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Introduction

These lecture notes are based on the course NDMI015 Kombinatorické poč́ıtáńı
(Combinatorial Counting), which I was teaching (in Czech) in the Computer
Science Section of the Faculty of Mathematics and Physics of the Charles Uni-
versity in the summer semester of 2022. This text considerably extends the
topics that I suggested and mentioned during my lectures.

I point out the following highlights. (i) Catalan numbers musing in Chap-
ters 1, 2, 5, 6, 7, 8, 9, 14 and 15. (ii) The proof of convergence of any multivariate
formal power series algebraic over convergent multivariate power series in Chap-
ter 10. (iii) Enumeration of (1, 2, . . . ,m + 1)-free permutations in Chapters 11,
12, 17 and 18. (iv) Enumeration of labeled k-regular graphs in Chapters 11, 12,
19 and 20.

I thank Tomáš Domes and Tomáš Hons for attending my lectures, for their
questions and especially for their patience with my sometimes incoherent and
incomplete presentation, for which this text hopefully makes up.

In Prague, September 2022 Martin Klazar
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Chapter 1

Catalan numbers and
eventual linear recurrence
sequences

The Catalan numbers

Cn :=
1

n

(
2n− 2

n− 1

)
=

(2n− 2)!

n · (n− 1)! · (n− 1)!
, n ∈ N := {1, 2, . . . } ,

count very many classes of combinatorial structures ([22]) and because of this
they enjoy attention of researchers in enumerative combinatorics. Their se-
quence begins as

(Cn) = (C1, C2, . . . ) = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . . ) .

How does one define them combinatorially? Let |X| be the cardinality of
a (finite) set X and, for n ∈ N0 := {0, 1, . . . }, let [n] be the set {1, 2, . . . , n},
with [0] := ∅. One of the simplest self-contained combinatorial definition of Cn

is that C1 := 1 and for n > 1,

Cn := |{a ∈ {−1, 1}2n−2 | ∀ j ∈ [2n− 2] :
∑j

i=1 ai ≥ 0 ∧
∑2n−2

i=1 ai = 0}| .

So Cn counts the (2n − 2)-tuples of n − 1 ones and n − 1 minus ones with
nonnegative initial sums. We call such 2n-tuples Dyck words (with size n) and
denote their set by Dn. Thus

Cn = |Dn−1| .

For instance, there are C4 = 5 Dyck words with size 3:

D3 = {(1, −1, 1, −1, 1, −1), (1, 1, −1, −1, 1, −1), (1, −1, 1, 1, −1, −1),

(1, 1, 1, −1, −1, −1) and (1, 1, −1, 1, −1, −1)} .
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In the next chapter we prove in two ways the equality

|Dn−1| =
1

n

(
2n− 2

n− 1

)
,

by the OGF (ordinary generating function)

C(x) :=

∞∑
n=1

Cnx
n ∈ C[[x]]

(by C[[x]] we denote the ring of formal power series in variable x with complex
coefficients) and then purely combinatorially.

The book [22] by R. P. Stanley contains an extensive collection of classes
of combinatorial structures counted by the Catalan numbers. R. P. Stanley
is the algebraic father of modern enumerative combinatorics, see [23]. The
analytic father is without doubt the late P. Flajolet, the first author of [10].
Who is the combinatorial father? I do not know. Or, wait, maybe there is
a combinatorial mother? M. Bousquet-Mélou, see [4, 5, 6] or her many other
articles on enumeration, is the top candidate.

A class of popular sequences in enumerative combinatorics is linear recur-
rence sequences.

Definition 1.1 (LRS) A linear recurrence sequence in a field K, which we
abbreviate as a LRS, is a sequence

(an) = (a1, a2, . . . ) ⊂ K

such that for some k ∈ N0 (recurrence) coefficients c0, c1, . . . , ck−1 ∈ K,

∀n ∈ N : an+k =

k−1∑
i=0

cian+i . (LRS)

We say that k is the order of the recurrence.

So every term in the sequence from ak+1 on is a linear combination with the
coefficients ci of the k preceding terms. For k = 0 we define the empty sum
in (LRS) as 0K and get the zero sequence (an) = (0K , 0K , . . . ). The LRS (an)
is uniquely determined by the coefficients ci in (LRS) and by the initial values
a1, a2, . . . , ak. A well known LRS is the sequence (Fn) ⊂ Q of Fibonacci numbers
that is given by the recurrence

Fn+2 = Fn+1 + Fn

and the initial values F1 = F2 = 1. Hence

(Fn) = (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . ) .

In 1964, J. H. E. Cohn proved in [8] that the underlined terms are the only
square Fibonacci numbers. The book [9] is a basic monograph on LRS.

We relax the requirement in Definition 1.1.
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Definition 1.2 (eventual LRS) A sequence (an) ⊂ K is an eventual LRS (in
K) if for some n0 ∈ N0 the recurrence (LRS) holds for every n > n0.

Clearly, any LRS in K is an eventual LRS in K. In Chapters 5, 6, 7 and 8 we
give four proofs for the next theorem.

Theorem 1.3 ((Cn) is not an eventual LRS) The sequence

(Cn) = (1, 1, 2, 5, 14, 42, 132, 429, . . . )

of Catalan numbers is not an eventual LRS in any field.

In these proofs we follow roughly the joint article [17].
Our Definitions 1.1 and 1.2 are somewhat ambiguous as they are relative to

the field K. This ambiguity will be removed in Theorem 4.1. For now we give
a simple non-example of an eventual LRS.

Proposition 1.4 The sequence of ones and zeros

(an) := (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, . . . ) ⊂ Q

is not an eventual LRS in any field K ⊃ Q.

Proof. Thus (an) is formed by blocks of zeros with lengths 1, 2, 3, . . . , separated
by ones. Let the recurrence (LRS) hold for (an) for every n > n0. We easily
find an m ∈ N with m > n0 such that am+i = 0 for i = 0, 1, . . . , k − 1 and
am+k = 1. But by the recurrence also am+k = 0. This is a contradiction. 2

LRS and eventual LRS are characterized by rationality of their generating
functions. For the next theorem recall that in the the ring of formal power
series K[[x]] with coefficients in K the units f(x) are exactly the power series
with nonzero constant coefficient, i.e., such that f(0K) ̸= 0K . Also recall the
notation

[xk]E, [xk1
1 . . . xkm

m ]E, . . .

for the coefficient of xk or xk1
1 . . . xkm

m or . . . in the expression E. We define the
degree of the zero polynomial as −∞.

Theorem 1.5 (characterization of eventual LRS) Let k ∈ N0, (an) ⊂ K
be a sequence in a field K and let A(x) :=

∑
n≥1 anx

n ∈ K[[x]] be its OGF. The
following three properties of (an) and A(x) are mutually equivalent.

1. The sequence (an) is an eventual LRS in K and satisfies for every n > n0

an order k recurrence (LRS).

2. There exist polynomials p, q ∈ K[x] such that q(x) ̸= 0, deg q ≤ k and in
K[[x]] the identity

q(x)A(x) = p(x)

holds.
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3. There exist polynomials p, q ∈ K[x] such that q(0K) ̸= 0K , deg q ≤ k and
in K[[x]] the identity

A(x) =
p(x)

q(x)

holds.

Proof. Implication 1 ⇒ 2. Suppose that for k ∈ N0 coefficients c0, . . . , ck−1 in

K for every n > n0 the recurrence an+k =
∑k−1

i=0 cian+i holds. Then

∀n > n0 : [xn+k] (1K − ck−1x− · · · − c0x
k)︸ ︷︷ ︸

q(x)

A(x) = 0K ,

so that q(x)A(x) = p(x) where q(x) ∈ K[x] is as stated and p(x) ∈ K[x] has
degree at most n0 + k.

