f )−R(P, u, f ) > ε .

This refutes Cauchy’s condition for the Riemann integrability of f .

For j ∈ N we define the set Mj ⊂ [c, d] as

{x ∈ [c, d] | ∀ δ ∃ y, z ∈ U(x, δ) ∩ [c, d] : f (y)− f (z) > 1/j} .
Since f is discontinuous on [c, d],

⋃∞
j=1Mj = [c, d]. By Baire’s

theorem there is an m ∈ N such that Mm is not sparse in [c, d].

This means that there is a subinterval [c1, d1] ⊂ [c, d] such that

c1 < d1 and for every neighborhood U(e, δ) intersecting [c1, d1] the

intersection contains a point from Mm.

Let an n ∈ N be given. We take for P any partition of [a, b] with

∆(P ) < 1/n and such that the points c1 and d1 are among the

points of P . For the intervals [ai−1, ai] of P with interiors disjoint

to [c1, d1] we select the test points ti = ui ∈ [ai−1, ai] arbitrarily. If

[ai−1, ai] ⊂ [c1, d1], we can select such points ti, ui ∈ [ai−1, ai] that

f (ti) − f (ui) > 1/m (because Mm is dense in [c1, d1]). Then we

define t, resp. u, as consisting of all these points ti, resp. ui. It

follows that the difference R(P, t, f )−R(P, u, f ) equals∑
[ai−1, ai]⊂[c1, d1]

(ai − ai−1)(f (ti)− f (ui))
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and this is

>
1

m

∑
[ai−1, ai]⊂[c1, d1]

(ai − ai−1) =
d1 − c1
m

.

Thus we may select ε := (d1 − c1)/m. 2

There is a powerful criterion — Lebesgue’s theorem below — by

which one usually easily determines if the given function is Riemann

integrable or not. To state it we need two definitions. For any

function f : M → R, M ⊂ R, we define

DC(f ) := {x ∈M | f is discontinuous at x} .

We say that a set M ⊂ R has measure 0 if for every ε there exist

intervals [an, bn], n ∈ N and an < bn, such that

M ⊂
∞⋃
n=1

[an, bn] and

∞∑
n=1

(bn − an) < ε .

It is easy to see that every at most countable set has measure 0,

that any countable union of measure 0 sets has measure 0, that

any subset of a measure 0 set has measure 0 and that no nontrivial

interval has measure 0. We will not prove the next theorem of

H. Lebesgue, but in view of Propositions 8 and 9 it is relatively

clear why it holds.

Theorem 11 (Lebesgue’s) For any f : [a, b]→ R,

f ∈ R(a, b) ⇐⇒ f is bounded and DC(f ) has measure 0 .

Lebesgue’s theorem implies closedness of the class od Riemann in-

tegrable functions to several operations.
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Corollary 12 (nice operations for R(a, b)) The follow-

ing implications hold.

1. f, g ∈ R(a, b) ⇒ cf + dg ∈ R(a, b) for any c, d ∈ R.

2. f, g ∈ R(a, b) ⇒ f · g ∈ R(a, b).

3. If g : [a, b]→ M ⊂ R, f : M → R, g ∈ R(a, b) and f is

continuous and bounded, then f (g) ∈ R(a, b).

4. If g : [c, d] → [a, b], f : [a, b] → R, g is continuous and

f ∈ R(a, b), then f (g) ∈ R(c, d).

Proof. 1. We suppose that f, g : [a, b] → R are Riemann in-

tegrable. Hence f and g are bounded and so is cf + dg. Since

DC(cf + dg) ⊂ DC(f ) ∪ DC(g) and the latter two sets have mea-

sure 0, so has the former set.

2. This proof is similar to the previous one, we only replace the

operation of linear combination with multiplication.

3. Since f is bounded, so is the composition f (g). Since the

inclusion DC(f (g)) ⊂ DC(g) holds and the latter set has measure 0,

so has the former set.

