Combinatorial Counting 2025: the Ramsey
theorem for pairs and the Catalan numbers

Martin Klazar

March 6, 2025

(lecture notes for the course taught in summer term 2025)



Contents

Introduction ii

1 The Ramsey theorem for pairs: simple bounds 1
1.1 Finitecase. . . . . . . . . . 2
1.2 The canonical Ramsey theorem . . . . . .. ... ... ... ... 3
1.3 Infinitecase . . . . . . . . . . . . ... 5

2 The Ramsey theorem for pairs: the Balister — Bollobas — Campos —
Griffiths — Hurley — Morris — Sahasrabudhe — Tiba bound 7

3 The Catalan numbers 8

References 9



Introduction

These lecture notes

Notation. We use = as definitional equality; in x = y the new symbol x is
being defined by the already known expression y. Sometimes = and y exchange
their roles. Recall that f : X — Y, where X and Y are sets, means that f is
a map (function) from X to Y. So f is a set such that f C X x Y and for every
x € X there is a unique y € Y for which (z,y) € f, which is standardly written
as f(z) =y. Let f: X — Y and Z be any set. The restriction of f to Z is
the map f|Z : X NZ — Y with values (f|Z)(x) = f(z), z € X N Z. Often
we write instead of f|Z just f. The image and the preimage of Z by f is the
respective set

flZl={f(x): xe XNZ} (CY) and f'[Z]={xecX: f(z)€Z} (CX).

If Z = {z} is a singleton, we usually write (in analogy with f(x)) instead of
FH{H Just fHA].

We denote by N = {1,2,...} the (infinite) set of natural numbers and Ny =
N U {0} are nonnegative integers. For n € N we define [n] = {1,2,...,n}; we
set [0] = (. For any finite set X we denote by |X| (€ Np) the number of its
elements. For any set X and k € Ny,

(X)={v: Y C X,V is finite and [Y] = k} .

Thus (3) = {0} and (}) = {{z}: 2 € X} (# X). We have (}) = 0 whenever
X is finite and |X| < k. Also, for finite X the set (}) is finite too and for
0 < k < |X| we have equalities

()| = (1)) = IXI0XI=0. (X k)

Mostly we work with the sets ()2( ) and call their elements edges.

ii



Chapter 1

The Ramsey theorem for
pairs: simple bounds

Theorem 1.1 (Ramsey, 1930) Let r,p,k € N. Then there is an n € N such
that for every map x : ([Z]) — [r] there is a k-element set Y C [n] for which the

restriction x | (1;) 18 constant.

In Chapters 1 and 2 we deal with the function R,.(k) : N> — N corresponding
to the pairs case p = 2 of the theorem. Its values are called Ramsey numbers
(for pairs) and it is defined as follows.

Definition 1.2 Let r,k € N. We define R,(k) to be the minimum n € N such
that for every union ([g]) =, X; there exists an indez i € [r] and a k-element
set'Y C [n] such that (12/) C X;.

In Proposition 1.5 we prove that R,.(k) is defined for every r and k. Without
loss of generality the sets X; may be assumed to be pairwise disjoint and to

form a partition (of ([g])) This follows from the next proposition.

Proposition 1.3 Let r € N, X be a set and {Y; : i € [r|} be a set system such
that X = J,_, Yi. Then there is a set system {Z; : i € [r]} with the following
properties.

1. Z; CY; for everyi € [r].
2. X =U_, Z.
3. ZiNZ; =10 for everyi,j € [r] withi# j.

Proof. Let Yo =0 and Z; = Y; \ UE;E Y;, i € [r]. It is not hard to see that this
set system {Z; : ¢ € [r]} has the three stated properties. O

An exercise for the reader is to extend this proposition to infinite set systems.



So in other words, R,.(k) is the minimum n € N such that for every coloring
(map) x : ([Z]) — [r] there is a set Y C [n] with |Y| = k for which the
restriction x| (}2/) is a constant map. We say that the set Y is x-homogeneous.
Yet another equivalent definition of R,.(k) is that it is the minimum n € N such
that for every r-coloring of edges in the complete graph K,, = (n, ([g])) there is
a monochromatic k-clique.