Implication 2 ⇒ 3. Let q(x)A(x) = p(x) for some p, q ∈ K[x] with deg q ≤ k
and q(x) ̸= 0K . Let l ∈ N0, resp. m ∈ N0 ∪ {+∞}, be maximum such that xl,
resp. xm, divides q(x), resp. p(x). Then q(x) = xlq0(x) and p(x) = xmp0(x)
with q0(0K) ̸= 0K and p0(0K) ̸= 0K , and p(x) = 0 for m = +∞. It follows that
l ≤ m. Thus

A(x) =
xm−lp0(x)

q0(x)

in K[[x]], with q0(0K) ̸= 0K and deg q0 ≤ deg q ≤ k.
Implication 3 ⇒ 1. Let A(x) = p(x)/q(x) hold in K[[x]], with p, q ∈ K[x],

q(0K) =: a ̸= 0K and deg q ≤ k. Then

(a−1q(x))A(x) = a−1p(x) .

Since the polynomial a−1q(x) has constant term 1K and degree at most k, it is
clear that (an) satisfies for every n > deg p− k an order k recurrence (LRS). 2

For multivariate linear recurrences with constant coefficients the corresponding
OGF may be much more complicated, see [6]. Since solutions f ∈ K[[x]] of
linear algebraic equations

a(x) · f(x) + b(x) = 0

with polynomial coefficients a, b ∈ K[x], a ̸= 0, are as sequences represented by
eventual LRS and not by LRS, in this approach eventual LRS and not LRS is
the main actor on the sequences scene.
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Chapter 2

Playing with the Catalan
numbers

In the previous chapter we codefined the n-th Catalan number, besides setting
Cn := 1

n

(
2n−2
n−1

)
, as

Cn := |Dn−1|

where Dn is the set of Dyck words with size n. At the end of this chapter
we indeed show that these two definitions yield the same numbers but now
we introduce another class of combinatorial structures counted by the Catalan
numbers.

Definition 2.1 (rp trees) A rooted plane tree T , or shortly an rp tree, with
n ∈ N vertices is any set

T ⊂ [n] × [n]

such that if (i, j) ∈ T then i < j and for every vertex v ∈ [n] there is in T
a unique path from the root 1 ∈ [n] to v. The path is a unique sequence of
vertices

(v0, v1, . . . , vk) ⊂ [n], k ∈ N0 ,

such that v0 = 1, vk = v and (vi−1, vi) ∈ T , i.e., (vi−1, vi) is an edge of T , for
every i = 1, 2, . . . , k.

It follows that every rp tree T with n vertices has n− 1 edges, which form the
set T . We let Tn denote the set of rp trees with n vertices, set T :=

⋃
n≥1 Tn

and define the size |T | of T ∈ Tn to be |T | := n. For example, T1 = {∅} and

T4 = {{(1, 2), (1, 3), (1, 4)}, {(1, 2), (2, 3), (1, 4)}, {(1, 2), (1, 3), (3, 4)},
{(1, 2), (2, 3), (3, 4)} and {(1, 2), (2, 3), (2, 4)}} .

Proposition 2.2 (rp trees and Cn) For every n ∈ N,

|Tn| = |Dn−1| = Cn .

5



Proof. For n = 1 the claim holds trivially. We assume that n ≥ 2 and define
a bijection

F : Tn → Dn−1 .

Let T ∈ Tn. We define the go-around sequence of vertices

v = (v0, v1, . . . , v2n−2) ⊂ [n]

associated to T as follows. It starts with the root v0 := 1 and if vi with
i < 2n−2 is already defined, vi+1 := min j, taken over all edges (vi, j) ∈ T with
j ̸∈ {v0, . . . , vi} if one exists, and else vi+1 := j for the unique edge (j, vi) ∈ T .
So we walk (globally) clockwisely around T — we imagine T as growing up from
the root 1, with every edge (i, j) directed up and with the edge (i, j′) lying
slightly to the right of any edge (i, j) with j < j′ — with the start at the root
1, and since we go along every edge twice, once up and once down, we do
2(n− 1) = 2n− 2 steps. We define

F (T ) := (d1, . . . , d2n−2) ∈ {−1, 1}2n−2

by setting di = 1 if vi−1 ; vi is a step up, and di = −1 if it is a step down. It
is easy to see that F (T ) ∈ Dn−1. The map F is a bijection because it has the
inverse

G(d) = G(d1, . . . , d2n−2) := T

which we describe now. We get the go-around sequence v from d ∈ Dn−1 as
follows. We initialize it by setting i := 0, vi = v0 := 1, j := 0 and then for
i < 2n− 2 we do the action i := i + 1, [di = 1 ⇒ vi := 1 + max({v0, . . . , vi−1}),
j := j + 1] and [di = −1 ⇒ vi := vj−1, j := j − 1]. We define

G(d) = T := {(vi−1, vi) | i ∈ [2n− 2] ∧ di = 1} .

It is not hard to see that T ∈ Tn and that G is the inverse of F . 2

The next proposition is crucial for obtaining an equation for the OGF C(x).

Proposition 2.3 (decomposition of rp trees) There exists a bijection

F : T \ T1 → T × T

that is size-preserving, F (T ) = (U, V ) ⇒ |T | = |U | + |V |.

Proof. Let T be an rp tree with n ≥ 2 vertices. We define its subtree T2 (i.e.,
the subtree rooted in the vertex 2) as

T2 := {(i− 1, j − 1) | (i, j) ∈ T and appears in a 2-v path} .

Here a 2-v path is as before any sequence of vertices (v0, . . . , vk) ⊂ [n] such
that v0 = 2, vk = v and (vi−1, vi) ∈ T for every i = 1, 2, . . . , k (these paths are
unique too). It follows that T2 is an rp tree with less than n vertices.
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We define the deletion of T2 to be

T − T2 := {(i′, j′) | (i, j) ∈ T ∧ j > |T2| + 1}

where i′ := 1 if i = 1 and i′ := i− |T2| if i > 1. It follows that T − T2 is an rp
tree with n− |T2| vertices.

Let T and U be rp trees with m and n vertices, respectively. We define the
pairing V = T + U (of T and U) by

V = T + U := {(1, 2)} ∪ {(i + 1, j + 1) | (i, j) ∈ T} ∪ {(i′, j′) | (i, j) ∈ U} ,

where i′ := 1 if i = 1 and i′ := i + m if i > 1. It follows that V is an rp tree
with m + n vertices and that T = V2 and U = V − V2.

We set F (T ) := (T2, T − T2). It is a bijection because G(T,U) := T + U is
its inverse map. It is clear that F is size-preserving. 2

The interested reader may want to compare our approach to rp trees with those
in [1, 3, 10].

Thus for

C(x) =

∞∑
n=1

Cnx
n =

∑
T∈T

x|T |

the previous proposition gives the equations

C(x) − x = C(x) · C(x) and C(x)2 − C(x) + x = 0 .

From the former equation, or directly from the bijection F , we get the recurrence

C1 = 1 and Cn =

n−1∑
k=1

CkCn−k for n ≥ 2 ,

which we call the combinatorial recurrence (for (Cn)).
By solving the latter quadratic equation in C[[x]] we obtain explicit formulas

for C(x) and Cn:

C(x) =
1 −

√
1 − 4x

2
=

1

2
− 1

2

∞∑
n=0

(
1/2

n

)
(−4x)n

and so, for n ∈ N,

Cn =
1

2
· 4n(−1)n+1

(
1/2

n

)
(1st binomial formula)

and

Cn = 4n−1 · (1 − 1/2)(2 − 1/2) . . . (n− 1 − 1/2)

n!