4. This proof is similar to the previous one, the only change is

the inclusion DC(f (g)) ⊂ DC(f ). 2

For example, how do we prove that division preserves Riemann

integrability, provided that unbounded functions are avoided? Let

g ∈ R(a, b) be such that neither 0 ∈ g[[a, b]] nor is 0 a limit point

of g[[a, b]]. We use part 3 of the corollary for g, M := g[[a, b]] and

f (x) = 1/x, and get that 1/g ∈ R(a, b).
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Theorem 13 (cont. functions are R. integrable)

If f : [a, b]→ R is continuous then f ∈ R(a, b).

Proof. This follows immediately from Theorem 11 because any

continuous function defined on a compact set is bounded and has

DC(f ) = ∅. But we also proved it directly already in Corollary 3

of Lecture 10. 2

Theorem 14 (monot. functions are R. integrable)

If f : [a, b]→ R is monotone then f ∈ R(a, b).

Proof. We assume that f is non-decreasing, the case with non-

increasing f is similar. Like for Theorem 13 we first deduce this

theorem from Lebesgue’s, and then give a direct proof.

The function f is bounded because f (a) ≤ f (x) ≤ f (b) for

every x ∈ [a, b]. We define an injection ϕ : DC(f ) → Q. This

proves that DC(f ) is at most countable, therefore has measure 0

and f ∈ R(a, b) by Lebesgue’s theorem. If p ∈ DC(f ) then by the

monotonicity of f both one-sided limits

l(p) := lim
x→p−

f (x) and r(p) := lim
x→p+

f (x)

exist, are finite, l(p) ≤ f (p) ≤ r(p) and at least one of the

two inequalities is strict. We define ϕ(p) to be any fraction in

(l(p), r(p)) ∩ Q. It is easy to see that ϕ(p) < ϕ(q) for any p < q

in DC(f ).

We prove directly that f ∈ R(a, b) by proving for f Cauchy’s con-

dition of Proposition 2. Let P = (a0, . . . , ak) and Q = (b0, . . . , bl)

be two partitions of [a, b] with respective test points t and u and
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let an ε be given. We set δ := +∞ for f (a) = f (b) (when f is

a constant function) and else set δ := ε/2(f (b)− f (a)).

We assume additionally that P ⊂ Q, i.e., that a0 = bi0 = a,

a1 = bi1, . . . , ak = bik = b for some indices i0 = 0 < i1 <

· · · < ik = l. As earlier, we reduce general partitions P and Q

to this case. Let k = 1. Then, since f is non-decreasing on [a, b],

R(P, t, f )−R(Q, u, f ) is at least

(a1 − a0)f (a0)−
l∑
i=1

(bi − bi−1)f (bl) = (b− a) · (f (a)− f (b))

and, similarly, at most

(b− a) · (f (b)− f (a)) .

So for k = 1,

|R(P, t, f )−R(Q, u, f )| ≤ (b− a) · (f (b)− f (a)) .

For general k we use this bound for any partition ar−1 = bir−1 <

bir−1+1 < · · · < bir = ar of the interval [ar−1, ar], r = 1, 2, . . . , k,

thus with a replaced by ar−1 and b by ar. If ∆(P ) < δ (hence

∆(Q) < δ too) then by the triangle inequality,

|R(P, t, f )−R(Q, u, f )|

≤
k∑
r=1

(ar − ar−1) · (f (ar)− f (ar−1))

≤ ε

2(f (b)− f (a))

k∑
r=1

(f (ar)− f (ar−1))

=
ε

2(f (b)− f (a))
· (f (b)− f (a)) = ε/2 .
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If P and Q are general partitions of [a, b] with respective test

points t and u and with ∆(P ),∆(Q) < δ, we set R := P ∪Q (then

also ∆(R) < δ) and take arbitrary test points v of R. Since P ⊂ R

and Q ⊂ R, we get by the previous case that

|R(P, t, f )−R(Q, u, f )| ≤
≤ |R(P, t, f )−R(R, v, f )| + |R(R, v, f )−R(Q, u, f )|
< ε/2 + ε/2 = ε .

2

• Comparison of Riemann and Newton integrals. We revisit the

relation between the Riemann integral and primitive functions that

we considered in Lecture 10. We proved there in Corollary 4 that

for continuous f , (R)
∫ b
a f = (N)

∫ b
a f . Now we extend it to a more

general situation. In the proof of the next theorem, which is known

as the Second Fundamental Theorem of Calculus, we again rely

on Lagrange’s mean value theorem.

