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n
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2n−2
n−1

)
again—the right GF
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Last time we justified the equality(
the f ∈ R[[x]] s. t. f(x)2 = 1− 4x and f(0) = 1

)
=

∑∞
n=0

(
1/2
n

)
(−4)nxn

which was needed to get the formula Cn = 1
n

(
2n−2
n−1

)
by solving the quadratic

equation C2 −C +x = 0. Literature on enumerative combinatorics glosses over
this justification. Now we give the “right” simple derivation of the formula by
generating functions. The proper way to make use of the equation C2−C+x = 0
is not to apply the quadratic formula (!) but to differentiate it. Recall that
C = C(x) =

∑
n≥1 Cnx

n is the generating function of Catalan numbers.

The third proof of Theorem 1 (Cn = 1
n

(
2n−2
n−1

)
) in Lecture 1. From C2−C+x = 0

we have that −C2 + C = x. Differentiating C2 − C + x = 0 by x we thus get

2CC ′ − C ′ + 1 = 0 ; C ′ =
1

1− 2C
=

1
2C − 1

4

−C2 + C − 1
4

=
2C − 1

4x− 1

and (4x− 1)C ′− 2C+1 = 0. Since C =
∑

n≥1 Cnx
n and C ′ =

∑
n≥1 nCnx

n−1,
equating for n ∈ N the coefficient of xn on the left side to zero gives the equation

4nCn − (n+ 1)Cn+1 − 2Cn = 0 .

Thus C1 = 1 and Cn+1 = 4n−2
n+1 · Cn for any n ∈ N. Hence for n ≥ 2,

Cn =

n∏
k=2

2(2k − 3)

k
=

2n−1 · (2n− 3)!!

n!

=
2n−1(n− 1)! · (2n− 3)!!

(n− 1)! · n!
=

1

n

(
2n− 2

n− 1

)
.

2

We have a new simple recurrence for Cn: Cn = 1 and for n ∈ N,

Cn+1 =
4n− 2

n+ 1
· Cn .
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As 0 < 4n−2
n+1 < 4 for n ∈ N, induction gives the exponential upper bound

Cn < 4n. The exact asymptotics of the Catalan numbers follows from the
Stirling formula n! = (1 + o(1)) ·

√
2πn · (n/e)n. We get that for some constant

c > 0,
Cn = (c+ o(1)) · n−3/2 · 4n (n → ∞) .

In the previous proof we obtained the differential equation

(4x− 1)C ′ − 2C + 1 = 0 .

It means that C ∈ R[[x]] is a D-finite FPS. We define this class of FPS.

Definition 1 Let K = R or K = C. We say that a FPS f(x) =
∑

n≥0 anx
n in

K[[x]] is D-finite (or holonomic) if there exist polynomials p−1, p0, . . . , pk in
K[x], k ∈ N0, such that pk ̸= 0 and

k∑
i=−1

pi(x)f
(i)(x) = 0 .

Here f (−1)(x) := 1, f (0)(x) := f(x) and f (i)(x) for i ∈ N is the i-th derivative
of f ,

f (i)(x) =

∞∑
n=0

ann(n− 1) . . . (n− i+ 1)xn−i .

In words, f(x) satisfies a (non-homogeneous) linear differential equation with
polynomial coefficients. As usual, for i = 1, 2, 3 we write for f (i) synonymously
f ′, f ′′ and f ′′′. By repeated differentiation we homogenize the equation and get
that p−1 = 0.

C = C(x) satisfies also the equation

C2 − C + x = 0

and so is an example of an algebraic FPS.

Definition 2 Let K = R or K = C. We say that a FPS f(x) =
∑

n≥0 anx
n

in K[[x]] is algebraic if there exist polynomials p0, . . . , pk in K[x], k ∈ N, such
that pk ̸= 0 and

k∑
i=0

pi(x)f
i(x) = 0 .

In other words, P (x, f(x)) = 0 for a nonzero polynomial P = P (x, y) ∈ K[x, y].
In the previous proof we deduced D-finiteness of C from its algebraicity. We

show that this transition works in general.

Proposition 3 Let K = R or K = C. If a FPS f ∈ K[[x]] is algebraic then f
is D-finite.
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Proof. Let f ∈ K[[x]] be such that
∑k

i=0 pif
i = 0 where k ∈ N, pi ∈ K[x] and

pk ̸= 0. Thus

fk =

k−1∑
i=0

qif
i (1)

where qi ∈ K(x) are rational functions. Differentiating by x we get that

kfk−1f ′ =

k−1∑
i=0

(q′if
i + qiif

i−1f ′) and f ′
(
kfk−1 −

k−1∑
i=0

qiif
i−1

)
=

k−1∑
i=0

q′if
i .

Thus

f ′ =
P1(f)

Q1(f)
∈ K((x)) (2)

(the field of formal Laurent series in x with coefficients in K) where P1(y)
and Q1(y) ̸= 0 are polynomials in K(x)[y]. Q1(y) ̸= 0 because it has leading
coefficient k. We show by induction on j ∈ N that there exist polynomials Pj(y)
and Qj(y) ̸= 0 in K(x)[y] such that

f (j) =
Pj(f)

Qj(f)
.