= 2n−1 · 1 · 3 · . . . · (2n− 3)

n!

=
1 · 3 · . . . · (2n− 3) · 2 · 4 · . . . · (2n− 2)

n!(n− 1)!

=
1

n
· (2n− 2)!

(n− 1)!(n− 1)!
,
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hence the classical formula

Cn =
1

n

(
2n− 2

n− 1

)
. (2nd binomial formula)

The ratio of two consecutive Catalan numbers therefore equals

Cn

Cn−1
=

n− 1

n
· (2n− 2)(2n− 3)

(n− 1)2
=

4n− 6

n

and we get the recurrence

C1 = 1 and Cn =
4n− 6

n
· Cn−1 for n ≥ 2 .

We call it the P-recurrence (for (Cn)). So (Cn) is a P-recurrent sequence by
Definition 11.1.

We show how to deduce the P-recurrence for Cn from the quadratic equation
for C(x), so that one does not need the explicit formula for Cn. We differentiate
the equation and get

2C(x)C(x)′ − C(x)′ + 1 = 0, or C(x)′ =
1

1 − 2C(x)
.

We expand the fraction by −C(x)/2 + 1/4 and get that

C(x)′ =
−C(x)/2 + 1/4

1/4 − x
,

which is equivalent with

(1 − 4x)C(x)′ + 2C(x) − 1 = 0 .

Thus
(1 − 4x)

∑
n≥0

(n + 1)Cn+1x
n + 2

∑
n≥1

Cnx
n − 1 = 0 .

Equating for n > 1 the coefficient of xn−1 on the left-hand side to zero we get
that

nCn − 4(n− 1)Cn−1 + 2Cn−1 = 0 ,

which is a rearrangement of the P-recurrence. Thus we have deduced the P-
recurrence for (Cn) only from the fact that C(x) satisfies a quadratic equation.
This is generalized in Proposition 11.3.

We return to the combinatorial recurrence for (Cn) and deduce by means of
it two properties of the Catalan numbers.

Proposition 2.4 (parity of Cn) The n-th Catalan number Cn is odd if and
only if n = 2m for some m ∈ N0.
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Proof. It clearly holds for n = 1. For n > 1 the combinatorial recurrence

Cn =

n−1∑
k=1

CkCn−k = C1Cn−1 + · · · + Cn−1C1

shows that for odd n the number Cn is even, because each summand in the sum
appears twice, and that for even n one has modulo 2 that Cn ≡ C2

n/2 ≡ Cn/2.

The claim follows by expressing n as n = 2kl for k ∈ N0 and odd l ∈ N. 2

The second property of the Catalan numbers we obtain from the combina-
torial recurrence is an exponential upper bound on Cn. An exponential lower
bound is obvious: for n ≥ 3,

Cn ≥ C1Cn−1 + Cn−1C1 ≥ 2Cn−1

and, by induction, Cn ≥ 2n−2 for every n ≥ 3. To obtain inductively an
exponential upper bound is more tricky and we need the next lemma for it.

Lemma 2.5 For every n ≥ 2,

n−1∑
k=1

1

k2(n− k)2
<

8

n2
.

Proof. For k, n ∈ N and k < n we have that

1

k(n− k)
=

1

n

(
1

k
+

1

n− k

)
.

Thus the stated sum equals

2

n2

n−1∑
k=1

1

k2
+

2

n2

n−1∑
k=1

1

k(n− k)
=

2

n2

n−1∑
k=1

1

k2
+

4

n3

n−1∑
k=1

1

k
.

For k ≥ 2 we get from 1/k2 < 1/k(k−1) = 1/(k−1)−1/k that the last but one
sum is less than 2. The last sum is trivially less than n. This gives the stated
bound. 2

Proposition 2.6 (an exponential upper bound on Cn) For every n ∈ N,

Cn ≤ 8n−1

n2
.

Proof. By induction on n. For n = 1, C1 = 1 ≤ 80/12 = 1. For n ≥ 2 we get by
the combinatorial recurrence, induction and the previous lemma that

Cn =

n−1∑
k=1

CkCn−k ≤
n−1∑
k=1

8k−1

k2
· 8n−k−1

(n− k)2
<

8n−2 · 8

n2
=

8n−1

n2
,
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so that the bound holds again. 2

Thus we have proved for the OGF C(x) =
∑∞

n=1 Cnx
n that

C(x)2 − C(x) + x = 0 ; C1 = 1 ∧ Cn =

n−1∑
k=1

CkCn−k ; Cn ≤ 8n−1/n2 .

Chapter 10 deals with a far reaching generalization of this result.
Precise asymptotics for n → ∞ of the Catalan numbers is easily obtained

from the formula Cn = 1
n

(
2n−2
n−1

)
and the Stirling formula n! = (1+o(1)) ·

√
2πn ·

(n/e)n: for some constant c > 0,

Cn = (c + o(1)) · n−3/2 · 4n

We obtain in a self-contained manner from the two above binomial formulas
an estimate that is almost as good. In fact, it is in a way better because it is
completely explicit and has no undetermined constants and thresholds (which
are implied by the o(1) term of the precise asymptotics). We use this estimate
in the first proof of Theorem 1.3 in Chapter 5.

Proposition 2.7 (elementary asymptotics for Cn)

∀n ∈ N :
4n

8n2
< Cn ≤ 4n

4n
.

Proof. 1st proof. For every n ∈ N,

1

4n2
<

∣∣∣∣(1/2

n

)∣∣∣∣ =
1
2

∏n−1
i=1 (i− 1/2)

n!
≤ 1

2n
,

with the empty product defined as 1, and from the 1st binomial formula above
we get the estimate.

2nd proof. For every n ∈ N,(
2n− 2

n− 1

)
≤ 4n−1 = (1 + 1)2n−2 =

2n−2∑
i=0

(
2n− 2

i

)
< 2n

(
2n− 2

n− 1

)

because
(
2n−2
n−1

)
is the largest of the 2n − 1 binomial coefficients in the sum.

Hence from the 2nd binomial formula above we get the same estimate that for
every n ∈ N,

4n

8n2
< Cn =

1

n

(
2n− 2

n− 1

)
≤ 4n

4n
.

2

It is remarkable that two rather different arguments produce identical estimates.
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Last topic in this chapter is a combinatorial derivation of the formula Cn =
1
n

(
2n−2
n−1

)
. Recall that Dn is the set of 2n-tuples of n ones and n minus ones with

nonnegative initial sums and that

Cn := |Dn−1| .

We define En and Fn to be, respectively, the set of
(
2n
n

)
2n-tuples of of n ones

and n minus ones and the set of
(

2n
n+1

)
=

(
2n
n−1

)
2n-tuples of of n + 1 ones and

n− 1 minus ones. We show that there exists a bijection

F : En \ Dn → Fn .

Then, since Dn ⊂ En and |Fn−1| = |En−1| − |Dn−1|,

Cn = |Dn−1| = |En−1| − |Fn−1| =

(
2n− 2

n− 1

)
−

(
2n− 2

n− 2

)
=

1

n

(
2n− 2

n− 1

)
.

If u = (u1, . . . , u2n) ∈ En \Dn and m ∈ [2n] is minimum such that u1 + · · ·+
um = −1, we define

F (u) := (u′
1, . . . , u

′
m, um+1, . . . , u2n)

where u′
i := −ui. It is easy to see that F (u) ∈ Fn and thus F : En \ Dn → Fn.

