Combinatorial Counting 2025: the Ramsey theorem for pairs and the Catalan numbers

Martin Klazar

March 6, 2025

(lecture notes for the course taught in summer term 2025)

Contents

In	troduction	ii
1	The Ramsey theorem for pairs: simple bounds 1.1 Finite case	1 2 3 5
2	The Ramsey theorem for pairs: the Balister – Bollobás – Campos Griffiths – Hurley – Morris – Sahasrabudhe – Tiba bound	_ 7
3	The Catalan numbers	8
R	eferences	q

Introduction

These lecture notes

Notation. We use \equiv as definitional equality; in $x \equiv y$ the new symbol x is being defined by the already known expression y. Sometimes x and y exchange their roles. Recall that $f: X \to Y$, where X and Y are sets, means that f is a map (function) from X to Y. So f is a set such that $f \subset X \times Y$ and for every $x \in X$ there is a unique $y \in Y$ for which $(x,y) \in f$, which is standardly written as f(x) = y. Let $f: X \to Y$ and Z be any set. The restriction of f to Z is the map $f \mid Z: X \cap Z \to Y$ with values $(f \mid Z)(x) \equiv f(x), x \in X \cap Z$. Often we write instead of $f \mid Z$ just f. The image and the preimage of Z by f is the respective set

$$f[Z] \equiv \{f(x): \ x \in X \cap Z\} \ \ (\subset Y) \ \ \text{and} \ \ f^{-1}[Z] \equiv \{x \in X: \ f(x) \in Z\} \ \ (\subset X) \, .$$

If $Z=\{z\}$ is a singleton, we usually write (in analogy with f(x)) instead of $f^{-1}[\{z\}]$ just $f^{-1}[z]$.

We denote by $\mathbb{N} = \{1, 2, ...\}$ the (infinite) set of natural numbers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ are nonnegative integers. For $n \in \mathbb{N}$ we define $[n] \equiv \{1, 2, ..., n\}$; we set $[0] \equiv \emptyset$. For any finite set X we denote by |X| ($\in \mathbb{N}_0$) the number of its elements. For any set X and $K \in \mathbb{N}_0$,

$${X \choose k} \equiv \left\{Y: \ Y \subset X, \, Y \text{ is finite and } |Y| = k \right\}.$$

Thus $\binom{X}{0} = \{\emptyset\}$ and $\binom{X}{1} = \{\{x\} : x \in X\} \ (\neq X)$. We have $\binom{X}{k} = \emptyset$ whenever X is finite and |X| < k. Also, for finite X the set $\binom{X}{k}$ is finite too and for $0 \le k \le |X|$ we have equalities

$$\left| {X \choose k} \right| = {|X| \choose k} = \frac{|X|(|X|-1)\dots(|X|-k+1)}{k!}.$$

Mostly we work with the sets $\binom{X}{2}$ and call their elements *edges*.

Chapter 1

The Ramsey theorem for pairs: simple bounds

Theorem 1.1 (Ramsey, 1930) Let $r, p, k \in \mathbb{N}$. Then there is an $n \in \mathbb{N}$ such that for every map $\chi : \binom{[n]}{p} \to [r]$ there is a k-element set $Y \subset [n]$ for which the restriction $\chi \mid \binom{Y}{p}$ is constant.

In Chapters 1 and 2 we deal with the function $R_r(k): \mathbb{N}^2 \to \mathbb{N}$ corresponding to the pairs case p=2 of the theorem. Its values are called *Ramsey numbers* (for pairs) and it is defined as follows.

Definition 1.2 Let $r, k \in \mathbb{N}$. We define $R_r(k)$ to be the minimum $n \in \mathbb{N}$ such that for every union $\binom{[n]}{2} = \bigcup_{i=1}^r X_i$ there exists an index $i \in [r]$ and a k-element set $Y \subset [n]$ such that $\binom{Y}{2} \subset X_i$.

