Lecture 1. Two proofs of the formula $C_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$ for the Catalan numbers

M. Klazar

February 23, 2024

Let $\mathbb{N}=\{1,2, \ldots\}$ and $\mathbb{N}_{0}=\{0,1 \ldots\}$. For $n \in \mathbb{N}$, the n-th Catalan number $C_{n} \in \mathbb{N}$ is the cardinality of the set

$$
\mathcal{D}_{n}=\left\{\left(u_{1}, \ldots, u_{2 n-2}\right) \in\{-1,1\}^{2 n-2} \mid \forall m: \sum_{i=1}^{m} u_{i} \geq 0 \wedge \sum_{i=1}^{2 n-2} u_{i}=0\right\} .
$$

Note that any word $u \in \mathcal{D}_{n}$ has length $|u|=2 n-2$ and has $n-1$ ones and $n-1$ minus ones. We set $\mathcal{D}_{1}=\{\emptyset\}$. For example, $C_{4}=\left|\mathcal{D}_{4}\right|=5$ because

$$
\mathcal{D}_{4}=\{111000,110100,101100,110010,101010\}
$$

where we write for brevity 0 instead of -1 and omit commas and brackets. The elements of the sets \mathcal{D}_{n} are called Dyck words.

Theorem 1 For every $n \in \mathbb{N}$ we have $C_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$.
The first proof of Theorem 1. We consider the generating function (GF) $C=$ $C(x)=\sum_{n=1}^{\infty} C_{n} x^{n} \in \mathbb{R}[[x]]$. Every nonempty Dyck word u has a unique decomposition

$$
u=1 v(-1) w
$$

where v and w are possibly empty Dyck words and $1 v(-1)$ is the shortest initial segment of u with sum 0 . Restricting the map $u \mapsto(v, w)$ to \mathcal{D}_{n} we get a bijection

$$
\mathcal{D}_{n} \rightarrow \bigcup_{i=1}^{n-1} \mathcal{D}_{i} \times \mathcal{D}_{n-i}, n \geq 2
$$

Thus we have the basic recurrence that $C_{1}=1$ and for $n \geq 2$,

$$
C_{n}=\sum_{i=1}^{n-1} C_{i} C_{n-i}
$$

In terms of $C(x)$ it means that $C(x)=x+C(x)^{2}$ and $C^{2}-C+x=0$. The quadratic formula yields two solutions

$$
C=C(x)=\frac{1}{2}(1 \pm \sqrt{1-4 x}) .
$$

Newton's binomial theorem says that for any $\alpha \in \mathbb{R}$,

$$
(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n} \in \mathbb{R}[[x]]
$$

where for $n \geq 1$

$$
\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}
$$

and $\binom{\alpha}{0}=1$. For any $\alpha, \beta \in \mathbb{R}$ it holds more generally that $(1+\beta x)^{\alpha}=$ $\sum_{n=0}^{\infty}\binom{\alpha}{n} \beta^{n} x^{n}$. Thus

$$
\sqrt{1-4 x}=(1+(-4) x)^{1 / 2}=\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4)^{n} x^{n}=1-2 x-2 x^{2}-\ldots .
$$

Hence

$$
C(x)=\frac{1}{2}\left(1-\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4)^{n} x^{n}\right)=x+x^{2}+2 x^{3}+\ldots
$$

and

$$
C_{n}=\underbrace{\left[x^{n}\right] C(x)}_{\text {the coefficient of } x^{n} \text { in } C(x)}=-\frac{1}{2} \cdot(-4)^{n} \cdot\binom{1 / 2}{n} .
$$

Certainly $C_{1}=1=\frac{1}{1}\binom{0}{0}$. For $n \geq 2$ the number C_{n} equals

$$
\begin{aligned}
-\frac{1}{2} \cdot(-4)^{n} \cdot\binom{1 / 2}{n} & =2^{2 n-1} \cdot \frac{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \ldots \cdot \frac{2 n-3}{2}}{n!} \\
& =\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-3) \cdot 2^{n-1} \cdot(n-1)!}{n!\cdot(n-1)!} \\
& =\frac{1}{n} \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot(2 n-2)}{(n-1)!\cdot(n-1)!}
\end{aligned}
$$

and we get the stated formula $C_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$.
But this computation contains a gap which borders on a logical fallacy. In the equality $\sqrt{1-4 x}=(1-4 x)^{1 / 2}$ we have on the left side a formal power series (FPS) in $\mathbb{R}[[x]]$ with constant term 1 and such that its square equals $1-4 x$. On the right side we have the FPS $P(x)=\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4)^{n} x^{n}$. What is missing is the proof that really

$$
P(x)^{2}=1-4 x .
$$

We see that we need to show the equality

$$
P(x)^{2}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{1 / 2}{k}\binom{1 / 2}{n-k}\right)(-4)^{n} x^{n}=1-4 x .
$$

We get it from the next identity.