The following pigeonhole principles, a finite and an infinite one, are Ramsey
theorems for singletons (1-element sets). They were known, of course, long time
before Theorem 1.1.

Proposition 1.4 (pigeonhole principles) Let k,r € N. The following holds.

1. Ifn=r(k—1)+1, X is any finite set with | X| =n and x : X — [r] is
any map, then there is an i € [r] such that |x ™ (i)| > k.

2. If X is any infinite set and x : X — [r] is any map, then there is an i € [r]
such that the set x~1(i) is infinite.

Proof. 1. Since X = ;¢ X~ 1(4) is a partition, if there were no such i then we
would have the contradiction

n=|X[= e XTI < X (k- 1) =r(k—1).

2. If there were no such ¢, we would have the contradiction that the set
X =J;_, x (i) is finite as it is a finite (disjoint) union of finite sets. O

1.1 Finite case

In this section we obtain several elementary upper and lower bounds on the
Ramsey numbers R, (k) which were introduced in Definition 1.2. First we show
that R, (k) is defined for every r, k € N. If x : ([g]) — [r] and Y C [n], we say
that the set Y is x-min-homogeneous if for every e, f € (g) it holds that x(e) =
x(f) iff mine = min f. In the next Section 1.2 we consider a generalization of
this kind of colorings.

Proposition 1.5 Letr,k € N. Then Ry(k) =k, R.(1) =1 and for r,k > 2 we
have the bound R,.(k) < r k=2,

Proof. The cases when 7 = 1 or kK = 1 are clear. Let r,k > 2. We show, for
the coloring form of Definition 1.2, that n = r"*~2 works. Let  : ([Z]) — [r]
be any map. We set | = r(k — 1) + 1 and define sets Ag = [n], A1, ..., A1
such that A4g D A1 DD A1 #0, mindy =1 <minA; < --- <minA4;_q,
that for every ¢ € [l — 1] the edges {min A;_1,2}, € A;, have in x the same
color, and that |A4;| = r"*=27% § = 0,1,...,] — 1. Suppose that i € [l — 1]
and that the sets Ay, Ay, ..., A;_1 with the stated properties are already



defined. By 1 of Proposition 1.4, at least [lAi’rl‘fll = [’“NPQ:HA] = prk-2-i
edges {minA;_q,z} with x € A,_; \ {min A;_1} have in x the same color;
we define A; to be some 7"*~27% endpoints = of such edges. Thus we have
sets Ag, A1, ..., A;_1 with the stated properties; note that A;_1 # {) because
rk—2—(1—1)=r—22>0. We consider the [-element set

X={min4, ;: i€[l]}.

It follows that X is y-min-homogeneous and we can define the map ¢ : X — [r]
by setting ¥ (z) = x(e) for any e € ()2{) with mine = z; for x = max X when
there is no such e we define ¢ (z) arbitrarily. By 1 of Proposition 1.4 there is
aset Y C X such that |Y| =k and ¢ |Y is constant. It follows that Y is the
sought for k-element y-homogeneous set. O

In the next chapter we use this bound in the slightly weaker but simpler form
R, (k) < r"*. Thus in the simplest nontrivial case r = p = 2 of Theorem 1.1 we
have the following upper bound.

Corollary 1.6 For every k € N,

RQ(k‘) < 4kt

1.2 The canonical Ramsey theorem

IfkeN, e={e,ea,...,ex}< in (IZI) is a k-element set of natural numbers with
the elements e; listed increasingly and if I C [k], we define

e:I={e: iel}.

If X c (I,j) and x: X — N is any coloring of X (by infinitely many colors),
then we call x canonical, or more precisely I-canonical, if there is a set I C [k]
such that for every e, f € X

(€)= x(f) <= e:I=f:1.