Theorem 15 (FTC 2) Let f : (a, b) → R, where a < b

are real numbers, have a primitive function F : (a, b) → R
and let f ∈ R(a, b) (see Definition 4). Then there exist

finite limits F (a) := limx→a F (x) and F (b) := limx→b F (x)

and

(R)

∫ b

a

f = F (b)− F (a) = (N)

∫ b

a

f .

Proof. We extend f arbitrarily to f : [a, b] → R, assume that

f ∈ R(a, b) and consider the primitive function F of f on (a, b).
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We first prove that the limits

F (a) := lim
x→a

F (x) and F (b) := lim
x→b

F (x)

exist and are finite. For it we show that F is uniformly continuous

on (a, b) (in fact, even Lipschitz continuous, see the definition before

the next theorem). Then it follows that for any sequence (an) ⊂
(a, b) with lim an = a the sequence (F (an)) is Cauchy and therefore

has a finite limit F (a), which does not depend on the sequence (an),

and similarly for F (b). Since f is bounded by Proposition 8, we may

take a bounding constant C > 0. Lagrange’s mean value theorem

implies that for any subinterval [c, d] ⊂ (a, b) with c < d there is

a point e ∈ (c, d) such that F (d)− F (c) = f (e) · (d− c). Thus

|F (d)− F (c)| = |f (e)| · |d− c| < C|d− c|

and F is uniformly continuous on (a, b).

Next we show that F (b) − F (a) = (R)
∫ b
a f . Let an ε be

given. We may take such numbers c < d in (a, b) that |F (a) −
F (c)|, |F (b) − F (d)| < ε, C|a − c|, C|b − d| < ε and that there

is a partition P = (a0, . . . , ak) of [a, b] such that a1 = c, ak−1 = d

and that for any test points t of P , |
∫ b
a f − R(P, t, f )| < ε. From

Lecture 10 we know that there exist test points e of the restriction

of P to [c, d] = [a1, ak−1] such that

F (d)− F (c) =

k−1∑
i=2

(ai − ai−1) · f (ei) .

We define the test points u of P as consisting of e and of two

arbitrary test points u1 and uk in the respective intervals [a, a1] =
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[a, c] and [ak−1, b] = [d, b]. Then∣∣∣∣(R)

∫ b

a

f − (F (b)− F (a))

∣∣∣∣
≤
∣∣∣∣(R)

∫ b

a

f −R(P, u, f )

∣∣∣∣ +
∣∣R(P, u, f )− (F (b)− F (a))

∣∣
< ε +

∣∣R(P, u, f )− (F (d)− F (c))
∣∣ +
∣∣(F (d)− F (c))−

− (F (b)− F (a))
∣∣

≤ ε +
∣∣(c− a) · f (u1) + (b− d) · f (uk)

∣∣ +
∣∣F (d)− F (b)

∣∣ +

+
∣∣F (a)− F (c)

∣∣
< 3ε + C|c− a| + C|b− d| < 5ε .

But ε > 0 may be arbitrarily small, so (R)
∫ b
a f = F (b)− F (a). 2

In the literature FTC 2 often appears in the logically more compli-

cated form in which the existence of F (a) and F (b) is included in

the assumptions. As we have just seen, it is not necessary.

The First Fundamental Theorem of Calculus is as follows. We

define for it that a function f : M → R, M ⊂ R, is Lipschitz

continuous if there is a constant C > 0 such that

∀x, y ∈M : |f (x)− f (y)| ≤ C|x− y| .

It is a property stronger than continuity or even than uniform conti-

nuity; every Lipschitz continuous function is uniformly continuous.
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Theorem 16 (FTC 1) Let f ∈ R(a, b). Then f ∈ R(a, x)

for every x ∈ (a, b] and the function F : [a, b] → R, given

by

F (x) :=

∫ x

a

f ,

is Lipschitz continuous. Moreover, it is such that F ′(x) =

f (x) for every point x ∈ [a, b] of continuity of f .

