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I am not yet prepared to prove Corollary 5 in the previous lecture and there-
fore instead I survey (and, where possible, improve) the article [1]. In this article
we (MK and RH) gave four proofs that the sequence (Cn) = (1, 1, 2, 5, 14, 42, . . . )
of Catalan numbers is not a linear recurrence sequence (LRS). In this lecture
we go through three of them. The last fourth proof will be given in the next
lecture. We begin with the definition of the class of sequences called LRS.

Definition 1 Let K be a field. We say that a sequence (an) = (a1, a2, . . . ) ⊂ K
is a linear recurrence sequence (over K), briefly LRS, if there exist k ∈ N0

constants c0, . . . , ck−1 in K such that for every n ∈ N the relation

an+k =

k−1∑
j=0

cjan+k−1−j

holds. For k = 0 we define the sum as 0.

Thus for k = 0 we have the zero sequence (an) = (0K , 0K , . . . ). A well known
LRS (over Q) is the sequence (Fn) of Fibonacci numbers given by F1 = F2 = 1
and Fn+2 = Fn+1 + Fn, thus

(Fn) = (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . ) .

Note that in Definition 1, relaxing “for every n ∈ N” to “for every n ≥ n0”
does not yield new LRS: if (an) satisfies the recurrence for every n ≥ n0 then it
satisfies for every n ∈ N the extended recurrence obtained by replacing k with
k+n0 − 1 and adding the dummy coefficients ck = ck+1 = · · · = ck−2+n0 = 0K .

So we give four proofs of the following theorem; three in this lecture and the
fourth one in the next lecture.

Theorem 2 The sequence (Cn) = (1, 1, 2, 5, 14, 42, . . . ) is not LRS over C.

Proof 1 (by generating functions)

This proof is based on the following well known (? — not quite in this
formulation) characterization of generating functions of LRS.
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Proposition 3 Let K be a field, (an) ⊂ K and A(x) =
∑∞

n=1 anx
n in K[[x]]

be the GF of (an). Then

(an) is LRS over K ⇐⇒ ∃ p, q ∈ K[x] : q(0K) = 1K ∧ q(x)A(x) = p(x) .

Proof. The implication ⇒. Let an+k =
∑k−1

j=0 cjan+k−1−j for every n ∈ N and

some k ∈ N0 constants c0, . . . , ck−1 in K. We set q(x) = 1K −
∑k−1

j=0 cjx
j+1

(again, empty sum is 0K). Then q(0K) = 1k and from the recurrence we see
that for every n ∈ N,

[xn+k] q(x)A(x) = an+k −
k−1∑
j=0

cjan+k−1−j = 0K .

Hence [xn] q(x)A(x) = 0K for every n > k, which means that q(x)A(x) = p(x)
for some polynomial p ∈ K[x] with degree at most k (we define the degree of
the zero polynomial as −∞).

The implication ⇐. Let q(x)A(x) = p(x) where p and q are as stated. Let

q(x) = 1K −
∑k−1

j=0 cjx
j+1 where k ∈ N0 and cj ∈ K, and let l = deg p(x).

Clearly,

n ≥ n0 = max({1, l−k+1}) ⇒ an+k−
k−1∑
j=0

cjan+k−1−j = [xn+k] q(x)A(x) = 0K .

Thus the relation an+k =
∑k−1

j=0 cjan+k−1−j holds for every n ≥ n0 and by the
above remark the sequence (an) is LRS over K. 2

Now suppose for the contrary that (Cn) is LRS over C. By Proposition 3
there exist p, q ∈ C[x] such that q(0) = 1 and

q(x)C(x) = q(x) · 1−
√
1− 4x

2
= p(x) .

Here
√
1− 4x ∈ C[[x]] is determined by the conditions that (

√
1− 4x)(0) = 1

and
(√

1− 4x
)2

= 1− 4x; this suffices, we do not need the explicit formula for
the coefficients. Thus

q(x) ·
√
1− 4x = p0(x)

where q(x) is as before and p0(x) = q(x) − 2p(x) ∈ C[x]. Clearly, p0(x) ̸= 0.
But then

q(x)2 · (1− 4x) = p0(x)
2

which is impossible because the polynomial on the left side has an odd degree
but the polynomial on the right side has an even degree. 2

Proof 2 (by elementary number theory)

For this proof we need two auxiliary results. The first one characterizes odd
Catalan numbers.
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Proposition 4 For every n ∈ N,

Cn is odd ⇐⇒ n = 2l for some l ∈ N0 .