We define similarly the map

G : Fn → En \ Dn

by exchanging ones and minus ones in the shortest initial segment with sum +1.
It is easy to check that

F (G) = idFn
and G(F ) = idEn\Dn

,

so that F and G are bijections.
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Chapter 3

∗Three results on power
sums

For the first proof of Theorem 1.3 in Chapter 5 we need to establish an explicit
formula for an eventual LRS and, in order to contradict the growth of (Cn),
to show that the leading term of this formula does not asymptotically vanish.
These two results are obtained in the present chapter. The explicit formula
for any eventual LRS generalizes well known Binet’s formula for the Fibonacci
numbers, named after J. P. M. Binet (1786–1856):

∀n ∈ N : Fn =
1√
5

((
1 +

√
5

2

)n

−
(

1 −
√

5

2

)n)
.

Theorem 3.1 (generalized Binet’s formula) If (an) ⊂ C is an eventual
LRS in C then

∀n > n0 : an =

l∑
j=1

pj(n)αn
j ,

where l ∈ N0, for l = 0 the sum is defined as 0, pj ∈ C[x] are nonzero polyno-
mials and the numbers αj ∈ C are nonzero and mutually distinct.

More generally, for any field K we call the formal expression

s(x) :=

l∑
j=1

pj(x)αx
j ,

where l ∈ N0, pj ∈ K[x] are nonzero polynomials and αj ∈ K \{0K} are distinct
roots, a power sum (over K). For l = 0 we get the empty power sum. Every
power sum defines in a natural way a function s : N → K, even s : Z → K. For
the empty power sum it is the zero sequence.

To obtain Theorem 3.1 we prove by generating functions a more precise
result. In order that we can work in K[[x]] easily, we switch for this result to

12



sequences (an)n≥0 ⊂ K indexed by N0. Let k ∈ N0 and c0, . . . , ck−1 be in a field
K. We define the set of such sequences

U(c0, . . . , ck−1) := {(an)n≥0 ⊂ K | ∀n ∈ N0 : an+k =
∑k−1

i=0 cian+i} ,

where for k = 0 we define this set as {(0K , 0K , . . . )n≥0}, i.e., as consisting only
of the zero sequence. Thus U(c0, . . . , ck−1) are just the LRS (an) satisfying the
recurrence (LRS) and extended by the term a0. Let

q(x) = qc0,...,ck−1
(x) := 1K − ck−1x− · · · − c0x

k ∈ K[x] ,

where for k = 0 we set q(x) := 1K . We call this polynomial the characteristic
polynomial (of the recurrence). If K is algebraically closed and c0 ̸= 0K , then
deg q = k and we have the factorization

q(x) =

l∏
i=1

(1K − αix)mi ,

where l ∈ N0, αi ∈ K are nonzero and distinct and mi ∈ N sum up to k. For
k = 0 we set l := 0 and define the factorization as q(x) = 1K . We consider the
second set of sequences

V (c0, . . . , ck−1) := {(an)n≥0 ⊂ K | ∀n ∈ N0 : an =
∑l

i=1 pi(n)αn
i ,

for some pi ∈ K[x] with degrees deg pi < mi} ,

where for k = 0 we again define this set as {(0K , 0K , . . . )n≥0}. We show that
these two sets of sequences in fact coincide. The elegant proof method using
vector spaces is due to [21, Theorem?].

Theorem 3.2 (concrete power sums) Let K be an algebraically closed field
with characteristic 0, k ∈ N0, c0, . . . , ck−1 be in K but with c0 ̸= 0K and let the
characteristic polynomial q(x) ∈ K[x] be factorized as above. Then

U(c0, . . . , ck−1) = V (c0, . . . , ck−1) .

Proof. It is clear that both U = U(c0, . . . , ck−1) and V = V (c0, . . . , ck−1) are
subspaces of the K-vector space of sequences (an)n≥0 ⊂ K and that they have
the same dimension k. We will be done if we show that V ⊂ U (then also
U ⊂ V , which is the inclusion we interested in). We accomplish it by means of
generating functions.

For m ∈ N and α ∈ K we have the expansion

(1K − αx)−m =

∞∑
n=0

(
n + m− 1

m− 1

)
K

xn .

For n ∈ N0 the polynomial

pn(x) :=

(
x + n

n

)
K

=
(x + nK)(x + nK − 1K) . . . (x + 1K)

n!K
∈ K[x]

13



has degree n and thus {pn(x) | n = 0, 1, . . . ,m − 1} is a basis of the K-vector
space of polynomials in K[x] with degrees less than m. Here one runs in dif-
ficulties for K with characteristic p because then n!K = 0K for every n > n0.
Thus

B := {(1K − αix)−ni | i = 1, 2, . . . , l and ni = 1, 2, . . . , mi}

is a basis of the vector subspace VOGF ⊂ K[[x]] where we represent the sequences
in V by their OGF. By bringing the rational functions in B on the common
denominator q(x), we see that every

∑
n≥0 anx

n ∈ VOGF has the expression

∑
n≥0

anx
n =

p(x)

q(x)

for some polynomial p(x) ∈ K[x] with degree deg p < deg q = k. Hence

[xn+k] q(x)
∑
n≥0

anx
n = [xn+k] p(x) = 0K

for every n ∈ N0, which means that an+k =
∑k−1

i=0 cian+i for every n ∈ N0.
Thus

∑
n≥0 anx

n ∈ UOGF and indeed VOGF ⊂ UOGF. 2

Proof of Theorem 3.1. We assume that (an) ⊂ C is a sequence that satisfies
for some coefficients c0, . . . , ck−1 ∈ C, k ∈ N0, for every n > n0 the recurrence

an+k =
∑k−1

i=0 cian+i. If k = 0 or if all ci = 0 then (an) is expressed for n > n0

by the empty power sum. So we assume that k ≥ 1 and take the minimum
l ∈ {0, 1, . . . , k − 1} with cl ̸= 0. We define the sequence (bn)n≥0 ⊂ C as
bn := an for n > n0, and for n = n0, n0−1, . . . , 1, 0 by the backward recurrence,
i.e., by

bn = c−1
l bn+k−l +

k−1∑
i=l+1

(−ci/cl)bn+i−l .

If we denote d0 := cl ̸= 0, d1 := cl+1, . . . , dk−l−1 := ck−1, then the definition of
(bn)n≥0 implies that

(bn)n≥0 ∈ U(d0, . . . , dk−l−1) .

Therefore by Theorem 3.2 also

(bn)n≥0 ∈ V (d0, . . . , dk−l−1) .

Thus bn is expressed by a power sum for every n ∈ N0, and an is expressed by
the same power sum for every n > n0. 2

The previous theorem is a staple in the theory of LRS but the next one is
much less known, even though it is clearly basic in the theory of power sums.
We could not find it clearly stated and proven anywhere and so we stated and
proved it in [17].

14



Theorem 3.3 (the leading term ̸→ 0) Consider any power sum over C

s(n) :=

l∑
j=1

βjα
n
j

with l ∈ N, αj , βj ∈ C \ {0}, |αj | = 1 for every j = 1, 2, . . . , l and with the
numbers αj all distinct. Then

lim sup
n→∞

|s(n)| > 0 .

In other words, there is a real constant d > 0 such that

|s(n)| > d

holds for infinitely many n ∈ N.

Proof. We suppose for the contrary that limn→∞ s(n) = 0 and deduce the
contradiction that β1 = · · · = βl = 0. Let an ε > 0 be given. We fix an n ∈ N
such that

|s(n + i)| < ε, i = 1, 2, . . . , l ,

and consider the linear system

l∑
j=1

βjα
n+i
j = s(n + i), i = 1, 2, . . . , l ,

in the “unknowns” βj . We solve it by means of Cramer’s formula:

βj =
detA(j, n)

det
(
αn+i
j

)
1≤i,j≤l

,

where the matrix A(j, n) in the numerator arises from that in the denominator
by replacing the j-th column by the column (s(n + 1), . . . , s(n + l))T . After
recalling the definition of determinant and the formula for Vandermonde deter-
minants we see that

|detA(j, n)| < l! · ε and
∣∣ det

(
αn+i
j

)
1≤i,j≤l

∣∣ =
∏

1≤i<j≤l

|αi − αj | =: c > 0 .