Proof. So let f ∈ R(a, b). By Proposition 5, f is Riemann inte-

grable on any subinterval [a′, b′], a′ < b′, of [a, b]. So F is correctly

defined and F (a) = 0. Since f is bounded (by Proposition 8), we

may take a bounding constant c > 0. We set C := 1 + c. Let

x < y be in [a, b] and, by Definition 1, let P be a partition of

[x, y] with test points t such that |
∫ y
x f −R(P, t, f )| < y − x. By

Proposition 5 and the definition of F ,

|F (y)−F (x)| =
∣∣∣∣ ∫ y

x

f

∣∣∣∣ ≤ y−x+ |R(P, t, f )| ≤ y−x+c(y−x)

and |F (y)− F (x)| ≤ C|y − x|. Thus F is Lipschitz continuous.

We prove the second part about the derivative of F . Let x0 in

[a, b] be such that f is continuous at x0 and let an ε be given. We

take a δ such that x ∈ U(x0, δ)∩ [a, b]⇒ f (x) ∈ U(f (x0), ε). Let

x ∈ P (x0, δ)∩ [a, b] be arbitrary, say x > x0 (in the case that x <

x0 the argument is similar). Then by taking a partition P of [x, x0]

with test points t and such that |
∫ x
x0
f − R(P, t, f )| < ε(x − x0)

we see that

F (x)− F (x0)

x− x0
− f (x0) =

1

x− x0

∫ x

x0

f − f (x0)

17



is less than

R(P, t, f ) + ε(x− x0)
x− x0

− f (x0)

<
(x− x0)(f (x0) + ε + ε)

x− x0
− f (x0) = 2ε ,

and similarly it is also > −2ε. Thus F ′(x0) = f (x0). 2

Only when I was writing down this proof of FTC 1 I realized (despite

that I have been teaching this material since 2004) that the proof

yields not only continuity of F but even Lipschitz continuity. As an

immediate corollary of FTC 1 we obtain another proof of the last

theorem of Lecture 9 that every continuous function has a primitive

function.

Corollary 17 (existence of primitives) Any continu-

ous function f : [a, b]→ R has a primitive function.

Proof. If f : [a, b] → R is continuous then f ∈ R(a, b) by The-

orem 13. By the previous theorem,
∫ x
a f is a primitive of f (x) on

[a, b]. 2

We know from Lecture 9 how to glue these primitives in a primitive

of a continuous function f : I → R defined on a general nontrivial

real interval I .

It is easy to give examples of functions f : (a, b) → R that are

Riemann integrable but are not Newton integrable, and vice versa.

For example, we have that

(R)

∫ 1

−1
sgn = (R, N)

∫ 0

−1
sgn + (R, N)

∫ 1

0

sgn

= [−x]0−1 + [x]10 = −1 + 1 = 0

18



but

(N)

∫ 1

−1
sgn

is not defined because sgn(x) does not have a primitive function on

(−1, 1), it is not Darboux there.

Now we have to remark that this example can be fixed by using

more general primitives. One says that F : I → R is a generalized

primitive function of f : I → R, where I is a nontrivial real in-

terval, if F is continuous and F ′(x) = f (x) holds for every x ∈ I ,

up to finitely many exceptions x. One then defines the extended

general Newton integral of f : (A,B)→ R by setting

(Ne)

∫ B

A

f := [F ]BA

for any generalized primitive F of f on (A,B). Now

(Ne)

∫ 1

−1
sgn(x) = [ |x| ]1−1 = 1− 1 = 0 .

In the second example we have that

(N)

∫ 1

0

1/
√
x =

[
2
√
x
]1
0

= 2 but the integral (R)

∫ 1

0

1/
√
x

does not exist because the integrand is unbounded on the interval

(0, 1), see Proposition 8. Somebody might say that the latter in-

tegral is +∞ because Riemann sums R(P, t, 1/
√
x) > 0 and can

be as large as we wish, for partitions P of [0, 1] with test points

t and with ∆(P ) > 0 as small as we wish, but this is definitely

a wrong value. In the next last lecture we will see how to improve

Definition 1 so that the (R)
∫
; the (Rc)

∫
, for which

(Rc)

∫ 1

0

1/
√
x = 2 ,
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as it should. So come for the lecture (two weeks from now) or at

least read it!

THANK YOU FOR YOUR ATTENTION!
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