In Proposition 1.5 we prove that $R_r(k)$ is defined for every r and k. Without loss of generality the sets X_i may be assumed to be pairwise disjoint and to form a partition (of $\binom{[n]}{2}$). This follows from the next proposition.

Proposition 1.3 Let $r \in \mathbb{N}$, X be a set and $\{Y_i : i \in [r]\}$ be a set system such that $X = \bigcup_{i=1}^r Y_i$. Then there is a set system $\{Z_i : i \in [r]\}$ with the following properties.

- 1. $Z_i \subset Y_i$ for every $i \in [r]$.
- 2. $X = \bigcup_{i=1}^{r} Z_i$.
- 3. $Z_i \cap Z_j = \emptyset$ for every $i, j \in [r]$ with $i \neq j$.

Proof. Let $Y_0 \equiv \emptyset$ and $Z_i \equiv Y_i \setminus \bigcup_{j=0}^{i-1} Y_j$, $i \in [r]$. It is not hard to see that this set system $\{Z_i : i \in [r]\}$ has the three stated properties.

An exercise for the reader is to extend this proposition to infinite set systems.

So in other words, $R_r(k)$ is the minimum $n \in \mathbb{N}$ such that for every coloring (map) $\chi: \binom{[n]}{2} \to [r]$ there is a set $Y \subset [n]$ with |Y| = k for which the restriction $\chi \mid \binom{Y}{2}$ is a constant map. We say that the set Y is χ -homogeneous. Yet another equivalent definition of $R_r(k)$ is that it is the minimum $n \in \mathbb{N}$ such that for every r-coloring of edges in the complete graph $K_n = (n, \binom{[n]}{2})$ there is a monochromatic k-clique.

The following *pigeonhole principles*, a finite and an infinite one, are Ramsey theorems for *singletons* (1-element sets). They were known, of course, long time before Theorem 1.1.

Proposition 1.4 (pigeonhole principles) Let $k, r \in \mathbb{N}$. The following holds.

- 1. If $n \equiv r(k-1)+1$, X is any finite set with |X|=n and $\chi:X\to [r]$ is any map, then there is an $i\in [r]$ such that $|\chi^{-1}(i)|\geq k$.
- 2. If X is any infinite set and $\chi: X \to [r]$ is any map, then there is an $i \in [r]$ such that the set $\chi^{-1}(i)$ is infinite.

Proof. 1. Since $X = \bigcup_{i \in [r]} \chi^{-1}(i)$ is a partition, if there were no such i then we would have the contradiction

$$n = |X| = \sum_{i \in [r]} |\chi^{-1}(i)| \le \sum_{i \in [r]} (k-1) = r(k-1)$$
.

2. If there were no such i, we would have the contradiction that the set $X = \bigcup_{i=1}^{r} \chi^{-1}(i)$ is finite as it is a finite (disjoint) union of finite sets.

1.1 Finite case

In this section we obtain several elementary upper and lower bounds on the Ramsey numbers $R_r(k)$ which were introduced in Definition 1.2. First we show that $R_r(k)$ is defined for every $r, k \in \mathbb{N}$. If $\chi : \binom{[n]}{2} \to [r]$ and $Y \subset [n]$, we say that the set Y is χ -min-homogeneous if for every $e, f \in \binom{Y}{2}$ it holds that $\chi(e) = \chi(f)$ iff $\min e = \min f$. In the next Section 1.2 we consider a generalization of this kind of colorings.

Proposition 1.5 Let $r, k \in \mathbb{N}$. Then $R_1(k) = k$, $R_r(1) = 1$ and for $r, k \geq 2$ we have the bound $R_r(k) \leq r^{rk-2}$.