Theorem 2 (the Vandermonde convolution) In the ring $\mathbb{R}[x, y]$ of bivariate real polynomials, the identity

$$
\sum_{k=0}^{n}\binom{x}{k}\binom{y}{n-k}=\binom{x+y}{n}
$$

holds for every $n \in \mathbb{N}_{0}$.
Now we view binomial coefficients as rational polynomials: for $k \in \mathbb{N}$,

$$
\binom{x}{k}=\frac{x(x-1) \ldots(x-k+1)}{k!} \in \mathbb{Q}[x]
$$

and $\binom{x}{0}=1$. By Theorem 2,

$$
\sum_{k=0}^{n}\binom{1 / 2}{k}\binom{1 / 2}{n-k}=\binom{\frac{1}{2}+\frac{1}{2}}{n}=\binom{1}{n}=\left\{\begin{array}{lll}
1 & \ldots & n=0,1 \text { and } \\
0 & \ldots & n \geq 2
\end{array}\right.
$$

and the equality $P(x)^{2}=1-4 x$ follows. We deduce Theorem 2 by means of the next theorem.

Theorem 3 Let $d \in \mathbb{N}_{0}, X, Y \subset \mathbb{R}$ with $|X|=|Y|=d+1$ and $F \in \mathbb{R}[x, y]$ be a nonzero polynomial with degree at most d. Then

$$
\exists(u, v) \in X \times Y: F(u, v) \neq 0
$$

Proof. We write

$$
F(x, y)=x^{n_{1}} p_{1}(y)+x^{n_{2}} p_{2}(y)+\cdots+x^{n_{k}} p_{k}(y)
$$

where $d \geq n_{1}>n_{2}>\cdots>n_{k} \geq 0, k \in \mathbb{N}, p_{i} \in \mathbb{R}[y]$ and every p_{i} is a nonzero polynomial with degree at most d. Since every nonzero (univariate) polynomial over a field with degree at most d has at most d roots, there exists a $v \in Y$ such that $p_{1}(v) \neq 0$. Then $G(x)=F(x, v) \in \mathbb{R}[x]$ is a nonzero polynomial with degree at most d and there exists a $u \in X$ such that $G(u)=F(u, v) \neq 0$.

Proof of Theorem 2. For any $n \in \mathbb{N}_{0}$ we set

$$
F_{n}=F_{n}(x, y)=\sum_{k=0}^{n}\binom{x}{k}\binom{y}{n-k}-\binom{x+y}{n} \in \mathbb{R}[x, y]
$$

If F_{n} is a nonzero polynomial then $\operatorname{deg} F_{n} \leq n$. It is not hard to see that $F_{n}(x, y)=0$ for every $x, y, n \in \mathbb{N}_{0}$: if A and B are disjoint sets with cardinalities $|A|=x$ and $|B|=y$, then by counting the sets $C \subset A \cup B$ with $|C|=n$ in two ways we get that (for $x, y \in \mathbb{N}_{0}$)

$$
\sum_{k=0}^{n}\binom{x}{k}\binom{y}{n-k}=\binom{x+y}{n}
$$

Using Theorem 3 we see that $F_{n}(x, y)$ is a zero polynomial.
Only now is the first proof of the formula $C_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$ complete.
Theorem 3 inspired me to give in the second part of the course a survey of the proof of the following remarkable theorem. For $N \in \mathbb{N}$ we set $[N]=$ $\{1,2, \ldots, N\}$.

Theorem 4 (Bombieri-Pila) Suppose that $d \in \mathbb{N}$ and that $F \in \mathbb{R}[x, y]$ is a nonzero irreducible polynomial with degree d. Then for any $N \in \mathbb{N}$,

$$
\left|\left\{(u, v) \in[N]^{2} \mid F(u, v)=0\right\}\right| \leq \log (N+2)^{O(d)} \cdot N^{1 / d}
$$

(the shift $N+2$ removes the inconvenient values $\log 1=0$ and $\log 2<1$). The polynomial $F(x, y)=y^{d}-x$ shows that up to the logarithmic factor the bound is tight. For $d=1$ we have the simple bound $|\ldots| \leq N$. In [2] the theorem was proven with the bound $|\ldots| \leq N^{1 / d+o(1)}$. In [4] the term $N^{o(1)}$ was improved to the polylogarithmic factor. I will follow the survey [1], or maybe not, but will begin with the pioneering 1926 result of V. Jarník (1897-1970) [3] that if $\Gamma \subset[0, N]^{2}, N \in \mathbb{N}$, is the graph of a monotone and strictly convex or strictly concave function $f:[0, N] \rightarrow[0, N]$, then

$$
\max _{\Gamma}\left|\Gamma \cap \mathbb{Z}^{2}\right|=3 \pi^{-2 / 3} N^{2 / 3}+O\left(N^{1 / 3} \log N\right)
$$

