Lecture 2. $C_n = \frac{1}{n} \binom{2n-2}{n-1}$ again—the right GF proof. D-finite and algebraic FPS

M. Klazar

March 1, 2024

Last time we justified the equality

(the
$$f \in \mathbb{R}[[x]]$$
 s. t. $f(x)^2 = 1 - 4x$ and $f(0) = 1 = \sum_{n=0}^{\infty} {\binom{1/2}{n}} (-4)^n x^n$

which was needed to get the formula $C_n = \frac{1}{n} \binom{2n-2}{n-1}$ by solving the quadratic equation $C^2 - C + x = 0$. Literature on enumerative combinatorics glosses over this justification. Now we give the "right" simple derivation of the formula by generating functions. The proper way to make use of the equation $C^2 - C + x = 0$ is not to apply the quadratic formula (!) but to differentiate it. Recall that $C = C(x) = \sum_{n\geq 1} C_n x^n$ is the generating function of Catalan numbers.

The third proof of Theorem 1 $(C_n = \frac{1}{n} \binom{2n-2}{n-1})$ in Lecture 1. From $C^2 - C + x = 0$ we have that $-C^2 + C = x$. Differentiating $C^2 - C + x = 0$ by x we thus get

$$2CC' - C' + 1 = 0 \rightsquigarrow C' = \frac{1}{1 - 2C} = \frac{\frac{1}{2}C - \frac{1}{4}}{-C^2 + C - \frac{1}{4}} = \frac{2C - 1}{4x - 1}$$

and (4x-1)C'-2C+1=0. Since $C = \sum_{n\geq 1} C_n x^n$ and $C' = \sum_{n\geq 1} nC_n x^{n-1}$, equating for $n \in \mathbb{N}$ the coefficient of x^n on the left side to zero gives the equation

$$4nC_n - (n+1)C_{n+1} - 2C_n = 0.$$

Thus $C_1 = 1$ and $C_{n+1} = \frac{4n-2}{n+1} \cdot C_n$ for any $n \in \mathbb{N}$. Hence for $n \ge 2$,

$$C_n = \prod_{k=2}^n \frac{2(2k-3)}{k} = \frac{2^{n-1} \cdot (2n-3)!!}{n!}$$
$$= \frac{2^{n-1}(n-1)! \cdot (2n-3)!!}{(n-1)! \cdot n!} = \frac{1}{n} \binom{2n-2}{n-1}.$$

We have a new simple recurrence for C_n : $C_n = 1$ and for $n \in \mathbb{N}$,

$$C_{n+1} = \frac{4n-2}{n+1} \cdot C_n$$

As $0 < \frac{4n-2}{n+1} < 4$ for $n \in \mathbb{N}$, induction gives the exponential upper bound $C_n < 4^n$. The exact asymptotics of the Catalan numbers follows from the Stirling formula $n! = (1 + o(1)) \cdot \sqrt{2\pi n} \cdot (n/e)^n$. We get that for some constant c > 0,

$$C_n = (c + o(1)) \cdot n^{-3/2} \cdot 4^n \quad (n \to \infty) .$$

In the previous proof we obtained the differential equation

$$(4x-1)C' - 2C + 1 = 0.$$

It means that $C \in \mathbb{R}[[x]]$ is a D-finite FPS. We define this class of FPS.

Definition 1 Let $K = \mathbb{R}$ or $K = \mathbb{C}$. We say that a FPS $f(x) = \sum_{n\geq 0} a_n x^n$ in K[[x]] is D-finite (or holonomic) if there exist polynomials p_{-1}, p_0, \ldots, p_k in $K[x], k \in \mathbb{N}_0$, such that $p_k \neq 0$ and

$$\sum_{i=-1}^{k} p_i(x) f^{(i)}(x) = 0 \; .$$

Here $f^{(-1)}(x) := 1$, $f^{(0)}(x) := f(x)$ and $f^{(i)}(x)$ for $i \in \mathbb{N}$ is the *i*-th derivative of f,

$$f^{(i)}(x) = \sum_{n=0}^{\infty} a_n n(n-1) \dots (n-i+1) x^{n-i}$$

In words, f(x) satisfies a (non-homogeneous) linear differential equation with polynomial coefficients. As usual, for i = 1, 2, 3 we write for $f^{(i)}$ synonymously f', f'' and f'''. By repeated differentiation we homogenize the equation and get that $p_{-1} = 0$.