Proof. The cases when r=1 or k=1 are clear. Let $r,k\geq 2$. We show, for the coloring form of Definition 1.2, that $n\equiv r^{rk-2}$ works. Let $\chi:\binom{[n]}{2}\to [r]$ be any map. We set $l\equiv r(k-1)+1$ and define sets $A_0\equiv [n],\ A_1,\ldots,\ A_{l-1}$ such that $A_0\supset A_1\supset\cdots\supset A_{l-1}\neq\emptyset$, $\min A_0=1<\min A_1<\cdots<\min A_{l-1}$, that for every $i\in [l-1]$ the edges $\{\min A_{i-1},x\},\ x\in A_i,\ \text{have in }\chi$ the same color, and that $|A_i|=r^{rk-2-i},\ i=0,1,\ldots,l-1$. Suppose that $i\in [l-1]$ and that the sets $A_0,\ A_1,\ \ldots,\ A_{i-1}$ with the stated properties are already

defined. By 1 of Proposition 1.4, at least $\lceil \frac{|A_{i-1}|-1}{r} \rceil = \lceil \frac{r^{rk-2-i+1}-1}{r} \rceil = r^{rk-2-i}$ edges $\{\min A_{i-1}, x\}$ with $x \in A_{i-1} \setminus \{\min A_{i-1}\}$ have in χ the same color; we define A_i to be some r^{rk-2-i} endpoints x of such edges. Thus we have sets $A_0, A_1, \ldots, A_{l-1}$ with the stated properties; note that $A_{l-1} \neq \emptyset$ because $rk-2-(l-1)=r-2\geq 0$. We consider the l-element set

$$X \equiv \{\min A_{i-1} : i \in [l]\}.$$

It follows that X is χ -min-homogeneous and we can define the map $\psi: X \to [r]$ by setting $\psi(x) \equiv \chi(e)$ for any $e \in {X \choose 2}$ with $\min e = x$; for $x = \max X$ when there is no such e we define $\psi(x)$ arbitrarily. By 1 of Proposition 1.4 there is a set $Y \subset X$ such that |Y| = k and $\psi \mid Y$ is constant. It follows that Y is the sought for k-element χ -homogeneous set.

In the next chapter we use this bound in the slightly weaker but simpler form $R_r(k) \leq r^{rk}$. Thus in the simplest nontrivial case r = p = 2 of Theorem 1.1 we have the following upper bound.

Corollary 1.6 For every $k \in \mathbb{N}$,

$$R_2(k) \le 4^{k-1} \, .$$

1.2 The canonical Ramsey theorem

If $k \in \mathbb{N}$, $e = \{e_1, e_2, \dots, e_k\}_{\leq}$ in $\binom{\mathbb{N}}{k}$ is a k-element set of natural numbers with the elements e_i listed increasingly and if $I \subset [k]$, we define

$$e: I \equiv \{e_i: i \in I\}$$
.

If $X \subset \binom{\mathbb{N}}{k}$ and $\chi \colon X \to \mathbb{N}$ is any coloring of X (by infinitely many colors), then we call χ canonical, or more precisely I-canonical, if there is a set $I \subset [k]$ such that for every $e, f \in X$,

$$\chi(e) = \chi(f) \iff e : I = f : I$$
.

This section is devoted to the function $ER(k; l) : \mathbb{N}^2 \to \mathbb{N}$, especially for k = 2, defined as follows.

Definition 1.7 Let $k, l \in \mathbb{N}$. Then $\mathrm{ER}(k; l)$ is the minimum $n \in \mathbb{N}$ such that for every coloring $\chi : \binom{[n]}{k} \to \mathbb{N}$ there exists an l-element set $Y \subset [n]$ such that the restriction $\chi \mid \binom{Y}{k}$ is canonical. We set $\mathrm{ER}(l) \equiv \mathrm{ER}(2; l)$.

In 1950 P. Erdős and R. Rado proved in [3] that the numbers ER(k; l) exist for every $k, l \in \mathbb{N}$. For k = 1 these numbers are easily determined exactly.

Proposition 1.8 $ER(1; l) = (l-1)^2 + 1$ for every $l \in \mathbb{N}$.