Thus |βj | < l! · ε/c for every j = 1, 2, . . . , l. Since ε may be arbitrarily small, all
βj = 0 but this is a contradiction. 2

In the heading of the theorem we should speak more precisely of the “oscillating
factor in the leading term” because every nonempty power sum over C can be
written as a sum of its leading term and its error term as

l∑
j=1

pj(n)αn
j = nkcn

m∑
j=1

βjγ
n
j︸ ︷︷ ︸

s(n)

+O(nk−1cn) (L+E)

15



where l,m ∈ N, k ∈ N0, αj ∈ C are nonzero and distinct roots of the power
sum, c := maxj |αj | > 0, pj ∈ C[x] are nonzero polynomials, βj ∈ C are nonzero
numbers and γj ∈ C are distinct numbers that all lie on the complex unit circle.
From Theorems 3.1 and 3.3 we get at once the next fundamental estimate for
every eventual LRS which we state here as a mere corollary.

Corollary 3.4 (bounding any eventual LRS) Suppose that

(an) ⊂ C

is an eventual LRS in C. Then either an = 0 for every n > n0 or there exist
real constants c1 > 0, c2 > c3 > 0 and a number k ∈ N0 such that

c3n
kcn1 < |an| < c2n

kcn1

holds for infinitely many n ∈ N.

Proof. If an = 0 for n > n0 then the claim holds trivially. Else we express an
by means of Theorem 3.1 for n > n0 as values of a nonempty power sum. In its
decomposition (L+E) we have by Theorem 3.3 that |s(n)| > d > 0 for infinitely
many n ∈ N and a constant d. Trivially,

|s(n)| ≤ |β1| + · · · + |βm|

for every n ∈ N. The stated estimate follows. 2

Problem 3.5 (T. Skolem, 1930s) Is there an algorithm

A :

∞⋃
k=0

Z2k → {yes, no}

that decides vanishing of integral LRS? In more words, for every 2k-tuple

a1, . . . , ak, c0, . . . , ck−1

of integers,
A(a1, . . . , ak, c0, . . . , ck−1) = yes

if and only if the sequence (an) ⊂ Z, given by the initial values a1, . . . , ak and

for n ∈ N by the recurrence an+k =
∑k−1

i=0 cian+i, is ever zero, i.e., an = 0 for
some n ∈ N.
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Chapter 4

∗Two results on LRS

Theorem 4.1 (defining eventual LRS) Suppose that K ⊂ L is an extension
of fields and that

(an) ⊂ K is an eventual LRS in L. Then (an) is an eventual LRS in K.

In more words, if (an) ⊂ K and satisfies for every n > n0 an order k recurrence
(LRS) with coefficients in L, then it satisfies for every n > n0 an an order k
recurrence (LRS) with coefficients in K and order at most k.

Proof.
2

Theorem 4.2 (the Fatou lemma)

Proof.
2
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Chapter 5

Proof 1 that Catalan
numbers are not an
eventual LRS

We give our first and asymptotic proof of Theorem 1.3 that the sequence (Cn)
of Catalan numbers is not an eventual linear recurrence sequence. The proof
follows immediately from Proposition 2.7 and Corollary 3.4 (and Theorem 4.1,
to be precise). It is clear that the former elementary asymptotics of Cn is
incompatible with any of the three cases 0 < c < 4, c = 4 and c > 4 of the
latter estimate. The crucial point is that the exponent k in the factor nk in
Corollary 3.4 is a nonnegative integer, whereas the precise asymptotics of Cn

involves the power n−3/2. 2
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Chapter 6

Proof 2 that Catalan
numbers are not an
eventual LRS

Here is our second proof, by means of generating functions, of Theorem 1.3
that the sequence (Cn) of Catalan numbers is not an eventual linear recurrence
sequence. In Chapter 2 we derived a formula for the OGF C(x) of Catalan
numbers,

C(x) =
∑
n≥1

Cnx
n =

1 −
√

1 − 4x

2
.

Suppose for the contrary that (Cn) is an eventual LRS in K ⊃ Q. By The-
orem 1.5, q(x)C(x) = p(x) for some polynomials p, q ∈ K[x] with q ̸= 0K .
Thus

q(x)(1 −
√

1 − 4x)/2 = p(x) and (1 − 4x)q(x)2 = (1 − 2p(x))2 .

This is a contradiction: the left-hand side is a nonzero polynomial with an odd
degree, but the right-hand side has even degree. 2

19



Chapter 7

Proof 3 that Catalan
numbers are not an
eventual LRS

This is our third and number-theoretic proof of Theorem 1.3 that the se-
quence (Cn) of Catalan numbers is not an eventual linear recurrence sequence.
This proof uses the fact that odd values of Cn are increasingly isolated, see
Proposition 2.4, and its idea is the same as in Proposition 1.4. Using Theo-
rem 4.1 we suppose for contradiction that (Cn) is an eventual LRS in Q. So
there exist fractions c0, . . . , ck = 1, k ∈ N0, such that for every n > n0,

ckCn+k + · · · + c1Cn+1 + c0Cn = 0 .

Multiplying by a natural number we achieve that the ci are altogether coprime
integers. In particular, they are not all zero and some cj for j ∈ {0, 1, . . . , k}
is odd. Using Proposition 2.4 we easily take an n > n0 such that Cn+j is odd
but all other Cn+i for i ∈ {0, 1, . . . , k} \ {j} are even. But for this n the above
displayed equality is impossible by parity: it has odd left-hand side but even
right-hand side. 2
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Chapter 8

Proof 4 that Catalan
numbers are not an
eventual LRS

Our fourth, last and polynomial proof of Theorem 1.3 that the sequence (Cn)
of Catalan numbers is not an eventual linear recurrence sequence in K ⊃ Q
implements the idea that by substituting the explicit formula Cn = 1

n

(
2n−2
n−1

)
in

the recurrence one gets a nonzero polynomial with infinitely many roots, which
is impossible. Suppose that

∀n > n0 :

k∑
i=0

diCn+i = 0

for some k ∈ N0 coefficients di ∈ K with dk = 1. For l ∈ N0 we define

(x)l := x(x + 1) . . . (x + l − 1) ∈ Z[x], (x)0 := 1 .

Since

Cn =
1

n
· (2n− 2)!

(n− 1)!2
,

by multiplying the above displayed recurrence by

(n)k+1 · (n + k − 1)!2

(2n− 2)!

we get that indeed

∀n > n0 : p(n) :=

k∑
i=0

di ·
(n)k+1

n + i
· (n + k − 1)2k−i · (2n− 2)2i = 0 .
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These are values of a polynomial p(x) ∈ K[x] with degree at most 3k. It is not
the zero polynomial because

p(−k) = dk︸︷︷︸
=1

(−k)k · 12 · (−2k − 2)2k ̸= 0 .

At the same time p(x) has infinitely many zeros n0 + 1, n0 + 2, . . . , which is
a contradiction. 2
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Chapter 9

∗Remarks on effectiveness
and efficiency of these
proofs

I am a mathematician (like the author of [24] was) but I also work in the Com-
puter Science Section of . . . and so I should not be content with just proving that
the sequence (Cn) of Catalan numbers violates any rational recurrence (LRS)
infinitely often. I should seek an (efficient) algorithm that actually produces
these violations. Thus we consider an effective version of Theorem 1.3.

