Lecture 2. $C_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$ again - the right GF proof. D-finite and algebraic FPS

M. Klazar

March 1, 2024

Last time we justified the equality
$\left(\right.$ the $f \in \mathbb{R}[[x]]$ s. t. $f(x)^{2}=1-4 x$ and $\left.f(0)=1\right)=\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4)^{n} x^{n}$
which was needed to get the formula $C_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$ by solving the quadratic equation $C^{2}-C+x=0$. Literature on enumerative combinatorics glosses over this justification. Now we give the "right" simple derivation of the formula by generating functions. The proper way to make use of the equation $C^{2}-C+x=0$ is not to apply the quadratic formula (!) but to differentiate it. Recall that $C=C(x)=\sum_{n \geq 1} C_{n} x^{n}$ is the generating function of Catalan numbers.
The third proof of Theorem $1\left(C_{n}=\frac{1}{n}\binom{2 n-2}{n-1}\right)$ in Lecture 1. From $C^{2}-C+x=0$ we have that $-C^{2}+C=x$. Differentiating $C^{2}-C+x=0$ by x we thus get

$$
2 C C^{\prime}-C^{\prime}+1=0 \leadsto C^{\prime}=\frac{1}{1-2 C}=\frac{\frac{1}{2} C-\frac{1}{4}}{-C^{2}+C-\frac{1}{4}}=\frac{2 C-1}{4 x-1}
$$

and $(4 x-1) C^{\prime}-2 C+1=0$. Since $C=\sum_{n \geq 1} C_{n} x^{n}$ and $C^{\prime}=\sum_{n \geq 1} n C_{n} x^{n-1}$, equating for $n \in \mathbb{N}$ the coefficient of x^{n} on the left side to zero gives the equation

$$
4 n C_{n}-(n+1) C_{n+1}-2 C_{n}=0
$$

Thus $C_{1}=1$ and $C_{n+1}=\frac{4 n-2}{n+1} \cdot C_{n}$ for any $n \in \mathbb{N}$. Hence for $n \geq 2$,

$$
\begin{aligned}
C_{n} & =\prod_{k=2}^{n} \frac{2(2 k-3)}{k}=\frac{2^{n-1} \cdot(2 n-3)!!}{n!} \\
& =\frac{2^{n-1}(n-1)!\cdot(2 n-3)!!}{(n-1)!\cdot n!}=\frac{1}{n}\binom{2 n-2}{n-1} .
\end{aligned}
$$

We have a new simple recurrence for $C_{n}: C_{n}=1$ and for $n \in \mathbb{N}$,

$$
C_{n+1}=\frac{4 n-2}{n+1} \cdot C_{n}
$$

As $0<\frac{4 n-2}{n+1}<4$ for $n \in \mathbb{N}$, induction gives the exponential upper bound $C_{n}<4^{n}$. The exact asymptotics of the Catalan numbers follows from the Stirling formula $n!=(1+o(1)) \cdot \sqrt{2 \pi n} \cdot(n / e)^{n}$. We get that for some constant $c>0$,

$$
C_{n}=(c+o(1)) \cdot n^{-3 / 2} \cdot 4^{n} \quad(n \rightarrow \infty) .
$$

In the previous proof we obtained the differential equation

$$
(4 x-1) C^{\prime}-2 C+1=0 .
$$

It means that $C \in \mathbb{R}[[x]]$ is a D-finite FPS. We define this class of FPS.
Definition 1 Let $K=\mathbb{R}$ or $K=\mathbb{C}$. We say that $a \operatorname{FPS} f(x)=\sum_{n \geq 0} a_{n} x^{n}$ in $K[[x]]$ is D-finite (or holonomic) if there exist polynomials $p_{-1}, p_{0}, \ldots, p_{k}$ in $K[x], k \in \mathbb{N}_{0}$, such that $p_{k} \neq 0$ and

$$
\sum_{i=-1}^{k} p_{i}(x) f^{(i)}(x)=0
$$

Here $f^{(-1)}(x):=1, f^{(0)}(x):=f(x)$ and $f^{(i)}(x)$ for $i \in \mathbb{N}$ is the i-th derivative of f,

$$
f^{(i)}(x)=\sum_{n=0}^{\infty} a_{n} n(n-1) \ldots(n-i+1) x^{n-i}
$$

In words, $f(x)$ satisfies a (non-homogeneous) linear differential equation with polynomial coefficients. As usual, for $i=1,2,3$ we write for $f^{(i)}$ synonymously $f^{\prime}, f^{\prime \prime}$ and $f^{\prime \prime \prime}$. By repeated differentiation we homogenize the equation and get that $p_{-1}=0$.
$C=C(x)$ satisfies also the equation

$$
C^{2}-C+x=0
$$

and so is an example of an algebraic FPS.
Definition 2 Let $K=\mathbb{R}$ or $K=\mathbb{C}$. We say that a FPS $f(x)=\sum_{n>0} a_{n} x^{n}$ in $K[[x]]$ is algebraic if there exist polynomials p_{0}, \ldots, p_{k} in $K[x], k \in \mathbb{\mathbb { N }}$, such that $p_{k} \neq 0$ and

$$
\sum_{i=0}^{k} p_{i}(x) f^{i}(x)=0
$$

In other words, $P(x, f(x))=0$ for a nonzero polynomial $P=P(x, y) \in K[x, y]$.
In the previous proof we deduced D-finiteness of C from its algebraicity. We show that this transition works in general.