Proof. This follows from the recurrence that C1 = 1 and Cn =
∑n−1

j=1 CjCn−j

for n ≥ 2, and from expressing any n ∈ N as n = 2lm where l ∈ N0 and m ∈ N
is odd. If n > 1 is odd then Cn = 2

∑(n−1)/2
j=1 CjCn−j is even; C1 = 1 is odd. If

n is even then

Cn = C2
n/2 + 2

n/2−1∑
j=1

CjCn−j

and, modulo 2, Cn ≡ Cn/2 ≡ · · · ≡ Cm. Let n be even. We see that if n = 2l

then Cn ≡ C1 ≡ 1, and if n = 2lm with odd m > 1 then Cn ≡ Cm ≡ 0. 2

The second auxiliary result is an important theoretical result about LRS in
general. The proof is a nice application of linear algebra, see [1] for it.

Proposition 5 Let K ⊂ L be an extension of fields and (an) ⊂ K be LRS over
L. Then (an) is LRS over K.

Suppose again for the contrary that (Cn) is LRS over C. By Proposition 5,
(Cn) is LRS over Q. Thus we have for some k ∈ N0 fractions c0 = 1, c1, . . . , ck
and every n ∈ N that

k∑
j=0

cjCn+k−j = 0 .

We multiply this equation by an m ∈ N such that then all cj := mcj ∈ Z and
are mutually coprime (if d ∈ N divides all cj then d = 1). In particular at least
one of them, let us call it cl, is odd. We use Proposition 4 and select N ∈ N
such that for every j ∈ {0, 1, . . . , k}, the number CN+k−j is odd iff j = l. But
then

k∑
j=0

cjCN+k−j = 0

is an impossible equality because the left side is odd (exactly one summand, for
j = l, is odd) but the right side is even. 2

Proof 3 (by polynomials)

This proof is based on the next well known result in algebra.

Proposition 6 Let R be an integral domain and let p(x) in R[x] be a nonzero
polynomial. Then

|Z(p)| := |{a ∈ R | p(a) = 0R}| ≤ deg p(x) .
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Proof. We proceed by induction on the degree d = deg p(x). If d = 0 then
Z(p) = ∅ and the claim holds. Suppose that d > 0. If still Z(p) = ∅, the
claim holds. Else we take a root of p(x) a ∈ Z(p) and by dividing p(x) by
x− a = 1Rx− a with remainder we express p(x) as

p(x) = (x− a)q(x) + r

where q(x) ∈ R[x] and r ∈ R. By setting x = a we see that r = 0R and so
p(x) = (x− a)q(x). Since R is an integral domain,

Z(p) = {a} ∪ Z(q) .

But deg q(x) = d− 1 and thus induction gives that

|Z(p)| ≤ 1 + |Z(q)| ≤ 1 + d− 1 = d .

2

The idea of the third proof is to take the relation

k∑
j=0

ajCn+j = 0, (n ∈ N) ,

where k ∈ N0, ak = 1 and all aj ∈ C, substitute for the Catalan numbers in
it the expressions Cm = 1

m

(
2m−2
m−1

)
, and by clearing denominators and common

factors obtain a relation saying that a complex polynomial has infinitely many
roots n ∈ N. If the polynomial is non-zero, we get a contradiction.

We use the polynomials (x)k = x(x−1) . . . (x−k+1) for k ∈ N, and (x)0 = 1.
In the above displayed relation we set

Cn+j =
1

n+ j
· (2n+ 2j − 2)!

(n+ j − 1)!2
,

multiply the result by

(n+ k)k+1 ·
(n+ k − 1)!2

(2n− 2)!

and get that for every n ∈ N,

p(n) :=

k∑
j=0

aj ·
(n+ k)k+1

n+ j
· (n+ k − 1)2k−j · (2n+ 2j − 2)2j = 0 .

If we regard n as a formal variable then p(n) is a polynomial in C[n]. It is
nonzero because

p(−k) = 1 · (−1)k · 1 · (−2)2k ̸= 0 .

Thus we have a contradiction with Proposition 6 because deg p(n) ≤ 3k and
thus may have only at most 3k roots. 2
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