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2n−2
n−1

)
for the Catalan numbers

M. Klazar

February 23, 2024

Let N = {1, 2, . . . } and N0 = {0, 1 . . . }. For n ∈ N, the n-th Catalan number
Cn ∈ N is the cardinality of the set

Dn = {(u1, . . . , u2n−2) ∈ {−1, 1}2n−2 | ∀m :
∑m

i=1 ui ≥ 0 ∧
∑2n−2

i=1 ui = 0} .

Note that any word u ∈ Dn has length |u| = 2n − 2 and has n − 1 ones and
n− 1 minus ones. We set D1 = {∅}. For example, C4 = |D4| = 5 because

D4 = {111000, 110100, 101100, 110010, 101010}

where we write for brevity 0 instead of −1 and omit commas and brackets. The
elements of the sets Dn are called Dyck words.

Theorem 1 For every n ∈ N we have Cn = 1
n

(
2n−2
n−1

)
.

The first proof of Theorem 1. We consider the generating function (GF) C =
C(x) =

∑∞
n=1 Cnx

n ∈ R[[x]]. Every nonempty Dyck word u has a unique
decomposition

u = 1 v (−1)w

where v and w are possibly empty Dyck words and 1v(−1) is the shortest ini-
tial segment of u with sum 0. Restricting the map u 7→ (v, w) to Dn we get
a bijection

Dn →
n−1⋃
i=1

Di ×Dn−i, n ≥ 2 .

Thus we have the basic recurrence that C1 = 1 and for n ≥ 2,

Cn =

n−1∑
i=1

CiCn−i .

In terms of C(x) it means that C(x) = x + C(x)2 and C2 − C + x = 0. The
quadratic formula yields two solutions

C = C(x) = 1
2

(
1±

√
1− 4x

)
.
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Newton’s binomial theorem says that for any α ∈ R,

(1 + x)α =

∞∑
n=0

(
α

n

)
xn ∈ R[[x]]

where for n ≥ 1 (
α

n

)
=

α(α− 1) . . . (α− n+ 1)

n!
,

and
(
α
0

)
= 1. For any α, β ∈ R it holds more generally that(1 + βx)α =∑∞

n=0

(
α
n

)
βnxn. Thus

√
1− 4x = (1 + (−4)x)1/2 =

∞∑
n=0

(
1/2

n

)
(−4)nxn = 1− 2x− 2x2 − . . . .

Hence

C(x) =
1

2

(
1−

∞∑
n=0

(
1/2

n

)
(−4)nxn

)
= x+ x2 + 2x3 + . . .

and

Cn = [xn]C(x)︸ ︷︷ ︸
the coefficient of xn in C(x)

= −1

2
· (−4)n ·

(
1/2

n

)
.

Certainly C1 = 1 = 1
1

(
0
0

)
. For n ≥ 2 the number Cn equals

−1

2
· (−4)n ·

(
1/2

n

)
= 22n−1 ·

1
2 · 1

2 · 3
2 · 5

2 · . . . · 2n−3
2

n!

=
1 · 3 · 5 · . . . · (2n− 3) · 2n−1 · (n− 1)!

n! · (n− 1)!

=
1

n
· 1 · 2 · 3 · 4 · . . . · (2n− 2)

(n− 1)! · (n− 1)!

and we get the stated formula Cn = 1
n

(
2n−2
n−1

)
. 2

But this computation contains a gap which borders on a logical fallacy. In
the equality

√
1− 4x = (1−4x)1/2 we have on the left side a formal power series

(FPS) in R[[x]] with constant term 1 and such that its square equals 1−4x. On

the right side we have the FPS P (x) =
∑∞

n=0

(
1/2
n

)
(−4)nxn. What is missing is

the proof that really
P (x)2 = 1− 4x .

We see that we need to show the equality

P (x)2 =

∞∑
n=0

( n∑
k=0

(
1/2

k

)(
1/2

n− k

))
(−4)nxn = 1− 4x .

We get it from the next identity.
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Theorem 2 (the Vandermonde convolution) In the ring R[x, y] of bivari-
ate real polynomials, the identity

n∑
k=0

(
x

k

)(
y

n− k

)
=

(
x+ y

n

)
holds for every n ∈ N0.

Now we view binomial coefficients as rational polynomials: for k ∈ N,(
x

k

)
=

x(x− 1) . . . (x− k + 1)

k!
∈ Q[x]

and
(
x
0

)
= 1. By Theorem 2,

n∑
k=0

(
1/2

k

)(
1/2

n− k

)
=

( 1
2 + 1

2

n

)
=

(
1

n

)
=

{
1 . . . n = 0, 1 and
0 . . . n ≥ 2

and the equality P (x)2 = 1 − 4x follows. We deduce Theorem 2 by means of
the next theorem.

Theorem 3 Let d ∈ N0, X,Y ⊂ R with |X| = |Y | = d + 1 and F ∈ R[x, y] be
a nonzero polynomial with degree at most d. Then

∃ (u, v) ∈ X × Y : F (u, v) ̸= 0 .

