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We treat the two auxiliary results we used last time. The first one is the
proof of non-vanishing of a sum by the p-adic argument. The second one is the
result that the domain of Gaussian integers Z[i]do is UFD.

Properties of the p-adic order

Recall that for a prime p and α ∈ Q, the p-adic order ordp(α) of α is +∞ if
α = 0, and that for α 6= 0 it is the unique k ∈ Z such that α = pkβ where β ∈ Q
has both numerator and denominator coprime to p.

Proposition 1. Let α, β ∈ Q.

1. ordp(αβ) = ordp(α) + ordp(β).

2. ordp(α+β) ≥ min({ordp(α), ordp(β)}), with equality if ordp(α) 6= ordp(β).

Proof. 1. Let α = pkα0 and β = plβ0 in Q be two arbitrary fractions, where
k = ordp(α), l = ordp(β) and the fractions α0 and β0 have numerators and
denominators coprime to p. Then

αβ = pk+lα0β0 =: pk+lγ

where the fraction γ has numerator and denominator coprime to p. Thus

ordp(αβ) = k + l = ordp(α) + ordp(β .)

2. We take α and β as in 1 and assume w.l.o.g. that k ≤ l, so that

k = min({ordp(α), ordp(β)}) .

Then
α+ β = pk(α0 + pl−kβ0) =: pkγ .

If k < l then γ can be written as a fraction with numerator and denominator
coprime to p, so that ordp(α + β) = k. If k = l then γ can be written with
denominator coprime to p, and it follows that ordp(α+ β) ≥ k. �
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Corollary 2. If p is a prime and α1, . . . , αn are n ≥ 2 fractions such that

ordp(αn) < ordp(αi) for every i = 1, 2, . . . , n− 1 ,

then
∑n
j=1 αj 6= 0.

Proof. Let k := min({ordp(αi) : i = 1, . . . , n− 1}) (∈ Z∪ {+∞}) and let α :=∑n−1
j=1 αj . Applying repeatedly item 2 of Proposition 1 we get that ordp(α) ≥ k.

Since ordp(αn) < k, we get by this item that

ordp
(∑n

j=1 αj
)

= ordp(α+ αn) = ordp(αn) < +∞ .

Thus
∑n
j=1 αj 6= 0. �

UFD = unique factorization domain

We define unique factorization domains. Recall that an (integral) domain

Rdo = 〈R, 0R, 1R, +, ·〉

is a commutative ring with 1R such that for every a, b ∈ R∗ = R \ {0R} also
ab 6= 0R. If a, b ∈ R, we say that a divides b (in Rdo), written a | b, if b = ac
(= a · c) for some c ∈ R. We say that a ∈ R is a unit if a | 1R (i.e., a is
multiplicatively invertible). The set of units in Rdo is denoted by R×. It is easy
to see that

〈R×, 1R, ·〉

is an Abelian group, the group of units of Rdo. For a, b ∈ R we write a ∼ b if
a = bc for some c ∈ R×. It is easy to see that ∼ is an equivalence relation. For
example, in the domain

Zdo = 〈Z, 0, 1, +, ·〉

of integers we have m ∼ n iff m = ±n. Two elements a, b ∈ R are coprime,
written (a, b) = 1R, if they can be simultaneously divided only by units.

Let Rdo = 〈R, 0R, 1R,+, ·〉 be a domain. We say that an element a ∈ R is
irreducible iff a ∈ R∗ \R× and in every decomposition

a = bc with b, c ∈ R ,

b or c is a unit.

Definition 3 (UFD). We say that Rdo is a unique factorization domain, or
UFD, if every element in R∗ \ R× expresses as a product of irreducibles, and
this product is unique up to the order of factors and the ∼ relation.

So for every a ∈ R∗ \R× there exist m ∈ N irreducibles a1, . . . , am such that

a = a1 · a2 · . . . · am ,
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and if
a1 · a2 · . . . · am = b1 · b2 · . . . · bn

where m,n ∈ N and every ai and bi is irreducible, then m = n and there
exists a permutation π of the numbers 1, 2, . . . ,m = n such that for every
i = 1, 2, . . . ,m = n we have

ai ∼ bπ(i) .

The coprime squares argument in UFD

In the next two propositions we generalize to UFD the argument used in the
two previous lectures. Its simplest form is

a, b, c ∈ N ∧ (a, b) = 1 ∧ ab = c2 ⇒ a = a20 ∧ b = b20 with a0, b0 ∈ N .

Proposition 4. Let Rdo = 〈R, 0R, 1R,+, ·〉 be UFD, let a, b, c, d ∈ R, let k ∈ N
with k ≥ 2 and let (a, b) = 1R. Then the following holds.

