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We treat the two auxiliary results we used last time. The first one is the
proof of non-vanishing of a sum by the p-adic argument. The second one is the
result that the domain of Gaussian integers Z[i]q, is UFD.

Properties of the p-adic order

Recall that for a prime p and o € Q, the p-adic order ord,(«) of « is +oo if
a = 0, and that for a # 0 it is the unique k& € Z such that a = p*3 where 8 € Q
has both numerator and denominator coprime to p.

Proposition 1. Let o, € Q.
1. ord,(af) = ordy(a) + ord,(8).
2. ordp(a+pB) > min({ord,(e),ord,(3)}), with equality if ord, (o) # ord,(B).

Proof. 1. Let a = pFag and § = p'By in Q be two arbitrary fractions, where
k = ord,(a), | = ord,(B) and the fractions ag and Sy have numerators and
denominators coprime to p. Then

aB = p*tlagBy = pFtly
where the fraction v has numerator and denominator coprime to p. Thus
ordy(af) = k+1 = ordy(a) + ord,(8.)
2. We take a and § as in 1 and assume w.l.o.g. that k <[, so that

k = min({ord, (a), ord,(8)}).

Then
a+B=p"(ag+p""B) = p"y.
If £ < I then v can be written as a fraction with numerator and denominator

coprime to p, so that ord,(a + 8) = k. If k = [ then v can be written with
denominator coprime to p, and it follows that ord,(a + 3) > k. O



Corollary 2. Ifp is a prime and oy, ..., an, are n > 2 fractions such that
ordy(ay,) < ordy(ey) for everyi=1,2,...,n—1,

then Z;‘L:1 a; # 0.
Proof. Let k := min({ord,(a;): i =1,...,n—1}) (€ ZU{+o0}) and let o :=
Z’.’;ll a;. Applying repeatedly item 2 of Proposition 1 we get that ord,(a) > k.

J
Since ord,(ay,) < k, we get by this item that

ord, (37, a;) = ordy(a + ay,) = ordy(an) < +00.

Thus -7, o # 0. O
UFD = unique factorization domain

We define unique factorization domains. Recall that an (integral) domain
Rdo = <Ra ORa 1R7 +a )

is a commutative ring with 1r such that for every a,b € R* = R\ {Or} also
ab # Og. If a,b € R, we say that a divides b (in Rq,), written a|b, if b = ac
(= a-c) for some ¢ € R. We say that a € R is a unit if a|lg (ie., a is
multiplicatively invertible). The set of units in Ry, is denoted by R*. It is easy
to see that

(R*, 1R,

is an Abelian group, the group of units of Rq,. For a,b € R we write a ~ b if
a = bc for some ¢ € R*. Tt is easy to see that ~ is an equivalence relation. For
example, in the domain

Zao=(Z,0,1, +, -

of integers we have m ~ n iff m = £n. Two elements a,b € R are coprime,
written (a,b) = 1g, if they can be simultaneously divided only by units.

Let R4o = (R,0g,1R,+, ) be a domain. We say that an element a € R is
irreducible iff a € R*\ R* and in every decomposition

a=bc with b, ce R,
b or c¢ is a unit.

Definition 3 (UFD). We say that Rq, is a unique factorization domain, or
UFD, if every element in R* \ R* expresses as a product of irreducibles, and
this product is unique up to the order of factors and the ~ relation.

So for every a € R* \ R* there exist m € N irreducibles a4, ..., a,, such that

a=a1-a2- ... Qmy,



and if
AL Qg ... Ay =0b1-by-... b,

where m,n € N and every a; and b; is irreducible, then m = n and there
exists a permutation 7w of the numbers 1,2,...,m = n such that for every
1=1,2,...,m =n we have

a; ~ b.,r(l-) .

The coprime squares argument in UFD

In the next two propositions we generalize to UFD the argument used in the
two previous lectures. Its simplest form is

a,b,c€NA(a,b)=1Nab=c*=a=aiAb=0b} with ag, bp € N.

Proposition 4. Let Ry, = (R,0R, 1R, +,-) be UFD, let a,b,c,d € R, let k € N
with k > 2 and let (a,b) = 1g. Then the following holds.