C = C(x) satisfies also the equation

$$C^2 - C + x = 0$$

and so is an example of an *algebraic* FPS.

Definition 2 Let $K = \mathbb{R}$ or $K = \mathbb{C}$. We say that a FPS $f(x) = \sum_{n\geq 0} a_n x^n$ in K[[x]] is algebraic if there exist polynomials p_0, \ldots, p_k in $K[x], k \in \mathbb{N}$, such that $p_k \neq 0$ and

$$\sum_{i=0}^{k} p_i(x) f^i(x) = 0 \; .$$

In other words, P(x, f(x)) = 0 for a nonzero polynomial $P = P(x, y) \in K[x, y]$.

In the previous proof we deduced D-finiteness of C from its algebraicity. We show that this transition works in general.

Proposition 3 Let $K = \mathbb{R}$ or $K = \mathbb{C}$. If a FPS $f \in K[[x]]$ is algebraic then f is D-finite.

Proof. Let $f \in K[[x]]$ be such that $\sum_{i=0}^{k} p_i f^i = 0$ where $k \in \mathbb{N}$, $p_i \in K[x]$ and $p_k \neq 0$. Thus

$$f^k = \sum_{i=0}^{k-1} q_i f^i \tag{1}$$

where $q_i \in K(x)$ are rational functions. Differentiating by x we get that

$$kf^{k-1}f' = \sum_{i=0}^{k-1} (q'_i f^i + q_i i f^{i-1}f')$$
 and $f'\left(kf^{k-1} - \sum_{i=0}^{k-1} q_i i f^{i-1}\right) = \sum_{i=0}^{k-1} q'_i f^i$.

Thus

$$f' = \frac{P_1(f)}{Q_1(f)} \in K((x))$$
(2)

(the field of formal Laurent series in x with coefficients in K) where $P_1(y)$ and $Q_1(y) \neq 0$ are polynomials in K(x)[y]. $Q_1(y) \neq 0$ because it has leading coefficient k. We show by induction on $j \in \mathbb{N}$ that there exist polynomials $P_j(y)$ and $Q_j(y) \neq 0$ in K(x)[y] such that

$$f^{(j)} = \frac{P_j(f)}{Q_j(f)}$$

For j = 1 we proved it above. We differentiate this equation by x and get that

$$f^{(j+1)} = \frac{(P_j(f))_x \cdot Q_j(f) - P_j(f) \cdot (Q_j(f))_x}{Q_j(f)^2}$$

We have that $(P_j(f))_x = R_j(f) + S_j(f)f'$ and $(Q_j(f))_x = T_j(f) + U_j(f)f'$ where R_j , S_j , T_j and U_j are in K(x)[y]. Replacing f' by equation (2) we get the required expression

$$f^{(j+1)} = \frac{P_{j+1}(f)}{Q_{j+1}(f)}$$
 with $Q_{j+1} = Q_1 \cdot Q_j^2$

We bring the k + 1 fractions $f^{(0)} = \frac{f}{1}$, $f^{(1)} = \frac{P_1(f)}{Q_1(f)}$, ..., $f^{(k)} = \frac{P_k(f)}{Q_k(f)}$ to a common denominator, reduce powers of f in the numerators by equation (1) and get the expressions

$$f^{(0)} = \frac{A_0(f)}{B(f)}, f^{(1)} = \frac{A_1(f)}{B(f)}, \dots, f^{(k)} = \frac{A_k(f)}{B(f)}$$

where $B(y) \neq 0$ and $A_i(y)$ are in K(x)[y] and every $A_i(y)$ has in y degree at most k-1. It follows that the k+1 numerators can be non-trivially linearly combined to 0 by some coefficients in K(x). Hence

$$\sum_{i=0}^{k} c_i f^{(i)} = 0$$

for some $c_i \in K(x)$, not all of them 0. Thus f is D-finite.

In the initial proof we derived for $(C_n) = (C_1, C_2, ...)$ the recurrence that for every $n \in \mathbb{N}$,

$$(n+1)C_{n+1} + (2-4n)C_n = 0$$

Recurrences of this form are characteristic for sequences of coefficients of D-finite formal power series.