Theorem 9.1 (effective Theorem 1.3) There exists an algorithm

A :

∞⋃
k=0

Qk × N → N

such that if n := A(c0, . . . , ck−1, n0) then

n > n0 ∧ Cn+k ̸=
k−1∑
i=0

ciCn+i .

In this chapter we show that each of the four proofs in the four preceding
chapters can be made effective so that it yields an algorithm as required in the
theorem.

We begin with the simple effective solution provided by our proof no. 3
from number theory. Now for the input c0, . . . , ck−1 ∈ Q and n0 ∈ N the
algorithm A easily finds an m ∈ N and a j ∈ {0, 1, . . . , k} such that for i =
0, 1, . . . , k every mci ∈ Z (where ck := 1) and that mcj is odd. Then A easily
computes the minimum l ∈ N such that 2l − k > n0. Finally, A outputs
n := 2l − j. By our proof no. 3, the output n has the stated properties. A can
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clearly compute efficiently, in time (i.e., number of steps) polynomial in the size
of the input, which is

∥n0∥ +

k−1∑
i=0

∥ci∥ ,

where ∥n∥ := log(3 + |n|) for numbers n ∈ Z and ∥a/b∥ := max(∥a∥, ∥b∥) for
fractions a/b ∈ Q in lowest terms. However, note that in order to compute
efficiently, A cannot find the common denominator m of the fractions ci naively
by factorizing their denominators in primes; at present nobody knows how to
do it efficiently (and deterministicly), see for example the interesting text [15]
by M. Hittmeir. In fact, a simpler and more natural procedure is to compute
for i = 0, 1, . . . , k the 2-adic orders ri := ord2(ci) ∈ Z ∪ {+∞}, by dividing
numerators and denominators of the fractions ci repeatedly by 2, and then to
take any j with the minimum value of rj .

We turn to our proof no. 2 which uses generating functions. In order to
make it effective we have to resolve the following problem. Let a1, . . . , a2k−1,
k ∈ N and a2k−1 ̸= 0, be some fractions. Then we have in Q[[x]] the equality

√
1 + a1x + · · · + a2k−1x2k−1 =

∞∑
n=0

bnx
n ,

in which the right-hand side is not a polynomial, i.e., bn ̸= 0 for infinitely many
n ∈ N. This is exactly what comparison of degrees on both sides after squaring
gives. But now, given effectively the coefficients ai, we need an effective (i.e.,
explicit) upper bound on the growth of nonzero coefficients bn. Fortunately, we
already know the method to get it — we applied it to derive the P-recurrence
for Cn from the quadratic equation for C(x) in Chapter 2.

Proposition 9.2 (on zero coefficients) Suppose that K is a field with char-
acteristic 0, k ∈ N, a1, . . . , a2k−1 ∈ K with a2k−1 ̸= 0 and

A(x) :=
√

1 + a1x + · · · + a2k−1x2k−1 =:

∞∑
n=0

bnx
n ∈ K[[x]] .

Then for every n ∈ N0 there is an i ∈ {0, 1, . . . , 2k − 2} such that bn+i ̸= 0.

Proof. Setting a0 = 1 and equating for n ≥ 2k − 2 the coefficient of xn on the
left-hand side in

2
∑2k−1

i=0 aix
i ·A′(x) −

∑2k−1
i=1 iaix

i−1 ·A(x) = 0

to zero we get the relation

(2n + 2)bn+1 +
∑2k−1

i=1 ai(2n + 2 − 3i)bn+1−i = 0 .

It shows that if 2k − 1 consecutive coefficients bm, bm+1, . . . , bm+2k−2 vanish,
then bn = 0 for every n ≥ m. But as we noted above, this is impossible 2
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Thus if q ∈ Q[x] is any polynomial with constant term 1 and degree at most
k ∈ N0 then in the formal power series

q(x)
√

1 − 4x =
√

(1 − 4x)q(x)2

among every 2k+1 consecutive coefficients there is a nonzero one. Hence in the
formal power series

q(x)C(x) = q(x)/2 − q(x)
√

1 − 4x/2

among every 2k + 1 consecutive coefficients of xn, starting from xk+1, there is
a nonzero one. Thus we have the next strengthening of Theorem 1.3.

Corollary 9.3 ((Cn) is often not an eventual LRS) Let k ∈ N0 and let c0,
. . . , ck−1 be in Q. Then for every n ≥ k + 1 there is a j ∈ {0, 1, . . . , 2k} such
that

Cn+k+j ̸=
k−1∑
i=0

ciCn+i+j ,

where (Cn) is the sequence of Catalan numbers.

The working of the algorithm A is trivial. For the input c0, . . . , ck−1 ∈ Q and
n0 ∈ N it just checks validity of the recurrence for 2k + 1 consecutive n starting
from max(k + 1, n0 + 1) and selects one for which the recurrence is violated.

To make effective our polynomial proof no. 4 is easy. One only needs to
exhibit some effective bound on sizes of zeros of any nonzero polynomial p(x)
in terms of its degree and sizes of its coefficients. So let

p(x) :=

n∑
i=0

aix
i

where n ∈ N, ai ∈ C and an ̸= 0. For z ∈ C with |z| ≥ 2n
|an| max0≤i≤n |ai| ≥ 2

we have that

|p(z)| ≥ |z|n
(
|an| −

n−1∑
i=0

|ai|
|z|n−i

)
≥ |z|n

(
|an| −

n−1∑
i=0

|an|
2n

)
=

|z|n · |an|
2

> 0 .

Thus we have the next bound.

Proposition 9.4 (a bound on zeros) If p(x) =
∑n

i=0 aix
i ∈ C[x] has degree

deg p = n ∈ N then its every complex zero has modulus less than

2n · max0≤i≤n |ai|
|an|

.

The polynomial in proof no. 4 is

p(x) =

n∑
i=0

aix
i :=

k∑
i=0

di ·
(x)k+1

x + i
· (x + k − 1)2k−i · (2x− 2)2i ,
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where d0, . . . , dk−1 ∈ Q are minus recurrence coefficients and dk = 1, and has
degree at most 3k and is nonzero. Let d := max0≤i≤k |di| and let m ∈ N be
a common denominator of d0, . . . , dk. Then it is not hard to see that

max
0≤i≤n

|ai| ≤ (k + 1)d · (k + 1)! · (2k)!2 · (2k + 3)! =: D and |an| ≥
1

m
.

In view of Proposition 9.4 and these bounds, the algorithm A only needs to
output the value

n := max(6k⌈D⌉m, n0 + 1) .

It clearly has the stated property.
We conclude this chapter with effectivisation of our asymptotic proof

no. 1.
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Chapter 10

∗A result on convergence of
formal power series

Theorem 10.1 Let P = P (X, y) be a nonzero polynomial in K{X}[y] where
X = x1, . . . , xm denotes a tuple of variables xi and let f = f(X) be a formal
power series in K[[X]] such that

P (X, f) = P (X, f(X)) = 0

holds as an identity in K[[X]]. Then f ∈ K{X}, which is to say that there exist
real constants c, d > 1 such that for every (n1, . . . , nm) ∈ Nm

0 ,

| [xn1
1 . . . xnm

m ] f(X) | < dcn1+···+nm .
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Chapter 11

∗D-finiteness and
P-recursiveness

Definition 11.1 (P-recurrent sequences) We say that a sequence (an) ⊂
K, where K is a field, is P-recurrent if there exist k ∈ N0 rational functions
c0(x), . . . , ck−1(x) in K(x) such that

an+k =

k−1∑
i=0

ci(n)an+i (P-rec)

holds for every n > n0 .