Proof. We write

F (x, y) = xn1p1(y) + xn2p2(y) + · · ·+ xnkpk(y)

where d ≥ n1 > n2 > · · · > nk ≥ 0, k ∈ N, pi ∈ R[y] and every pi is a nonzero
polynomial with degree at most d. Since every nonzero (univariate) polynomial
over a field with degree at most d has at most d roots, there exists a v ∈ Y
such that p1(v) ̸= 0. Then G(x) = F (x, v) ∈ R[x] is a nonzero polynomial with
degree at most d and there exists a u ∈ X such that G(u) = F (u, v) ̸= 0. 2

Proof of Theorem 2. For any n ∈ N0 we set

Fn = Fn(x, y) =

n∑
k=0

(
x

k

)(
y

n− k

)
−
(
x+ y

n

)
∈ R[x, y] .

If Fn is a nonzero polynomial then degFn ≤ n. It is not hard to see that
Fn(x, y) = 0 for every x, y, n ∈ N0: if A and B are disjoint sets with cardinalities
|A| = x and |B| = y, then by counting the sets C ⊂ A ∪B with |C| = n in two
ways we get that (for x, y ∈ N0)

n∑
k=0

(
x

k

)(
y

n− k

)
=

(
x+ y

n

)
.
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Using Theorem 3 we see that Fn(x, y) is a zero polynomial. 2

Only now is the first proof of the formula Cn = 1
n

(
2n−2
n−1

)
complete.

Theorem 3 inspired me to give in the second part of the course a survey
of the proof of the following remarkable theorem. For N ∈ N we set [N ] =
{1, 2, . . . , N}.

Theorem 4 (Bombieri–Pila) Suppose that d ∈ N and that F ∈ R[x, y] is
a nonzero irreducible polynomial with degree d. Then for any N ∈ N,

|{(u, v) ∈ [N ]2 | F (u, v) = 0}| ≤ log(N + 2)O(d) ·N1/d

(the shift N + 2 removes the inconvenient values log 1 = 0 and log 2 < 1). The
polynomial F (x, y) = yd − x shows that up to the logarithmic factor the bound
is tight. For d = 1 we have the simple bound | . . . | ≤ N . In [2] the theorem was
proven with the bound | . . . | ≤ N1/d+o(1). In [4] the term No(1) was improved
to the polylogarithmic factor. I will follow the survey [1], or maybe not, but
will begin with the pioneering 1926 result of V. Jarńık (1897–1970) [3] that if
Γ ⊂ [0, N ]2, N ∈ N, is the graph of a monotone and strictly convex or strictly
concave function f : [0, N ] → [0, N ], then

max
Γ

|Γ ∩ Z2| = 3π−2/3N2/3 +O(N1/3 logN) .

The second proof of Theorem 1. C1 = 1 = 1
1

(
0
0

)
is trivial and we assume that

n ≥ 2. Besides the set Dn of Dyck words with length 2n − 2 we consider the
sets of words

An = {u ∈ {−1, 1}2n−2 |
∑

ui = 0}

and
Bn = {u ∈ {−1, 1}2n−2 |

∑
ui = 2}

with the same length 2n − 2. Clearly, Dn ⊂ An. The formula for the Catalan
numbers follows from the next proposition which shows that Cn = |Dn| =
|An| − |An \ Dn| equals

|An| − |Bn| =
(
2n− 2

n− 1

)
−
(
2n− 2

n

)
=

(
1− n− 1

n

)(
2n− 2

n− 1

)
=

1

n

(
2n− 2

n− 1

)
.

2

Thus bijective combinatorics easily trumps generating functions, at least in the
case of the formula Cn = 1

n

(
2n−2
n−1

)
.

Proposition 5 Let n ≥ 2. The map

f : An \ Dn → Bn, f(u) = v ,

where v arises from u by changing signs in the shortest initial segment of u with
sum −1, is a bijection.
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Proof. Let n ≥ 2 and u ∈ An \Dn. Thus u has n− 1 ones and n− 1 minus ones
and not all initial sums are nonnegative. It follows that there is the shortest
initial segment u′ of u with sum −1. It has one more −1 than 1’s, and in the
rest of u it is the other way around. Thus if we change signs in u′ we get the
word v = f(u) ∈ Bn and this transformation turns u′ in v′ which is the shortest
initial segment of v with sum 1. We transform v′ in the same way and get
w = g(v) ∈ An \ Dn; this defines the map g : Bn → An \ Dn. Clearly, w = u.
The maps f and g are inverses of one another and f is a bijection. 2

In [5] R. P. Stanley describes very many families of structures counted by
the Catalan numbers. To conclude we mention one striking “Catalanian” result
due to P. Valtr in [6]. A convex chain is a finite set of points in the plane R2

such that the points lie on the graph of a strictly convex function. For n ∈ N,
n ≥ 3, let Un be the event that n random and independent points selected in
the unit square [0, 1]2 form a convex n-gon, and Vn be the event that they form
a convex chain. Then, by [6],

Pr(Vn |Un) =
1

Cn
.

For n = 3 it is clear that the conditional probability equals 1
2 , but for n > 3 it

is far from clear why we get the reciprocal of the n-th Catalan number.
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