Definition 4 Let $K = \mathbb{R}$ or $K = \mathbb{C}$. We call a sequence $(a_n) = (a_0, a_1, ...) \subset K$ P-recurrent (over K) if there exist polynomials $p_i \in K[x]$, where i = 0, 1, ..., k with $k \in \mathbb{N}_0$ and $p_k \neq 0$, such that for every $n \in \mathbb{N}_0$,

$$\sum_{i=0}^{k} p_i(n) \cdot a_{n+i} = 0$$

It is easy to see that this is equivalent with the modified definition when the last displayed equality holds only for every $n > n_0$. To get (C_n) P-recurrent exactly according to Definition 4 we extend it with $C_0 := -\frac{1}{2}$.

Proposition 5 Let $K = \mathbb{R}$ or $K = \mathbb{C}$ and $f = f(x) = \sum_{n=0}^{\infty} a_n x^n \in K[[x]]$. Then f is D-finite $\iff (a_n)$ is P-recurrent.

Proof. Suppose that f is D-finite. For $i \in \mathbb{N}_0$ we introduce notation $(x)_0 = 0$ and $(x)_i = x(x-1)\dots(x-i+1)$ for i > 0. Thus f satisfies the differential equation

$$\sum_{i=0}^{k} p_i(x) f^{(i)}(x) = \sum_{(h,i) \in P} b_{h,i} x^h f^{(i)}(x) = 0$$
(3)

where $k \in \mathbb{N}_0$, $p_i \in K[x]$, $p_k \neq 0$, $P \subset \mathbb{N}_0^2$ is a nonempty set and every coefficient $b_{h,i} \in K$ is nonzero. Let $H \in \mathbb{N}_0$ be the maximum value of h in the pairs $(h, i) \in P$. Since $(i \in \mathbb{N}_0)$

$$f^{(i)}(x) = \sum_{n=0}^{\infty} (n+i)_i a_{n+i} x^n ,$$

by setting the coefficient of x^n , $n \in \mathbb{N}_0$, in equation (3) to zero we get for every $n \ge H$ that

$$\sum_{(h,i)\in P} b_{h,i} \cdot (n-h+i)_i \cdot a_{n-h+i} = 0 .$$

Grouping together summands sharing the same coefficient a_{n-h+i} , we deduce that the sequence (a_n) satisfies for $n > n_0$ a (nontrivial) P-recurrence as in Definition 4.

Suppose that the sequence (a_n) of coefficients of f(x) is P-recurrent. Thus for every $n \in \mathbb{N}_0$ we have the equality

$$\sum_{i=0}^{k} p_i(n) \cdot a_{n+i} = 0$$

for some $p_i \in K[x]$ with $p_k \neq 0$. We switch from the basis $\{x^i \mid i \in \mathbb{N}_0\}$ of the *K*-vector space K[x] to the basis $\{(x+i)_i \mid i \in \mathbb{N}_0\}$ and express every $p_i(x)$ as the linear combination

$$p_i(x) = \sum_{j=0}^{d_i} c_{i,j} \cdot (x+j)_j$$

where $d_i = \deg p_i \in \mathbb{N}_0$, $c_{i,j} \in K$ and $c_{k,d_k} \neq 0_K$ (if $p_i = 0$ then this sum is empty). Thus for every $n \in \mathbb{N}_0$,

$$\sum_{i=0}^{k} \left(\sum_{j=0}^{d_i} c_{i,j} \cdot (n+j)_j \right) a_{n+i} = 0 \; .$$

By grouping the terms according to the pairs (i, j) we get that for every $n \in \mathbb{N}_0$ the equality

$$\sum_{(i,j)\in Q} c_{i,j} \cdot (n+j)_j \cdot a_{n+i} = 0$$

holds, where $Q \subset \mathbb{N}_0^2$ is nonempty and (as we know) not all $c_{i,j} \in K$ are zero. It follows that

$$\sum_{(i,j)\in Q} c_{i,j} \cdot \left(x^{j-i} \cdot f(x)\right)^{(j)} = 0$$

because for every $n \in \mathbb{N}_0$ the coefficient of x^n in the FPS on the left side is 0. It is clear that this relation can be converted to a linear differential equation with polynomial coefficients, not all of them zero, for f(x). We see that f(x) is D-finite.

D-finite formal power series were introduced by R. P. Stanley in [1]. For more information on uses of algebraic and D-finite generating functions in enumerative combinatorics see his book [2].

References

- R. P. Stanly, Differentiably finite power series, European J. Combinatorics 1 (1980), 175–188
- [2] R. P. Stanly, *Enumerative Combinatorics. Volume 2*, Cambridge University Press, Cambridge, UK 1999