So, for example, (Cn) is a P-recurrent sequence. We cannot take n ∈ N as for
LRS because of the possible zeros of the denominators in the coefficients ci(x).
Or maybe we can because an equivalent definition of P-recurrence is that

bk(n)an+k =

k−1∑
i=0

bi(n)an+i

for every n ∈ N and some polynomials bi(x) ∈ K[x], not all of them zero.

Proposition 11.2 (D-finiteness) A sequence (an) ⊂ K, where the field K
has characteristic 0, is P-recurrent if and only if its OGF A(x) :=

∑
n≥1 anx

n is
D-finite, which means that for some k+1, k ∈ N0, polynomials p0, . . . , pk ∈ K[x]
the formal differential equation

k∑
i=0

pi(x)A(i)(x) = 0

holds.

If K has characteristic p > 0, one has that A′(x) = 0 whenever A ∈ K[[xp]].

28



Proposition 11.3 (algebr. ⇒ D-fin.) Let the field K have characteristic 0.
Every algebraic formal power series A in K[[x]] is D-finite.

That A is algebraic means that P (x,A(x)) = 0 for some nonzero polynomial
P ∈ K[x, y]. So the method that we demonstrated above on C(x) works in
general.
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Chapter 12

∗A definition of explicit
(closed) enumerative
formulae
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Chapter 13

∗Counting pattern-free
permutations

Important combinatorial structures counted by Cn are permutations π ∈ Sn−1

(i.e., with length n− 1) avoiding any fixed permutation ρ with length 3. Since
|S3| = 6, for n = 4 we indeed have for any ρ exactly 5 = C4 such permutations
π because only one of the permutations in S3, namely ρ itself, contains ρ. But
let us define precisely all these notions.
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Chapter 14

∗Counting (1, 3, 2)-free
permutations

We consider the set S132 of 132-free permutations. We show that there is a size
preserving bijection

F : S132 \ {∅} → S132 × S(1) × S132 .

Then we get for the OGF

A(x) :=
∑

π∈S132

x|π| =

∞∑
n=0

|S132(n)|xn

the quadratic equation

A(x) − 1 = A(x) · x ·A(x), that is, xA(x)2 −A(x) + 1 = 0 .

It is better to write it, after multiplying by x, as

(xA(x))2 − (xA(x)) + x = 0 .

Then clearly xA(x) = C(x) and

A(x) = x−1C(c) =

∞∑
n=0

Cn+1x
n .

Thus

|S132(n)| = Cn+1 =
1

n + 1

(
2n

n

)
.

We still have to describe the bijection F but this is not very hard. If π =
(a1, . . . , an) with n ∈ N is a non-empty 132-free permutation, we take the unique
m ∈ [n] with am = n and define

F (π) = (π1, (1), π2) :=
(
ν(a1, . . . , am−1), (1), ν(am+1, . . . , an)

)
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(ν is the normalization operator of the previous chapter). It is clear that both
π1 and π2 are 132-free and that |π| = |π1|+ |(1)|+ |π2|. So F is a size preserving
map from S132 to S132×S(1)×S132. Crucial is the existence of the reverse map
G which we define for π1 = (a1, . . . , ak) and π2 = (b1, . . . , bl) in S132 by

G(π1, (1), π2) := π1 ⊖ (1) ⊖ π2
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Chapter 15

∗Counting (1, 2, 3)-free
permutations

For m,n ∈ N let

an = |Mn| := |{π ∈ Sn | π ̸⊃ (1, 2, 3)}|

be the number of (1, 2, 3)-free n-permutations, i.e., the number of the permu-
tations of 1, 2, . . . , n containing no increasing subsequence with length 3, and
let

an,m = |Mn,m| := |{π ∈ Mn | m(π) = m}| .

For any π ∈ Sn differing from (n, n− 1, . . . , 1) we define the parameter m(π) by

m(π) := min({j ∈ [n] | ∃ i ∈ [j − 1] : π(i) < π(j)}) ,

and by m((n, n− 1, . . . , 1)) := n + 1 in the remaining case. Thus m(π) records

the end of the earliest (1, 2)-copy in π, an =
∑n+1

m=1 an,m and

Mn =

n+1⋃
m=1

Mn,m .

For any n ∈ N we consider the bijection

F = Fn : Xn → Mn+1, Xn ⊂ Mn × [n + 1] ,

that describes all insertions of the term n+ 1 in a π ∈ Mn on a place j ∈ [n+ 1]
that produce a π′ ∈ Mn+1. In more details, for any π ∈ Mn, π = (a1, . . . , an),
and any j ∈ [n + 1] we put

(π, j) in Xn ⇐⇒ (a1, . . . , aj−1, n + 1, aj , . . . , an) =: π′ = F (π, j) ∈ Mn+1 .

Here F (π, n+1) = (a1, . . . , an, n+1) and F (π, 1) = (n+1, a1, . . . , an). It is easy
to see that F is a bijection: the pair π, j is uniquely recovered from π′, hence
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injectivity, and for every π′ ∈ Mn+1 there is a π ∈ Mn and a j ∈ [n + 1] such
that F (π, j) = π′, simply delete n + 1 from π′ (which, crucially, never creates
a copy of (1, 2, 3)), hence surjectivity.

The parameter m(π) has two important properties: (i) it enables us to de-
termine explicitly the sets Xn and (ii) m(π′) = m(F (π, j)) can be explicitly
computed from m(π) and j; without property (ii), only with (i), the parameter
m(π) would not be really useful since then we could not capture explicitly by
induction the working of F = Fn for n running in N. As for (i), it is easy to see
that if π ∈ Mn and j ∈ [n + 1] then

(π, j) ∈ Xn ⇐⇒ j ≤ m(π) .

This justifies the definition that m((n, n− 1, . . . , 1)) := n+ 1 because n+ 1 can
be inserted on any place in (n, n− 1, . . . , 1) without creating a copy of (1, 2, 3).
As for (ii), it is easy to see that if π ∈ Mn and j ∈ [n + 1] with j ≤ m(π) then

m(π′) = m(F (π, j)) =

{
j . . . j ≥ 2 and
m(π) + 1 . . . j = 1 .

It is not hard to express (i) and (ii) in the language of generating functions
recording the numbers an and an,m. Let

A(x) :=

∞∑
n=1

anx
n and A(x, y) :=

∞∑
n,m=1

anx
nym ,

so that A(x) = A(x, 1). Any permutation π ∈ Mn with m(π) = m ∈ [n + 1],
recorded by the monomial xnym, produces by (i) and (ii) under the application
of Fn exactly m permutations π′ ∈ Mn+1, recorded by the monomials

xn+1y2 + xn+1y3 + · · · + xn+1ym + xn+1ym+1 =
xy2

y − 1
(xnym − xn · 1) .

The permutations π′ thus obtained, for π running in Mn and n running in N,
form the set ⋃

n≥2

Mn =
⋃
n≥1

Mn \ {(1)}

and the permutation (1) is recorded by the monomial xy2. Hence we obtain the
identity

A(x, y) − xy2 =
xy2

y − 1
(A(x, y) −A(x, 1)) .

But how to solve this? We have only one equation for two unknown quan-
tities A(x, y) and A(x, 1). It seems we got stuck in a dead end. But there is
a way out: we rewrite the equation to isolate A(x, y) on one side as

A(x, y)

(
1 − xy2

y − 1

)
= xy2 −A(x, 1)

xy2

y − 1
.
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Or, better, as

A(x, y) · (xy2 − y + 1) = xy2A(x, 1) − xy2(y − 1) . (15.1)

If we can substitute for y a power series y = y(x) ∈ C[[x]] such that xy2−y+1 =
0, the left-hand side vanishes and we get one equation for one unknown quantity
A(x, 1) which we then can solve for A(x, 1) (provided that xy2 does not vanish).
And A(x, 1) = A(x) is what we are interested in most. After finding A(x, 1) we
can compute A(x, y), but we are not so interested in this quantity.