Proof. Let $l \in \mathbb{N}$, $n \equiv (l-1)^2 + 1$ and $\chi \colon [n] \to \mathbb{N}$. Since $n = \sum_{i \in \mathbb{N}} |\chi^{-1}(i)|$, we see that there is a set $X \subset [n]$ such that |X| = l and $\chi \mid X$ is constant or 1-1 (injective). Thus

$$ER(1; l) \le n = (l-1)^2 + 1.$$

On the other hand, if we set $n \equiv (l-1)^2$ and, for $i=1,2,\ldots,l-1$ and $(i-1)(l-1) < j \le i(l-1)$, define the coloring $\chi \colon [n] \to \mathbb{N}$ by $\chi(j) \equiv i$, we get the bound $\mathrm{ER}(1;l) > n = (l-1)^2$; for this χ there is no l-element canonical set (for k=1). Thus we get the stated equality.

In 1996 S. Shelah proved in [10] for any $k \geq 2$ a strong general upper bound on ER(k;l) in the form of an iterated (k-1)-fold exponential. For $k,l \in \mathbb{N}$ we set $tow(1;l) \equiv 2^l$ and $tow(k;l) \equiv 2^{tow(k-1;l)}$ for $k \geq 2$.

Theorem 1.9 (Shelah, 1996) There is a constant c > 0 such that for every $k, l \in \mathbb{N}$ with $k \geq 2$,

$$ER(k; l) \le tow(k-1; cl^{8(2k-1)}).$$

In the rest of this section we prove two theorems on ER(l) = ER(2; l). We begin with a theorem due to H. Lefmann and V. Rödl. They obtained the easy lower bound in [6], and the harder to prove upper bound in [7].

Theorem 1.10 (Lefmann and Rödl, 1993 and 1995) For some constants $c_1, c_2 > 0$ and every $l \in \mathbb{N}$ with $l \geq 2$,

$$2^{c_1 l^2} < \text{ER}(l) < 2^{c_2 l^2 \log l}$$
.

We begin with the lower bound.

The lower bound
$$2^{c_1^2 l} \leq ER(l)$$

We prove the lower bound of Lefmann and Rödl and begin with a lemma.

Lemma 1.11 Let $k, l \in \mathbb{N}$ with $k \leq l$ and $I \subset [k]$ with $I \neq \emptyset$. Then there exist l - k + 1 sets $X_i \in {[l] \choose k}$, $i \in [l - k + 1]$, such that the l - k + 1 sets

$$X_i: I, i \in [l-k+1],$$

are mutually distinct

Proof. For
$$i = 0, 1, ..., l - k$$
 set $X_i \equiv \{i + 1, i + 2, ..., i + k\}.$

Recall that for $t, k, l \in \mathbb{N}$ the (classical) Ramsey number $R_t(k; l)$ is the minimum $n \in \mathbb{N}$ such that for every $\chi: \binom{[n]}{k} \to [t]$ there is an l-element set $X \subset [n]$ such that the restriction $\chi \mid \binom{X}{k}$ is constant.

Proposition 1.12 For every $k, l \in \mathbb{N}$ with k < l,

$$\operatorname{ER}(k; l) \ge \operatorname{R}_{l-k}(k; l)$$
.

Proof. Let k and l be as stated, $n \equiv \mathbb{R}_{l-k}(k;l) - 1$ and let $\chi \colon \binom{[n]}{k} \to [l-k]$ be such that there is no l-element χ -monochromatic set. But then there is also no $I \subset [k]$ and no l-element set $X \subset [n]$ such that $\chi \mid \binom{X}{k}$ is I-canonical. For $I = \emptyset$ it follows from the non-existence of monochromatic set, and for $I \neq \emptyset$ it follows from Lemma 1.11 which shows that then at least l - k + 1 distinct colors would be needed. Hence $\mathrm{ER}(k;l) > n$ and we get the stated inequality.

This concludes the proof of the lower bound.

The upper bound
$$2^{c_2 l^2 \log l} \ge \text{ER}(l)$$

We prove the upper bound of Lefmann and Rödl.

