LECTURE 1, 2/16/2022
SETS, FUNCTIONS, REAL NUMBERS

o What does the mathematical analysis analyze? Infinite pro-
cesses and operations. Let us have a look at two paradoxes.
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but also, after reordering the summands,
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Then we have the following infinite table with entries —1, 0 and 1

1 -1 0 0 0f... S =0

0 1 =1 0 0... S =0

0 0 1 =1 0... S =0

0 0 0 1 =1 S =0] 7

0 0 0 1. S =0
S =15 =0[S=0[>=0>=0... S =1\0

in which the sum of row sums differs from the sum of column sums.

e Review of logical and set-theoretic notation. Logical connec-
tives: @ Vo ... or, p A ... and, ¢ = 9 ... implication,
© <= Y ... equivalence, - ... negation. For example, it
always holds that

(e V) = —p A1
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Hence brackets and binding strength of each connective are also
important. Quantifiers: Vo : @(z) ... for every x it holds that
o(x), 3z @(x) ... there is an x such that p(x) holds. For
example, it always holds that

—(Jx: p(x)) <= Vr: —px).

We denote the empty set by ) and x € A means that the set x
is an element of the set A. A set M may be written down either
by listing its elements, like in

M ={a, b, 2, {0, {0}}, {a}}

(how many of them does M have?), or by specifying these elements
by some property. For example (here N := {1,2,3,...}),

M={neN|dmeN: n=2-m}

is the set of (all) even natural numbers.

Relations between sets: A C B g Ver: € A= x € B

... Aisasubset of B, ~dx: x € ANz € B ... Aand B are
disjoint, A = B <= (Vo : v € A < x € B) is the aziom
of extensitonality that determines equality of two sets.

Operations with sets: AUB = {x | v+ € AVx € B} is
their union, AN B = {x € A | x € B} is their intersection,
UA={z|Jdbec A: v e€b}isthesumof A, (A :={z|Vbe
A x € b} is the intersection of A, A\ B:={x € A|x ¢ B} is
the set difference of A and B, and

P(A) = {X | X C A}

is the power set of the set A.



e Ordered pairs and functions. For two sets A and B, the set
(A, B) = {{B, A}, {A}}
is the (ordered) pair of A and B. It always holds that
(A, B)=(A',B") <= A=A'AB=0D".
It is possible to define the ordered triple of sets A, B and C by
(A, B, C) = (A, (B, C)),

and similarly the ordered quadruple (A, B,C, D) etc., but it is
better to set

(A, B, C):={(1, A), (2, B), (3, C)}
etc. The Cartestan product of sets A and B is the set
AxB:={(a,b)|ac A be B} .

Any subset C' C A x B is a (binary) relation between A and B.
Instead of (a,b) € C we write a C'b, for instance 2 < 5. If A = B,

we speak of a relation on the set A.

Definition 1 (function) A function (or a map) f from
a set A to a set B is any ordered triple

(A7 B7 f)

such that f C A x B and for every a € A there is ex-
actly one b € B with a fb. We write that f: A — B and

fla) = 0.




The set A is the definition domain of the function f and B is its
range. The element b is the value of f on the argument a. For
C C A, resp. C C B, the set

fIC] == {f(a)|a€ C} C B, resp.
fC) = {acAlfla)eCyC A,

is the @mage of C in f, resp. the preimage of C' in f.

o [amilies of functions, operations with functions. A sequence
(in a set X) is a function

a: N — X .

We write (a,) = (a1,a2,...) C X and a, = a(n), n € N(=
{1,2,...}). A word (over an alphabet X) is a function

u: n] - X

for somen € Ny := NU{0}, where [n] := {1,2,...,n}and [0] := 0.
For n = 0 also u = (). We write u = ajas . .. a,, where a; :== u(1)
for i € [n]. A (binary) operation (on a set X) is a function

0: X XX = X.

Instead of o((a, b)) = ¢ we write a 0b = ¢, for instance 1 + 1 = 2.
A function f: X — Y is injective (an injection) if for every
a,b € X one has that a # b = f(a) # f(b). It is onto (or
surjective, a surjection) if f[X| =Y. It is one-to-one (or bijec-
tive, a bijection) if it is injective and onto. It is constant if there
is a ¢ € Y such that f(a) = ¢ for every a € X. A function
f: X — X is an identity function if f(a) = a for every a € X.



If f: X — Y is an injection, the inverse (function) of f is the
function f~1: f[X] — X given by f~iy) = v <= f(x) =y.
For two functions

g: X —=Y and f:Y =7
their composition (or the composed function) is the function
fog=1Fflg): X —=Z

given by f(g)(a) == f(g(a)), a € X.
e Linear orders, infima and suprema.

Definition 2 (linear order) A linear order on a set A is
any relation < on A that is (a,b,c € A)

1. irreflexive: Ya : a £ a,

2. transitive: Ya,b,c: a<bANb<c= a<c and

3. trichotomic: Ya,b: a<bVb<aVa=D>.