Proposition 3 Let $K=\mathbb{R}$ or $K=\mathbb{C}$. If a FPS $f \in K[[x]]$ is algebraic then f is D-finite.

Proof. Let $f \in K[[x]]$ be such that $\sum_{i=0}^{k} p_{i} f^{i}=0$ where $k \in \mathbb{N}, p_{i} \in K[x]$ and $p_{k} \neq 0$. Thus

$$
\begin{equation*}
f^{k}=\sum_{i=0}^{k-1} q_{i} f^{i} \tag{1}
\end{equation*}
$$

where $q_{i} \in K(x)$ are rational functions. Differentiating by x we get that

$$
k f^{k-1} f^{\prime}=\sum_{i=0}^{k-1}\left(q_{i}^{\prime} f^{i}+q_{i} i f^{i-1} f^{\prime}\right) \text { and } f^{\prime}\left(k f^{k-1}-\sum_{i=0}^{k-1} q_{i} i f^{i-1}\right)=\sum_{i=0}^{k-1} q_{i}^{\prime} f^{i}
$$

Thus

$$
\begin{equation*}
f^{\prime}=\frac{P_{1}(f)}{Q_{1}(f)} \in K((x)) \tag{2}
\end{equation*}
$$

(the field of formal Laurent series in x with coefficients in K) where $P_{1}(y)$ and $Q_{1}(y) \neq 0$ are polynomials in $K(x)[y] . Q_{1}(y) \neq 0$ because it has leading coefficient k. We show by induction on $j \in \mathbb{N}$ that there exist polynomials $P_{j}(y)$ and $Q_{j}(y) \neq 0$ in $K(x)[y]$ such that

$$
f^{(j)}=\frac{P_{j}(f)}{Q_{j}(f)}
$$

For $j=1$ we proved it above. We differentiate this equation by x and get that

$$
f^{(j+1)}=\frac{\left(P_{j}(f)\right)_{x} \cdot Q_{j}(f)-P_{j}(f) \cdot\left(Q_{j}(f)\right)_{x}}{Q_{j}(f)^{2}}
$$

We have that $\left(P_{j}(f)\right)_{x}=R_{j}(f)+S_{j}(f) f^{\prime}$ and $\left(Q_{j}(f)\right)_{x}=T_{j}(f)+U_{j}(f) f^{\prime}$ where R_{j}, S_{j}, T_{j} and U_{j} are in $K(x)[y]$. Replacing f^{\prime} by equation (2) we get the required expression

$$
f^{(j+1)}=\frac{P_{j+1}(f)}{Q_{j+1}(f)} \text { with } Q_{j+1}=Q_{1} \cdot Q_{j}^{2}
$$

We bring the $k+1$ fractions $f^{(0)}=\frac{f}{1}, f^{(1)}=\frac{P_{1}(f)}{Q_{1}(f)}, \ldots, f^{(k)}=\frac{P_{k}(f)}{Q_{k}(f)}$ to a common denominator, reduce powers of f in the numerators by equation (1) and get the expressions

$$
f^{(0)}=\frac{A_{0}(f)}{B(f)}, f^{(1)}=\frac{A_{1}(f)}{B(f)}, \ldots, f^{(k)}=\frac{A_{k}(f)}{B(f)}
$$

where $B(y) \neq 0$ and $A_{i}(y)$ are in $K(x)[y]$ and every $A_{i}(y)$ has in y degree at most $k-1$. It follows that the $k+1$ numerators can be non-trivially linearly combined to 0 by some coefficients in $K(x)$. Hence

$$
\sum_{i=0}^{k} c_{i} f^{(i)}=0
$$

for some $c_{i} \in K(x)$, not all of them 0 . Thus f is D-finite.
In the initial proof we derived for $\left(C_{n}\right)=\left(C_{1}, C_{2}, \ldots\right)$ the recurrence that for every $n \in \mathbb{N}$,

$$
(n+1) C_{n+1}+(2-4 n) C_{n}=0
$$

Recurrences of this form are characteristic for sequences of coefficients of D-finite formal power series.