1.3 Infinite case

Theorem 1.13 (infinite Ramsey for pairs) Let $r \in \mathbb{N}$. Then for every map $\chi : \binom{\mathbb{N}}{2} \to [r]$ there is an infinite χ -homogeneous set, an infinite set $Y \subset \mathbb{N}$ such that $\chi \mid \binom{Y}{2}$ is constant.

Proof. Let r and χ be as stated. We define a sequence of infinite sets $A_0 \equiv \mathbb{N}$, A_1, \ldots such that $A_0 \supset A_1 \supset \ldots$, $\min A_0 = 1 < \min A_1 < \ldots$ and that for every n the pairs $\{\min A_{n-1}, x\}$, $x \in A_n$, have in χ the same color. Suppose that $n \in \mathbb{N}$ and that the sets $A_0, A_1, \ldots, A_{n-1}$ with the stated properties are already defined. By 2 of Proposition 1.4, for infinitely many $x \in A_{n-1} \setminus \{\min A_{n-1}\}$ the edges $\{\min A_{n-1}, x\}$ have in χ the same color; we define A_n as the set of these numbers x. Thus we get a sequence of sets $(A_n)_{n \geq 0}$ with the stated properties. We define the infinite set

$$X \equiv \{\min A_{n-1} : n \in \mathbb{N}\}.$$

It follows that X is χ -min-homogeneous. As before we can define the map $\psi: X \to [r]$ by setting $\psi(x) \equiv \chi(e)$ for any $e \in {X \choose 2}$ with min e = x. By 2 of Proposition 1.4 there is an infinite set $Y \subset X$ such that $\psi \mid Y$ is constant. It follows that Y is an infinite χ -homogeneous set.

Theorem 1.14 (compactness) Let $r \in \mathbb{N}$. For every sequence (χ_n) of colorings $\chi_n : {[n] \choose 2} \to [r]$ there exists a coloring $\chi : {[n] \choose 2} \to [r]$ with the following property. For every k there is an $n, n \geq k$, with

$$\chi_n \mid {[k] \choose 2} = \chi \mid {[k] \choose 2}.$$

Proof. Let r and χ_n , $n \in \mathbb{N}$, be as stated. Let $F: \mathbb{N} \to \binom{\mathbb{N}}{2}$ be a bijection, thus the sequence F(1), F(2), ... enumerates the edges of the countable complete graph $K_{\mathbb{N}}$. We define by induction on $j = 0, 1, \ldots$ infinite sets A_j such that $A_0 = \mathbb{N}$, $A_0 \supset A_1 \supset \ldots$ and that if $A_j = \{a_{1,j} < a_{2,j} < \ldots\}$, then for

every $i \in [j]$ the values $\chi_{a_{1,j}}(F(i))$, $\chi_{a_{2,j}}(F(i))$, ... are all defined (that is, $a_{1,j} \geq \max F(i)$) and are all equal. In other words, for every $i \in [j]$ we have $|\{\chi_a(F(i)): a \in A_j\}| = 1$. Suppose that $j \in \mathbb{N}$ and that the sets $A_0, A_1, \ldots, A_{j-1}$ (with the stated properties) are already defined. We define A_j as any infinite subset of A_{j-1} for which every value $\chi_a(F(j)), a \in A_j$, is defined and $|\{\chi_a(F(j)): a \in A_j\}| = 1$. Such a subset exists by 2 of Proposition 1.4. Thus we get the sequence of sets $(A_j)_{j\geq 0}$ with the stated properties. We define the map $\chi: \binom{\mathbb{N}}{2} \to [r]$ for $e \in \binom{\mathbb{N}}{2}$ by setting, with $j \equiv F^{-1}(e)$,

$$\chi(e) \equiv \chi_a(e)$$
 for any $a \in A_j$.