This section is devoted to the function ER(k;1): N> — N, especially for k = 2,
defined as follows.

Definition 1.7 Let k,l € N. Then ER(k;1) is the minimum n € N such that
for every coloring x : ([Z]) — N there exists an l-element set Y C [n] such that
the restriction x| (}g) is canonical. We set ER(I) = ER(2;1).

In 1950 P. Erd6s and R. Rado proved in [3] that the numbers ER(k; 1) exist for
every k,l € N. For k£ = 1 these numbers are easily determined exactly.

Proposition 1.8 ER(1;1) = (I — 1) + 1 for every | € N.



Proof. Let 1 e Nyn = (I—1)>+1 and x: [n] = N. Since n = >, [x 1 (9)],
we see that there is a set X C [n] such that |X| =1 and x| X is constant or 1-1
(injective). Thus

ER(1; 1) <n=(1-1)>%+1.

On the other hand, if we set n = (I — 1)? and, for i = 1,2,...,1 — 1 and
(i—1)(I—1) <j<i(l—1), define the coloring x: [n] = N by x(j) =7, we get
the bound ER(1;1) > n = (I —1)?; for this x there is no l-element canonical set
(for k =1). Thus we get the stated equality. a

In 1996 S. Shelah proved in [10] for any k > 2 a strong general upper bound
on ER(k;1) in the form of an iterated (k — 1)-fold exponential. For k,I € N we
set tow(1;1) = 2! and tow(k;1) = 2toWE=1D for k > 2.

Theorem 1.9 (Shelah, 1996) There is a constant ¢ > 0 such that for every
k,l € N with k > 2,

ER(k; 1) < tow(k — 1; clg(zkfl)) .

In the rest of this section we prove two theorems on ER(I) = ER(2;1). We
begin with a theorem due to H. Lefmann and V. Rédl. They obtained the easy
lower bound in [6], and the harder to prove upper bound in [7].

Theorem 1.10 (Lefmann and Ro6dl, 1993 and 1995) For some constants
c1,¢2 >0 and every l € N with | > 2,

2c1l2 < ER(Z) < 2ch2logl )
We begin with the lower bound.

The lower bound 2! < ER(1)

We prove the lower bound of Lefmann and Rodl and begin with a lemma.

Lemma 1.11 Let k,l € N with k <1 and I C [k] with I # (0. Then there exist
I—k+1sets X; € (1), i€ [l — k+1], such that the | — k + 1 sets

X;: I, iell—k+1],
are mutually distinct
Proof. For i =0,1,...,l —kset X; ={i+1,i+2,...,i+k}. ]

Recall that for ¢,k,1 € N the (classical) Ramsey number R;(k;l) is the
minimum n € N such that for every x: ([Z]) — [t] there is an [-element set
X C [n] such that the restriction x| ()k{ ) is constant.

Proposition 1.12 For every k,l € N with k < [,
ER(k; 1) > Ry (ks 1) .



Proof. Let k and [ be as stated, n = Rj_(k;1) — 1 and let x: ([Z]) — [l — k] be
such that there is no [-element y-monochromatic set. But then there is also no
I C [k] and no l-element set X C [n] such that x| ()k() is I-canonical. For I = ()
it follows from the non-existence of monochromatic set, and for I # @ it follows
from Lemma 1.11 which shows that then at least [ — k + 1 distinct colors would
be needed. Hence ER(k;1) > n and we get the stated inequality. a

This concludes the proof of the lower bound.
The upper bound 2¢2/° 18! > ER(l)

We prove the upper bound of Lefmann and Rédl.

1.3 Infinite case

Theorem 1.13 (infinite Ramsey for pairs) Letr € N. Then for every map
X: @I) — [r] there is an infinite x-homogeneous set, an infinite set Y C N such

that x | ()2/) is constant.