1. If a divides bc then a divides c.

2. If ab ∼ ck then a ∼ ak0 and b ∼ bk0 for some coprime a0, b0 ∈ R.

3. If c is irreducible and ab ∼ cdk, then {a, b} ∼ {cak0 , bk0} for some coprime
a0, b0 ∈ R.

Proof. 1. If c = 0R then a | c. If b = 0R, then a ∈ R× and again a | c. We
assume that b, c 6= 0R. Hence also a 6= 0R and we write the three elements as
(possibly empty) products

a = a1 · . . . · al, b = b1 · . . . · bm and c = c1 · . . . · cn

of irreducibles ai, bi and ci. Here l,m, n ∈ N0 and if l = 0 then a is a unit, and
similarly for m and n. It is easy to see that if l = 0 or n = 0 then the claim
holds. We assume that l, n ≥ 1. By the assumption bc = ad for some d ∈ R∗.
Considering the irreducible factorization of d and using that Rdo is UFD and
(a, b) = 1R, we see that there is an injection f : [l]→ [n] such that

ai ∼ cf(i) for i ∈ [l] .

Hence a ∼
∏l
i=1 cf(i) and a | c.

2. It is easy to see that the claim holds if c = 0R. Thus we assume that
a, b, c 6= 0R and write them as products of irreducibles ai, bi and ci as in 1. We
get the relation ∏l

i=1 ai ·
∏m
i=1 bi ∼

∏n
i=1 c

k
i .

If l = 0 then a ∈ R× and we have a = a · 1kR and b ∼ a−1 · ck. Similarly if
m = 0. Thus we assume that l,m ≥ 1. Since a and b are coprime and Rdo is
UFD, every product of k irreducibles cki = ci · . . . · ci is completely contained
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(up to the ∼ relation) among the ais or among the bis, and every ai and bi is
∼ to some ci. The claim follows.

3. An exercise for the interested reader. �

Proposition 5. Let Rdo = 〈R, 0R, 1R,+, ·〉 be UFD. If a, b, c, d ∈ R and k ∈ N
with k ≥ 2 are such that c is irreducible and divides both a and b, but this is not
true for c2 nor for any other irreducible different from c, and ab ∼ dk, then

{a, b} ∼ {cak0 , ck−1bk0}

for some coprime a0, b0 ∈ R.

Proof. An exercise for the interested reader. �

Units in Gaussian integers

We find units in the domain Z[i]do. Recall that

Z[i]do = 〈Z[i], 0, 1, +, ·〉 ,

is the domain of Gaussian integers.

Proposition 6. Z[i]× = {−1, 1,−i, i}.

Proof. Consider the map f : Z[i]→ N0 that is for α = a+ bi ∈ Z[i] defined by

f(α) := α · α = (a+ bi)(a− bi) = a2 + b2 .

Clearly, f(αβ) = f(α)f(β). Each of the four stated elements is a unit. On the
other hand, if α = a+ bi is a unit then αβ = 1 for some β ∈ Z[i] and

1 = f(1) = f(αβ) = f(α) · f(β) = (a2 + b2)f(β) .

Thus a2 + b2 = 1 (and f(β) = 1). Hence a = ±1, b = 0 or a = 0, b = ±1. Thus
α ∈ {−1, 1,−i, i}. �

Euclidean domains

We define Euclidean domains. Recall that a linear order 〈X,≺〉 is a well ordering
if every nonempty subset of X has a minimum element.

Definition 7 (Euclidean domain). Rdo = 〈R, 0R, 1R,+, ·〉 is an Euclidean
domain iff there exists a well ordering 〈X,≺〉 and a map

f : R∗ = R \ {0R} → X

with the property that for every a, b ∈ R with b 6= 0R there exist c, d ∈ R such
that

a = bc+ d ∧ (d = 0R ∨ f(d) ≺ f(b)) .

4



A prominent example of an Euclidean domain is the domain of integers. For
it we have 〈X,≺〉 = 〈N, <〉, with the standard ordering < of natural numbers,
and f(n) = |n|. We postpone the proof of the next theorem to the next lecture.

Theorem 8. Every Euclidean domain is UFD.

Z[i]do is Euclidean and hence UFD

Theorem 9. The domain Z[i]do is Euclidean.

Proof. We again take 〈X,≺〉 = 〈N, <〉. The required map f : Z[i]→ N0 is the
map used in Proposition 5, f(α) = αα (contrary to Definition 6 we allow the
value f(0) = 0). Let α ∈ Z[i] and β ∈ Z[i]∗ be given. We define

α

β
=: u0 + v0i with u0, v0 ∈ Q .

Let γ := u+ vi ∈ Z[i] where u, v ∈ Z are such that

|u− u0|, |v − v0| ≤ 1/2 .

Finally, δ := α− βγ. Then α = βγ + δ and

f(δ) = f(β) · f
(
α
β − γ

)
= f(β) ·

(
(u0 − u)2 + (v0 − v)2

)
≤ f(β)( 1

4 + 1
4 ) = f(β)

2 < f(β) .

�

Thus by Theorem 7 the domain of Gaussian integers Z[i]do is UFD and Propo-
sitions 4 and 5 hold in it.
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