The second proof of Theorem 1. $C_{1}=1=\frac{1}{1}\binom{0}{0}$ is trivial and we assume that $n \geq 2$. Besides the set \mathcal{D}_{n} of Dyck words with length $2 n-2$ we consider the sets of words

$$
\mathcal{A}_{n}=\left\{u \in\{-1,1\}^{2 n-2} \mid \sum u_{i}=0\right\}
$$

and

$$
\mathcal{B}_{n}=\left\{u \in\{-1,1\}^{2 n-2} \mid \sum u_{i}=2\right\}
$$

with the same length $2 n-2$. Clearly, $\mathcal{D}_{n} \subset \mathcal{A}_{n}$. The formula for the Catalan numbers follows from the next proposition which shows that $C_{n}=\left|\mathcal{D}_{n}\right|=$ $\left|\mathcal{A}_{n}\right|-\left|\mathcal{A}_{n} \backslash \mathcal{D}_{n}\right|$ equals
$\left|\mathcal{A}_{n}\right|-\left|\mathcal{B}_{n}\right|=\binom{2 n-2}{n-1}-\binom{2 n-2}{n}=\left(1-\frac{n-1}{n}\right)\binom{2 n-2}{n-1}=\frac{1}{n}\binom{2 n-2}{n-1}$.

Thus bijective combinatorics easily trumps generating functions, at least in the case of the formula $C_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$.

Proposition 5 Let $n \geq 2$. The map

$$
f: \mathcal{A}_{n} \backslash \mathcal{D}_{n} \rightarrow \mathcal{B}_{n}, \quad f(u)=v
$$

where v arises from u by changing signs in the shortest initial segment of u with sum -1 , is a bijection.

Proof. Let $n \geq 2$ and $u \in \mathcal{A}_{n} \backslash \mathcal{D}_{n}$. Thus u has $n-1$ ones and $n-1$ minus ones and not all initial sums are nonnegative. It follows that there is the shortest initial segment u^{\prime} of u with sum -1 . It has one more -1 than 1 's, and in the rest of u it is the other way around. Thus if we change signs in u^{\prime} we get the word $v=f(u) \in \mathcal{B}_{n}$ and this transformation turns u^{\prime} in v^{\prime} which is the shortest initial segment of v with sum 1. We transform v^{\prime} in the same way and get $w=g(v) \in \mathcal{A}_{n} \backslash \mathcal{D}_{n}$; this defines the map $g: \mathcal{B}_{n} \rightarrow \mathcal{A}_{n} \backslash \mathcal{D}_{n}$. Clearly, $w=u$. The maps f and g are inverses of one another and f is a bijection.

In [5] R. P. Stanley describes very many families of structures counted by the Catalan numbers. To conclude we mention one striking "Catalanian" result due to P . Valtr in [6]. A convex chain is a finite set of points in the plane \mathbb{R}^{2} such that the points lie on the graph of a strictly convex function. For $n \in \mathbb{N}$, $n \geq 3$, let U_{n} be the event that n random and independent points selected in the unit square $[0,1]^{2}$ form a convex n-gon, and V_{n} be the event that they form a convex chain. Then, by [6],

$$
\operatorname{Pr}\left(V_{n} \mid U_{n}\right)=\frac{1}{C_{n}}
$$

For $n=3$ it is clear that the conditional probability equals $\frac{1}{2}$, but for $n>3$ it is far from clear why we get the reciprocal of the n-th Catalan number.

References

[1] T.F. Bloom and J.D. Lichtman, The Bombieri-Pila determinant method, arXiv:2312.12890v1, 2023, 17 pp .
[2] E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke Math. J., 59 (1989) 337-357
[3] "Vojtěch Jarník in Göttingen", Über die Gitterpunkte auf konvexen Kurven, Math. Z. 24 (1926), 500-518
[4] J. Pila, Density of integer points on plane algebraic curves, IMRN, 18 (1996) 903-912
[5] R. P. Stanley, Catalan Numbers, Cambridge University Press, Cambridge, UK 2015
[6] P. Valtr, Catalan numbers via random planar point sets, 441-443. In: I. Bárány and K. Böröczky (eds.), Intuitive Geometry (Budapest, 1995), János Bolyai Mathematical Society, Budapest 1997