1. If a divides bc then a divides c.
2. If ab ~ c¥ then a ~ ak and b ~ b for some coprime ag,by € R.

3. If ¢ is irreducible and ab ~ cd®, then {a,b} ~ {cak,bk} for some coprime
ag, by € R.

Proof. 1. If ¢ = O then a|ec. If b = Og, then a € R* and again a|c. We
assume that b,c # Or. Hence also a # Or and we write the three elements as
(possibly empty) products

a=ay-...-a;, b=by-...-b,, and c=cy-... ¢,

of irreducibles a;, b; and ¢;. Here [, m,n € Ny and if [ = 0 then a is a unit, and
similarly for m and n. It is easy to see that if [ = 0 or n = 0 then the claim
holds. We assume that I,n > 1. By the assumption bc = ad for some d € R*.
Considering the irreducible factorization of d and using that Ry, is UFD and
(a,b) = 1R, we see that there is an injection f: [I] — [n] such that

a; ~ Cy(4) for 7 € [l]

l
Hence a ~ [],_; cf) and a|c.
2. It is easy to see that the claim holds if ¢ = Or. Thus we assume that
a,b,c # 0 and write them as products of irreducibles a;, b; and ¢; as in 1. We

get the relation
l k
[liyai - TIZ 00 ~ T cf -
k

If | = 0 then a € R* and we have a = a - 1’1% and b ~ a~!' - c*. Similarly if
m = 0. Thus we assume that [,m > 1. Since a and b are coprime and Ry, is
UFD, every product of k irreducibles cf = ¢; - ... - ¢; is completely contained



(up to the ~ relation) among the a;s or among the b;s, and every a; and b; is
~ to some ¢;. The claim follows.
3. An exercise for the interested reader. O

Proposition 5. Let Ry, = (R,0gr, 1, +,) be UFD. Ifa,b,c,d € R and k € N
with k > 2 are such that c is irreducible and divides both a and b, but this is not
true for ¢ nor for any other irreducible different from ¢, and ab ~ d*, then

{a, b} ~ {cag, 7105}

for some coprime agy, by € R.

Proof. An exercise for the interested reader. 0
Units in Gaussian integers
We find units in the domain Z[i]q,. Recall that
Zlilao = (Z[i], 0, 1, +, ),
is the domain of Gaussian integers.
Proposition 6. Z[{]* = {-1,1,—i,i}.
Proof. Consider the map f: Z[i] — Ny that is for & = a + bi € Z][i] defined by
f(@):=a-a=(a+bi)(a—bi) =a®+b*.

Clearly, f(af) = f(a)f(8). Each of the four stated elements is a unit. On the
other hand, if @ = a + b7 is a unit then af =1 for some § € Z[i] and

1=f(1) = f(aB) = f(a) - f(B) = (a® +b*) f(B).-

Thus a? +b*> =1 (and f(8) =1). Hence a = +1,b =0 or a = 0,b = 1. Thus
ae{-1,1,-i,i). 0

Euclidean domains

We define Euclidean domains. Recall that a linear order (X, <) is a well ordering
if every nonempty subset of X has a minimum element.

Definition 7 (Euclidean domain). Ry, = (R,0g, 1g,+,-) is an Euclidean
domain iff there exists a well ordering (X, <) and a map

fiR*=R\{0g} - X

with the property that for every a,b € R with b # Or there exist ¢,d € R such
that
a=bc+dA(d=0grV f(d) < f(b)).



A prominent example of an Euclidean domain is the domain of integers. For
it we have (X, <) = (N, <), with the standard ordering < of natural numbers,
and f(n) = |n|. We postpone the proof of the next theorem to the next lecture.

Theorem 8. FEvery Fuclidean domain is UFD.
Z[i]4o is Euclidean and hence UFD

Theorem 9. The domain Zlilqo is Fuclidean.

Proof. We again take (X, <) = (N, <). The required map f: Z[i] — Ny is the
map used in Proposition 5, f(«a) = aa (contrary to Definition 6 we allow the
value f(0) =0). Let « € Z[i] and S € Z[i]* be given. We define

@ .
— =:ug + voi with ug, vg € Q.

B

Let 7 := u + vi € Z[i] where u,v € Z are such that
|lu — ugl|, |v—wo] <1/2.

Finally, § := o — . Then o = vy + ¢ and

Thus by Theorem 7 the domain of Gaussian integers Z[iq, is UFD and Propo-
sitions 4 and 5 hold in it.



