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Enumerative combinatorics literature takes for granted that any algebraic
FPS f = f(x) =

∑∞
n=0 anx

n ∈ C[[x]] is convergent, meaning that an = O(cn)
for all n ∈ N0 and some constant c > 1. Rigorous justification of this fact from
first principles by a formal algebraic argument, without recourse to theories of
analytic functions and/or algebraic curves, is seldom given. We plan to fill this
gap too, like the one concerning the justification of the equality

√
1 − 4x =

(1 − 4x)1/2 in R[[x]]. We start, of course, with our running example of Catalan
numbers.

Proposition 1 If the FPS f = f(x) =
∑∞

n=0 anx
n ∈ R[[x]] solves the equation

f2 − f + x = 0 then |a1| = 1 and for n ≥ 2,

|an| =

n−1∑
k=1

|ak| · |an−k| .

Proof. We know that the two solutions of this equation are f1(x) =
∑

n≥1 Cnx
n

and f2(x) = 1 +
∑

n≥1(−Cn)xn. The recurrence follows. 2

The generic solution of the equation f2 − f + x = 0 satisfies for n ≥ 2 the
relation

an =

n∑
k=0

ak · an−k .

In the first solution a0 = 0 and an = Cn for n > 0; in the second solution a0 = 1
and an = −Cn for n > 0. Both solutions yield the same recurrence C1 = 1 and
Cn =

∑n−1
k=1 CkCn−k if n ≥ 2 .

Proposition 2 If a1 = 1 and an =
∑n−1

k=1 akan−k for n ≥ 2 then for every
n ∈ N,

an ≤ 8n−1

n2
.

For the proof we need (again) a convolution result.
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Lemma 3 For every n ≥ 2,

S(n) =

n−1∑
k=1

1

k2(n− k)2
<

8

n2
.

Proof. For k, n ∈ N and k < n,

1

k(n− k)
=

1

n

(
1

k
+

1

n− k

)
.

Substituting it for the summand in S(n) we get that

S(n) =
2

n2

n−1∑
k=1

1

k2
+

2

n2

n−1∑
k=1

1

k(n− k)
=

2

n2

n−1∑
k=1

1

k2︸ ︷︷ ︸
<2

+
4

n3

n−1∑
k=1

1

k︸ ︷︷ ︸
<n

<
8

n2

because
∑∞

k=2
1
k2 <

∑∞
k=2

(
1

k−1 − 1
k

)
= 1. 2

Proof of Proposition 2. We proceed by induction on n. For n = 1 the bound
holds as an equality. For n ≥ 2 we get by induction and with the help of
Lemma 3 that

an =

n−1∑
k=1

ak · an−k ≤
n−1∑
k=1

8k−1

k2
· 8n−k−1

(n− 2)2
= 8n−2

n−1∑
k=1

1

k2(n− k)2
<

8n−1

n2
.

2

Thus we have this corollary.

Corollary 4 If f ∈ C[[x]] satisfies the equation f2 − f + x = 0 then for all
n ∈ N0,

[xn]f(x) = O(8n) .

We aim to greatly generalize this simple bound, in two directions. First we
replace univariate FPS K[[x]], where K is R or C, with multivariate FPS

K[[X]] =
{∑

k∈Nm
0
akX

k
∣∣ ak ∈ K

}
where X = x1, . . . , xm, m ∈ N, k = (k1, . . . , km) and Xk = xk1

1 . . . xkm
m . A mul-

tivariate FPS f = f(X) ∈ K[X] is convergent if there is a c > 0 such that the
series f(c, c, . . . , c) absolutely converges; in terms of coefficients it means that

ak = O(c|k|) = O(ck1+···+km)

for all k ∈ Nm
0 and some c > 1. Second, we extend the domain of coefficients in

the polynomial equation for f from the polynomial ring K[X] = K[x1, . . . , xm]
to the ring K{X} ⊂ K[[X]] of convergent multivariate FPS. Our goal is to prove
the following general exponential upper bound.

2



Corollary 5 (M. Artin) Let m, p ∈ N, X = x1, . . . , xm, K be R or C, a0(X),
. . . , ap(X) be in K{X}, a0 ̸= 0 and let f(X) ∈ K[[X]] be such that

p∑
j=0

ap−j(X) · f(X)j = 0 .

Then f(X) ∈ K{X} as well, f(X) is convergent.

This result follows from M. Artin’s ([3]) Approximation Theorem [1] which we
quote here partially from the textbook [5, Chapter V.3] and also from the origi-
nal article [1]. The theorem approximately solves not a single polynomial equa-
tion but a system of several analytic equations. Again K is R or C (or a field

with nontrivial valuation). For any nonzero f = f(x) =
∑

k∈Nm
0
akX

k ∈ K[[X]]
we set

ord(f) = min({|k| | k ∈ Nm
0 ∧ ak ̸= 0}) ∈ N0

(|k| = k1 + · · · + km) and set ord(0) := +∞.

Theorem 6 (M. Artin) Let n,m, k, l ∈ N, X = x1, . . . , xn, Y = y1, . . . , ym,
let F1, . . . , Fk be in K{X,Y }, and let f1, . . . , fm in K[[X]] have zero constant
terms and be such that

F1(X, f1(X), . . . , fm(X)) = 0, . . . , Fk(X, f1(X), . . . , fm(X)) = 0 .

Then there exist g1, . . . , gm in K{X} such that ord(f1(X) − g1(X)) ≥ l, . . . ,
ord(fm(X) − gm(X)) ≥ l and also

F1(X, g1(X), . . . , gm(X)) = 0, . . . , Fk(X, g1(X), . . . , gm(X)) = 0 .

The requirement that constant terms of fi are zero means that we substitute
fi for yi in F1, . . . , Fk formally, coefficients resulting in the substitution are
given by finite expressions. Note that the Fj have to have zero constant terms
as well. The theorem says that any formal solution fi, i ∈ [m], of any system
Fj = 0, j ∈ [k], of analytic equations can be approximated to any order l by
a convergent solution gi.

How does Corollary 5 follow from Theorem 6? This is explained in [5,
p. 106]. A problem is that the FPS f(X) in Corollary 5 may have a nonzero
constant term, like the solution 1 +

∑
n≥1(−Cn)xn of f2 − f + x = 0, and then

Theorem 6 does not apply. But this is easy to fix. We change the variable y to
f(X) = g(X) + c with c ∈ K such that g(X) has zero constant term; then g(x)
solves a new polynomial equation. Suppose that g(X) is not convergent. Using
Theorem 6 we can get a convergent solution of the new polynomial equation that
approximates g(x) to any given precision but is (necessarily) distinct from g(x).
Increasing the precision we could generate infinitely many distinct (convergent)
solutions of the new polynomial equation. But this contradict the bound on
the number of roots of a polynomial over a ring. Thus g(X) and f(X) are
convergent.
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This is all very nice but it would be nice to have a proof of Corollary 5 via
a direct and elementary argument without using the machinery of M. Artin’s Ap-
proximation Theorem, something in the spirit of the proof of Corollary 4. In our
lectures we will attempt to present such a proof. It was given by R. Pierzcha la
in [4] and is based on a strengthening of a lemma in [2].
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