For j = 1 we proved it above. We differentiate this equation by x and get that

f (j+1) =
(Pj(f))x ·Qj(f)− Pj(f) · (Qj(f))x

Qj(f)2
.

We have that (Pj(f))x = Rj(f) + Sj(f)f
′ and (Qj(f))x = Tj(f) + Uj(f)f

′

where Rj , Sj , Tj and Uj are in K(x)[y]. Replacing f ′ by equation (2) we get
the required expression

f (j+1) =
Pj+1(f)

Qj+1(f)
with Qj+1 = Q1 ·Q2

j .

We bring the k + 1 fractions f (0) = f
1 , f

(1) = P1(f)
Q1(f)

, . . . , f (k) = Pk(f)
Qk(f)

to

a common denominator, reduce powers of f in the numerators by equation (1)
and get the expressions

f (0) =
A0(f)

B(f)
, f (1) =

A1(f)

B(f)
, . . . , f (k) =

Ak(f)

B(f)

where B(y) ̸= 0 and Ai(y) are in K(x)[y] and every Ai(y) has in y degree at
most k − 1. It follows that the k + 1 numerators can be non-trivially linearly
combined to 0 by some coefficients in K(x). Hence

k∑
i=0

cif
(i) = 0
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for some ci ∈ K(x), not all of them 0. Thus f is D-finite. 2

In the initial proof we derived for (Cn) = (C1, C2, . . . ) the recurrence that
for every n ∈ N,

(n+ 1)Cn+1 + (2− 4n)Cn = 0 .

Recurrences of this form are characteristic for sequences of coefficients of D-finite
formal power series.

Definition 4 Let K = R or K = C. We call a sequence (an) = (a0, a1, . . . ) ⊂
K P-recurrent (over K) if there exist polynomials pi ∈ K[x], where i = 0, 1, . . . , k
with k ∈ N0 and pk ̸= 0, such that for every n ∈ N0,

k∑
i=0

pi(n) · an+i = 0 .

It is easy to see that this is equivalent with the modified definition when the
last displayed equality holds only for every n > n0. To get (Cn) P-recurrent
exactly according to Definition 4 we extend it with C0 := − 1

2 .

Proposition 5 Let K = R or K = C and f = f(x) =
∑∞

n=0 anx
n ∈ K[[x]].

Then f is D-finite ⇐⇒ (an) is P-recurrent.

Proof. Suppose that f is D-finite. For i ∈ N0 we introduce notation (x)0 = 0
and (x)i = x(x − 1) . . . (x − i + 1) for i > 0. Thus f satisfies the differential
equation

k∑
i=0

pi(x)f
(i)(x) =

∑
(h,i)∈P

bh,ix
hf (i)(x) = 0 (3)

where k ∈ N0, pi ∈ K[x], pk ̸= 0, P ⊂ N2
0 is a nonempty set and every

coefficient bh,i ∈ K is nonzero. Let H ∈ N0 be the maximum value of h in the
pairs (h, i) ∈ P . Since (i ∈ N0)

f (i)(x) =

∞∑
n=0

(n+ i)ian+ix
n ,

by setting the coefficient of xn, n ∈ N0, in equation (3) to zero we get for every
n ≥ H that ∑

(h,i)∈P

bh,i · (n− h+ i)i · an−h+i = 0 .

Grouping together summands sharing the same coefficient an−h+i, we deduce
that the sequence (an) satisfies for n > n0 a (nontrivial) P-recurrence as in
Definition 4.
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Suppose that the sequence (an) of coefficients of f(x) is P-recurrent. Thus
for every n ∈ N0 we have the equality

k∑
i=0

pi(n) · an+i = 0

for some pi ∈ K[x] with pk ̸= 0. We switch from the basis {xi | i ∈ N0} of the
K-vector space K[x] to the basis {(x+ i)i | i ∈ N0} and express every pi(x) as
the linear combination

pi(x) =

di∑
j=0

ci,j · (x+ j)j

where di = deg pi ∈ N0, ci,j ∈ K and ck,dk
̸= 0K (if pi = 0 then this sum is

empty). Thus for every n ∈ N0,

k∑
i=0

( di∑
j=0

ci,j · (n+ j)j

)
an+i = 0 .

By grouping the terms according to the pairs (i, j) we get that for every n ∈ N0

the equality ∑
(i,j)∈Q

ci,j · (n+ j)j · an+i = 0

holds, where Q ⊂ N2
0 is nonempty and (as we know) not all ci,j ∈ K are zero.

It follows that ∑
(i,j)∈Q

ci,j ·
(
xj−i · f(x)

)(j)
= 0

because for every n ∈ N0 the coefficient of xn in the FPS on the left side is 0.
It is clear that this relation can be converted to a linear differential equation
with polynomial coefficients, not all of them zero, for f(x). We see that f(x) is
D-finite. 2

D-finite formal power series were introduced by R.P. Stanley in [1]. For more
information on uses of algebraic and D-finite generating functions in enumerative
combinatorics see his book [2].
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