Note that 1 and 2 imply that in 3 always exactly one possibility
occurs. The notation a < b means that a < bVa = b, a > b means
that b < a, and similarly for a > b. We write (A, <) or (A4, <4) to
invoke a linear order on A.

Let (A, <) be a linear order on A and let B C A. We say that
B is bounded from above if there is an a € A such that b < a for
every b € B. Then a is an upper bound of B. Boundedness from
below and lower bounds are defined similarly. The set of all upper
(resp. lower) bounds of B is denoted by U(B) (resp. L(B)). The
mazimum (or the largest element) of B, which need not exist, is
ab € Bsuch that Vb’ € B: V <b. The minimum (or the least
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element) of B is defined similarly. These elements are denoted as
max(B) and min(B).

Definition 3 (supremum and infimum) Suppose that
(A, <) is a linear order on A and B C A. If U(B) # ()
and min(U(B)) exists, we call it the supremum of B and
denote it by

sup(B) := min(U(B)) .

If L(B) # 0 and max(L(B)) ezists, we call it the infimum
of B and denote it by

inf(B) := max(L(B)) .

For example, in the standard linear order of real numbers min((0, 1))
does not exist, min([0,1)) = 0, inf((0,1)) = inf([0,1)) = 0 and
sup(N) does not exist because U(N) = ().

e Ordered fields. We need them to define real numbers.



Definition 4 (ordered field) An ordered field F is an al-
gebraic structure

F:(F7 0F7 1F7 +F7 ‘' <F>

on a set F' that has two distinct distinguished elements Op
and 1p in F', two operations +r and -r on ' and a linear

order <p on F', and is such that the following axioms hold
(a,b,c € F).

1.Ya: a+p Op =aAa g lp = a (the element Op is
neutral in +p, and the element 1p in -p).

2. Both operations +r and -p are associative and commu-
tative.

3.Ya,b,c: a-p (b+pc)=(a-pb) +r (a-pc) (the
distributive law holds).

4. Yadb : a—i—Fb:OF,\V/CL#OFHbZ a - b= 1p
(inverse elements exist).

5. Va,b,c: a<pb=a+rpc<pb+pc, Va,b: a, b>p
Op = a -p b>0p (<p respects both operations).

The axioms 1—4 are the axioms of a field. An example of an ordered
field is the fractions (or rational numbers) Q:

Q:={m/n|m,neZ, n#0},

where Z == {...,—1,0,1, ...} are the integers. Another example
13

Q(\/i) ::{r—i—sx/§|r,s€(@}.
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These ordered fields differ, the equation z? = 2 is insoluble in Q
(we prove it below) but it has a solution in Q(+/2).

e [ncompleteness of the ordered field Q.

Definition 5 (completeness) An ordered field is com-
plete if every nonempty subset of it that is bounded from
above has a supremum.

We show that the ordered field @ is not complete, it follows from the
next theorem. For its proof we recall the principle of induction—
every nonempty set X C N has the least element.

Theorem 6 (12 & Q) In the field of rational numbers,
the equation
=2

has no solution.

Proof. We assume the contrary that (a/b)? = 2 for some a, b € N.
Thus
a? = 2b°

and by the principle of induction we may assume that the number
a in the equation is minimum. The number a? is even, therefore
also a is even and a = 2c¢ for some ¢ € N. But then

(2¢)* = 20* ~ 4c* = 20* ~ b* = 2¢7 .

Since b < a, we have obtained a solution of the displayed equation
that has on the left-hand side a number that is smaller than a. This
1s a contradiction. O



Corollary 7 (incompleteness of Q) The ordered field
Q: (Q7 07 17 T, <)

of fractions 1s not complete.

Proof. We show that the set of fractions
X={recQ|r <2}

is nonempty and bounded from above but its supremum does not
exist. The first two properties are clear, % € X and z < 2 for every
x € X. For contrary we take the fraction s := sup(X). If s* > 2,
there is a fraction 7 > 0 such that s —r > 0 and still (s —r)? > 2.
But then s—r > z for every x € X, which contradicts the fact that
s is the least upper bound of X. If s < 2, there is a fraction r > 0
such that still (s +7)? < 2. Then s+ € X, which contradicts the
fact that s is an upper bound of X. By trichotomy it must be that
s? = 2. But this is impossible by the previous theorem. O

e The complete ordered field R.

Theorem 8 (existence of R) There exists a unique (see
the next theorem) complete ordered field

R = (Ra OR) 1R7 +R7 ‘R, <]R) .

We call it the field of real numbers.

Recall the axiom of completeness: if X C R is nonempty and there
is a y € R such that x <g y for every x € X, then the set of such
numbers y has the least element. We shall omit the lower indices
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R for the neutral elements, operations and the linear order. Every
ordered field contains as its prime field (the smallest subfield) a copy
of Q.

We explain how the completeness of an ordered field makes it in
a sense unique. A bijection f: F' — G between two ordered fields
is their isomorphism if f(0p) = O, f(1p) = 1g and for every
x,y € F' it holds that

f@ +ry) = f@) +o fly), flo-ry) =[fz)-c [y

and
v<py <= (@) <q f(y).