It is clear that this definition is correct—the color $\chi_a(e)$ does not depend on the element $a \in A_j$ —and we show that χ has the stated property. So let $k \in \mathbb{N}$. We take a $j \in \mathbb{N}$ such that $F[[j]] \supset {[k] \choose 2}$ and take any $n \in A_j$. Let $e \in {[k] \choose 2}$. Then by the definition of A_j and χ we have with $i \equiv F^{-1}(e)$ that $n \geq k, i \in [j], n \in A_i$ and thus $\chi(e) = \chi_n(e)$, as required.

We say that a finite set $X \subset \mathbb{N}$ is big if $|X| \ge \min X$.

Theorem 1.15 (big Ramsey for pairs) Let $r \in \mathbb{N}$. Then for every k there is an n such that for every coloring $\chi: \binom{[n]}{2} \to [r]$ there exists a \underline{big} and at least k-element χ -homogeneous set $Y \subset [n]$.

Proof. Let $r, k \in \mathbb{N}$. Suppose for the contrary that for every n there is a coloring $\chi_n: {[n] \choose 2} \to [r]$ that has no big and at least k-element χ_n -homogeneous set. It follows that the same holds for the coloring $\chi: {[N] \choose 2} \to [r]$ obtained from the sequence (χ_n) in Theorem 1.14. But this is a contradiction because it is easy to deduce from Theorem 1.13 that every r-coloring of ${[N] \choose 2}$ has a big and at least k-element homogeneous set. Indeed, if $\psi: {[N] \choose 2} \to [r]$ is any coloring and $\{a_1 < a_2 < \dots\} \subset \mathbb{N}$ is the infinite ψ -homogeneous set provided by Theorem 1.13, then

$$\{a_1 < a_2 < \cdots < a_{k+a_1}\}$$

is a big and at least k-element ψ -homogeneous set.

Theorem 1.16 (Erdős–Dushnik–Miller) Suppose that κ is an infinite cardinal. Then for every partition $\binom{\kappa}{2} = A \cup B$ there exists a set $C \subset \kappa$ such that $|C| = \omega$ and $\binom{C}{2} \subset A$, or $|C| = \kappa$ and $\binom{C}{2} \subset B$.

Proof.

Chapter 2

The Ramsey theorem for pairs: the BBCGHMST bound

Theorem 2.1 (BBCGHMST, 2024) Let $r \geq 2$ and $\delta \equiv \frac{1}{2^{160}r^{12}}$. Then for every $k \geq 2^{160}r^{16}$, $R_r(k) \leq \frac{r^{rk}}{e^{\delta k}}$.

Chapter 3

The Catalan numbers

Bibliography

- [1] P. Balister, B. Bollobás, M. Campos, S. Griffiths, E. Hurley, R. Morris, J. Sahasrabudhe and M. Tiba, Upper bounds for multicolour Ramsey numbers, arXiv:2410.17197v1, 2024, 17 pp.
- [2] M. Campos, S. Griffiths, R. Morris and J. Sahasrabudhe, An exponential improvement for diagonal Ramsey, arXiv:2303.09521v1, 2023, 57 pp.
- [3] P. Erdős and R. Rado, A combinatorial theorem, J. London Math. Soc. 25 (1950), 249–255
- [4] T. Jech, Set Theory. The Third Millennium Edition, revised and expanded, Springer-Verlag, Berlin 2003
- [5] M. Klazar, On a proof of Ramsey theorem and of Erdös-Rado theorem for pairs, preprint KAM Series, 93–256, 1993, 5 pp.
- [6] H. Lefmann and V. Rödl, On canonical Ramsey numbers for complete graphs versus paths, *J. Combin. Theory* Ser. B **58** (1993), 1–13
- [7] H. Lefmann and V. Rödl, On Erdős-Rado numbers, Combinatorica 15 (1995), 85–104
- [8] Ch. Misak, Frank Ramsey. A Sheer Excess of Powers, Oxford University Press, Oxford 2020
- [9] L. Paulson, Formalising new mathematics in Isabelle: diagonal Ramsey, arXiv:2501.10852v1, 2025, 22 pp.
- [10] S. Shelah, Finite canonization, Comment. Math. Univ. Carolin. 37 (1996), 445–456.