We solve
xy2 − y + 1 = 0

for y,
y = y(x) = (1/2x)

(
1 ±

√
1 − 4x

)
,

and substitute y = y(x) = (1−
√

1 − 4x)/2x = −
∑

n≥0
1
2

(
1/2
n+1

)
(−4)n+1xn for y

in Equation (15.1). We get that

0 = xy2A(x, 1) − xy2(y − 1)

and, as xy2 ̸= 0,

A(x) = A(x, 1) = y − 1 =
∑
n≥1

(−1)n

2

(
1/2

n + 1

)
4n+1xn .
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Chapter 16

∗Counting standard Young
tableaux by the kernel
method

In this chapter we closely follow pp. 582–585 of the MBM article [5]. A partition
λ is any finite non-increasing sequence

λ = (λ1 ≥ λ2 ≥ · · · ≥ λm)

with the parts λi ∈ N. We write that λ ⊢
∑m

i=1 λi =: n ∈ N and say that λ is
a partition of n. See the book [2] of G. Andrews for the beautiful enumerative
theory of partitions. The Ferrers diagram F (λ) of λ is the set of lattice points

F (λ) := {(i, j) | 1 ≤ i ≤ m ∧ 1 ≤ j ≤ λi)} ⊂ N2 .

Let λ ⊢ n. Any bijective map T : F (λ) → [n] such that

(i, j), (i, j′) ∈ F (λ), j < j′ ⇒ T (i, j) < T (i, j′)

and
(i, j), (i′, j) ∈ F (λ), i < i′ ⇒ T (i, j) < T (i′, j)

—T increases in every row and every column of the Ferrers diagram — is called
the standard Young tableau (with shape λ), briefly a SYT. For example, all
sixteen SYTs with the shape (3, 2, 1) ⊢ 6 are

1 2 3
4 5
6

,
1 2 3
4 6
5

,
1 2 4
3 5
6

,
1 2 4
3 6
5

,
1 2 5
3 4
6

,
1 2 5
3 6
4

,

1 2 6
3 4
5

,
1 2 6
3 5
4
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and the eight SYTs obtained from them by flipping along the main diagonal.
We derive by the kernel method the next interesting formula.

Theorem 16.1 The number fλ of SYTs with the shape λ ⊢ n is

fλ =
n!∏m

i=1(λi − i + m)!

∏
1≤i<j≤m

(λi − λj − i + j) .

In our example

6!

(3 − 1 + 3)! · (2 − 2 + 3)! · (1 − 3 + 3)!
·(3−2−1+2)(3−1−1+3)(2−1−2+3)

indeed equals 2 · 4 · 2 · 6!/5! · 3! · 1! = 2 · 4 · 2 = 16.

Proof. Let m ≥ 2 (for m = 1 the formula holds trivially). For j = 2, . . . ,m let

F (u) :=
∑

λ1≥···≥λm≥0

fλ
m∏
i=1

uλi
i and Fj(u) := Dj−1, j(F (u))

be, respectively, the OGF of the numbers fλ for partitions λ with at most m
parts (we fill in the dummy zero parts) and the OGF of the numbers fλ for
the partitions with at most m parts and equal parts λj−1 = λj . Here u is
the m-tuple of variables u1, . . . , um and Dj−1, j denotes the operation of the
(j − 1, j)-diagonal, which keeps from the argument power series only the terms
such that uj−1 and uj have equal exponents.

The functional equation

F (u) = 1 + u1F (u) +

m∑
j=2

uj(F (u) − Fj(u))

records all possible ways to extend a fixed SYT T with the shape λ ⊢ n to
a SYT T ′ with the shape λ′ ⊢ n+ 1 such that F (λ′) ⊃ F (λ) and F (λ′)\F (λ) =
{(k, l)}, T ′ |F (λ) = T and T ′(k, l) = n + 1. On the right-hand side, the term
1 corresponds to the empty SYT (the only one which does not arise by these
extensions), the term u1F (u) corresponds to adding (k, l) = (1, λ1 + 1) to F (λ),
which is always possible, and the summand uj(F (u) − Fj(u)) corresponds to
adding (k, l) = (j, λj + 1) to F (λ), which is possible iff λj−1 > λj . We isolate
the kernel K(u) and write the equation as(

1 −
m∑
j=1

uj

)
︸ ︷︷ ︸

K(u)

F (u) = 1 −
m∑
j=2

ujFj(u) .

The ultimate form of the equation is obtained by multiplying it by M(u) :=
um−1
1 um−2

2 . . . u1
m−1u

0
m:

K(u)M(u)F (u) = M(u) −
m∑
j=2

(ujM(u)) · Fj(u) .
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The point of the last transformation is that in the monomial ujM(u) the
variables uj−1 and uj have equal exponents, and thus so they have (by the
definition of Fj(u)) also in each term of the summand power series (ujM(u)) ·
Fj(u). Thus, if we denote by ε(σ) the sign ±1 of a permutation σ ∈ Sm and by
σ(P ) the action of σ on P ∈ C[[u1, . . . , um]] by permuting the m variables, we
get by applying σ(·) on the last displayed equation, multiplying it by ε(σ) and
summing the results over all σ ∈ Sm the equation∑

σ∈Sm

ε(σ)σ(M(u)F (u)) =
1

K(u)

∑
σ∈Sm

ε(σ)σ(M(u)) . (SYT)

It follows from the facts that σ(K(u)) = K(u) (and that σ(·) is a ring auto-
morphism of C[[u1, . . . , um]]) and that the term

∑m
j=2(ujM(u)) · Fj(u) cancels

out in the signed sum. To explain the last fact, we take any j ∈ {2, . . . ,m} and
denote by σj ∈ Sm the transposition that exchanges j − 1 and j. Since m ≥ 2,
it is possible to partition Sm in pairs {σ, σ′} such that σ = σjσ

′ (and σ′ = σjσ).
Since here ε(σ) ̸= ε(σ′) and (ujM(u)) · Fj(u) is fixed by σj , we see that∑

σ∈Sm

ε(σ)σ
(
(ujM(u)) · Fj(u)) = 0 .

We obtain the numbers fλ by comparing coefficients on both sides of (SYT):

fλ = [um−1+λ1
1 . . . u0+λm

m ]
1

K(u)

∑
σ∈Sm

ε(σ)σ(M(u)) .

2
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Chapter 17

∗Counting
(1, 2, . . . ,m + 1)-free
permutations—an explicit
(closed) formula
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Chapter 18

∗Counting
(1, 2, . . . ,m + 1)-free
permutations—
a determinantal formula for
the Bessel generating
function
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Chapter 19

∗Counting labeled k-regular
graphs—an explicit
(closed) formula
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Chapter 20

∗Counting labeled k-regular
graphs—a way to
P-recursiveness via
symmetric functions
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Exam questions.

1. Proofs no. 1 and 2 that (Cn) is not a LRS.

2. Proofs no. 3 and 4 that (Cn) is not a LRS.

3. Derive that Cn = 1
n

(
2n−2
n−1

)
by OGF.

4. Prove that Cn = 1
n

(
2n−2
n−1

)
combinatorially.

5. Prove that Cn ≤ 8n−1/n2 for every n ∈ N.

6. Prove that Cn+1 is the number of (1, 3, 2)-free permutations in Sn.

7. Prove that Cn+1 is the number of (1, 2, 3)-free permutations in Sn.
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