Theorem 9 (uniqueness of R) Every two complete or-
dered fields are isomorphic.

Corollary 10 (/2 € R) In the field of real numbers, the
equation
r? =2

has a solution.

Proof. We take a set similar to that in the proof of Corollary 7,
X ={acR|a*<?2}.

By Theorem 8 it has a supremum s := sup(X) € R. The same
arguments as in that proof show that neither s> < 2 nor s* > 2.
Hence s? = 2. 0

In a future lecture we prove a far-reaching generalization of the
previous result. In the next proposition continuity of a function
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roughly means (later we will see a precise definition) that a small
change in the argument of a function results in a small change of
the value.

Proposition 11 (the Bolzano—Cauchy Theorem)
Let a < b be real numbers and

f:la, b > R

be a continuous function such that f(a)f(b) < 0. Then
there is a number ¢ € [a,b] such that f(c) = 0.

e Countable and uncountable sets, uncountability of R. A set
X is wnfinite if there exists an injection f: N — X. If X is not
infinite, it is finite. One can show that for every finite set X there
is a surjection f: N — X.

Definition 12 ((un)countable sets) We define the fol-
lowing kinds of sets.

1. X 1s countable if there is a bijection f: N — X.
2. A set is at most countable if it is finite or countable.

3. A set is uncountable if it is not at most countable.

Theorem 13 (Q is countable) The set of fractions is
countable.

Proof. For a fraction 2 € Q in lowest terms, which means that
n € N and that the numerator m € Z and the denominator n are
coprime (i.e., the largest k € N dividing simultaneously m and n
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is k = 1), we define the norm || 2| := |m| 4+ n € N and sets
Zip={z,<z;<-< Pkj, j | 21, €Q, ||zl =7}, JEN.
For example,

Zy={-7<—-3<-2<—1<1<3<2<7} and k;=8.

Here % ¢ Z5 because 0 and 5 are not coprime. Clearly, j # j' = Z;
and Zy are disjoint, every Z; is finite (and # 0) and (J,; oy Z; = Q.
The map f: N — Q is defined by

f) =211, f(2) =201, oo, f(B1) = 231, R+ 1) =219, ...

—the values of f first run through the ky sorted fractions in Z,
then through the k9 sorted fractions in Zs, and so on. For j € N
the generic value equals

flki+kot -+ ki1 +i) =z, i €[k,

where for j = 1 we define this argument of f as ¢. It is easy to see
that f is a bijection. O

We are going to prove the uncountability of real numbers. We
obtain it as a consequence of the next fundamental set-theoretic

result. It says that the power set P(X) is a much larger set than
X.

Theorem 14 (Cantor’s) For no set X there exists a sur-
jection

f: X = PX)

going from it onto its power set.
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Proof. We assume for the contrary that X is a set and that
f: X — P(X) is a surjective map. We consider the subset

Y ={reX|z&flx)}CX.

Since f is onto, there exist a y € X such that f(y) =Y. lfy €Y,

by the definition of Y we havethaty & f(y) =Y. Ify € Y = f(y),
the element y has the property defining Y and therefore y € Y. In
both cases we get a contradiction. O

We denote by {0, 1} the set of (all) sequences (a,,) C {0, 1}.

Corollary 15 (on 0-1 sequences) There is no surjection

f:N—= {0, 1},

Proof. The map g: {0, 1} — P(N), g((a,)) == {n € N | a, =
1}, is obviously a bijection. If the stated surjection f existed, the
composite map g o f would go from N onto P(N), which would
contradict Theorem 14. O

Corollary 16 (R is uncountable) The set of real num-
bers 1s uncountable.

Proof. We again prove more— there is no surjection f: N — R.
We think of the real numbers as of infinite decimal expansions and
take the set

X = {0.&1&2... |CLn € {0, 1}} CR

of those with only zeros and ones after the decimal point. Clearly,
we have a bijection g: X — {0,1}. If the stated surjection f
existed, we could easily obtain from it a surjection fo: N — X (we
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set fo(n) == f(n)if f(n) € X, and fy(n) := 0.000... else). But
then the composite map go fy would go from N onto {0, 1}, which
would contradict Corollary 15. O

e Few words on C. We remind complex numbers and one funda-
mental property they possess. It is well known that

C={a+bi|la,beR}, i=+—1,

and that C with the neutral elements Oc ;== 0+07 and 1¢ := 1+ 02
and the operations

(a+bi) +¢ (c+di) :==(a +r ¢) + (b +r d)i
and
(a+b7l) ‘C (C—i—di) = (CL R C—Db R d)—l—(a ‘R d+r bR C)i

form a field. It has the following important property: so called
Fundamental Theorem of Algebra holds for it.

Theorem 17 (FTA) Every non-constant polynomial p(z)
in Clz| (with complex coefficients) has a root, a number
20 € C such that

p(z0) =0.

THANK YOU FOR YOUR ATTENTION
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