Proof. Let r and x be as stated. We define a sequence of infinite sets 4g = N,

Aq, ... such that Ag D A1 D ..., minAg = 1 < minA; < ... and that for
every n the pairs {min 4,,_1, 2}, € A, have in x the same color. Suppose that
n € N and that the sets Ay, Ay, ..., A,_1 with the stated properties are already

defined. By 2 of Proposition 1.4, for infinitely many « € A, _; \ {min A, } the
edges {min A,,_1,x} have in x the same color; we define A,, as the set of these
numbers . Thus we get a sequence of sets (A, )n>0 with the stated properties.
We define the infinite set

X ={min4,_,: neN}.

It follows that X is y-min-homogeneous. As before we can define the map
¥ : X — [r] by setting ¥ (z) = x(e) for any e € ()2() with mine = z. By 2 of
Proposition 1.4 there is an infinite set ¥ C X such that ¥ |Y is constant. It

follows that Y is an infinite y-homogeneous set. o

Theorem 1.14 (compactness) Let r € N. For every sequence (xn) of col-
oTINgs Xn ([Z]) — [r] there exists a coloring x : @) — [r] with the following
property. For every k there is an n, n > k, with

xal (5) =x1 (%)

Proof. Let r and x,, n € N, be as stated. Let F': N — (l;]) be a bijection, thus
the sequence F(1), F(2), ... enumerates the edges of the countable complete
graph Ky. We define by induction on j = 0,1,... infinite sets A; such that
Ay = N, Ay D Ay D ... and that if Aj = {CLLJ‘ < az; < }, then for



every i € [j] the values Xa, ,(F (%)), Xay,; (F (7)), ... are all defined (that is,
a1 ; > max F(i)) and are all equal. In other words, for every i € [j] we have
{xa(F(i)) : a € Aj}| = 1. Suppose that j € N and that the sets Ap, A;,
..., Aj_1 (with the stated properties) are already defined. We define A; as any
infinite subset of A;_; for which every value xo(F(j)), a € A;, is defined and
Hxa(F(j)) : a € A;}| = 1. Such a subset exists by 2 of Proposition 1.4. Thus
we get the sequence of sets (A;);>0 with the stated properties. We define the
map x : (I;I) — [r] for e € (I;I) by setting, with j = F~1(e),

x(e) = xq(e) for any a € A, .

It is clear that this definition is correct—the color x,(e) does not depend
on the element @ € A; —and we show that x has the stated property. So let

k € N. We take a j € N such that F[[j]] D ([g]) and take any n € A;. Let

e c ([g]). Then by the definition of A; and x we have with i = F~!(e) that
n >k, i€ [j], n € A; and thus x(e) = xn(e), as required. O

We say that a finite set X C N is big if | X| > min X.

Theorem 1.15 (big Ramsey for pairs) Let r € N. Then for every k there
is an n such that for every coloring x : ([Z]) — [r] there exists a big and at least
k-element x-homogeneous set Y C [n].

Proof. Let r,k € N. Suppose for the contrary that for every n there is a coloring
Xn ([72’]) — [r] that has no big and at least k-element x,-homogeneous set. It
follows that the same holds for the coloring y : (5) — [r] obtained from the
sequence (xp) in Theorem 1.14. But this is a contradiction because it is easy to
deduce from Theorem 1.13 that every r-coloring of @I) has a big and at least
k-element homogeneous set. Indeed, if ¢ : (l;]) — [r] is any coloring and {a; <
as < ...} C N is the infinite ¢)-homogeneous set provided by Theorem 1.13,
then

{(11 <ag < --- <ak+a1}

is a big and at least k-element i)-homogeneous set. ]

Theorem 1.16 (Erdés—Dushnik—Miller) Suppose that k is an infinite car-
dinal. Then for every partition (’;) = AU B there exists a set C C k such that

Cl =w and (§) C A, or |C| = and (§) C B.

Proof.



Chapter 2

The Ramsey theorem for
pairs: the BBCGHMST

bound

Theorem 2.1 (BBCGHMST, 2024) Let r > 2 and § = sm1z. Then for
every k > 2160716




Chapter 3

The Catalan numbers
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