Definition 4 Let $K=\mathbb{R}$ or $K=\mathbb{C}$. We call a sequence $\left(a_{n}\right)=\left(a_{0}, a_{1}, \ldots\right) \subset$ K P-recurrent (over K) if there exist polynomials $p_{i} \in K[x]$, where $i=0,1, \ldots, k$ with $k \in \mathbb{N}_{0}$ and $p_{k} \neq 0$, such that for every $n \in \mathbb{N}_{0}$,

$$
\sum_{i=0}^{k} p_{i}(n) \cdot a_{n+i}=0
$$

It is easy to see that this is equivalent with the modified definition when the last displayed equality holds only for every $n>n_{0}$. To get $\left(C_{n}\right)$ P-recurrent exactly according to Definition 4 we extend it with $C_{0}:=-\frac{1}{2}$.

Proposition 5 Let $K=\mathbb{R}$ or $K=\mathbb{C}$ and $f=f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in K[[x]]$. Then f is D-finite $\Longleftrightarrow\left(a_{n}\right)$ is P -recurrent.

Proof. Suppose that f is D-finite. For $i \in \mathbb{N}_{0}$ we introduce notation $(x)_{0}=0$ and $(x)_{i}=x(x-1) \ldots(x-i+1)$ for $i>0$. Thus f satisfies the differential equation

$$
\begin{equation*}
\sum_{i=0}^{k} p_{i}(x) f^{(i)}(x)=\sum_{(h, i) \in P} b_{h, i} x^{h} f^{(i)}(x)=0 \tag{3}
\end{equation*}
$$

where $k \in \mathbb{N}_{0}, p_{i} \in K[x], p_{k} \neq 0, P \subset \mathbb{N}_{0}^{2}$ is a nonempty set and every coefficient $b_{h, i} \in K$ is nonzero. Let $H \in \mathbb{N}_{0}$ be the maximum value of h in the pairs $(h, i) \in P$. Since $\left(i \in \mathbb{N}_{0}\right)$

$$
f^{(i)}(x)=\sum_{n=0}^{\infty}(n+i)_{i} a_{n+i} x^{n}
$$

by setting the coefficient of $x^{n}, n \in \mathbb{N}_{0}$, in equation (3) to zero we get for every $n \geq H$ that

$$
\sum_{(h, i) \in P} b_{h, i} \cdot(n-h+i)_{i} \cdot a_{n-h+i}=0 .
$$

Grouping together summands sharing the same coefficient a_{n-h+i}, we deduce that the sequence $\left(a_{n}\right)$ satisfies for $n>n_{0}$ a (nontrivial) P-recurrence as in Definition 4.

Suppose that the sequence $\left(a_{n}\right)$ of coefficients of $f(x)$ is P-recurrent. Thus for every $n \in \mathbb{N}_{0}$ we have the equality

$$
\sum_{i=0}^{k} p_{i}(n) \cdot a_{n+i}=0
$$

for some $p_{i} \in K[x]$ with $p_{k} \neq 0$. We switch from the basis $\left\{x^{i} \mid i \in \mathbb{N}_{0}\right\}$ of the K-vector space $K[x]$ to the basis $\left\{(x+i)_{i} \mid i \in \mathbb{N}_{0}\right\}$ and express every $p_{i}(x)$ as the linear combination

$$
p_{i}(x)=\sum_{j=0}^{d_{i}} c_{i, j} \cdot(x+j)_{j}
$$

where $d_{i}=\operatorname{deg} p_{i} \in \mathbb{N}_{0}, c_{i, j} \in K$ and $c_{k, d_{k}} \neq 0_{K}$ (if $p_{i}=0$ then this sum is empty). Thus for every $n \in \mathbb{N}_{0}$,

$$
\sum_{i=0}^{k}\left(\sum_{j=0}^{d_{i}} c_{i, j} \cdot(n+j)_{j}\right) a_{n+i}=0 .
$$

By grouping the terms according to the pairs (i, j) we get that for every $n \in \mathbb{N}_{0}$ the equality

$$
\sum_{(i, j) \in Q} c_{i, j} \cdot(n+j)_{j} \cdot a_{n+i}=0
$$

holds, where $Q \subset \mathbb{N}_{0}^{2}$ is nonempty and (as we know) not all $c_{i, j} \in K$ are zero. It follows that

$$
\sum_{(i, j) \in Q} c_{i, j} \cdot\left(x^{j-i} \cdot f(x)\right)^{(j)}=0
$$

because for every $n \in \mathbb{N}_{0}$ the coefficient of x^{n} in the FPS on the left side is 0 . It is clear that this relation can be converted to a linear differential equation with polynomial coefficients, not all of them zero, for $f(x)$. We see that $f(x)$ is D-finite.

D-finite formal power series were introduced by R. P. Stanley in [1]. For more information on uses of algebraic and D-finite generating functions in enumerative combinatorics see his book [2].

References

[1] R.P. Stanly, Differentiably finite power series, European J. Combinatorics 1 (1980), 175-188
[2] R. P. Stanly, Enumerative Combinatorics. Volume 2, Cambridge University Press, Cambridge, UK 1999

