Lecture 3

M. Klazar

October 21, 2025

We treat the two auxiliary results we used last time. The first one is the proof of non-vanishing of a sum by the p-adic argument. The second one is the result that the domain of Gaussian integers $\mathbb{Z}[i]_{\text{do}}$ is UFD.

Properties of the p-adic order

Recall that for a prime p and $\alpha \in \mathbb{Q}$, the p-adic order $\operatorname{ord}_p(\alpha)$ of α is $+\infty$ if $\alpha = 0$, and that for $\alpha \neq 0$ it is the unique $k \in \mathbb{Z}$ such that $\alpha = p^k \beta$ where $\beta \in \mathbb{Q}$ has both numerator and denominator coprime to p.

Proposition 1. Let $\alpha, \beta \in \mathbb{Q}$.

- 1. $\operatorname{ord}_{p}(\alpha\beta) = \operatorname{ord}_{p}(\alpha) + \operatorname{ord}_{p}(\beta)$.
- 2. $\operatorname{ord}_p(\alpha+\beta) \geq \min(\{\operatorname{ord}_p(\alpha), \operatorname{ord}_p(\beta)\}), \text{ with equality if } \operatorname{ord}_p(\alpha) \neq \operatorname{ord}_p(\beta).$

Proof. 1. Let $\alpha = p^k \alpha_0$ and $\beta = p^l \beta_0$ in \mathbb{Q} be two arbitrary fractions, where $k = \operatorname{ord}_p(\alpha)$, $l = \operatorname{ord}_p(\beta)$ and the fractions α_0 and β_0 have numerators and denominators coprime to p. Then

$$\alpha\beta = p^{k+l}\alpha_0\beta_0 =: p^{k+l}\gamma$$

where the fraction γ has numerator and denominator coprime to p. Thus

$$\operatorname{ord}_{p}(\alpha\beta) = k + l = \operatorname{ord}_{p}(\alpha) + \operatorname{ord}_{p}(\beta)$$

2. We take α and β as in 1 and assume w.l.o.g. that $k \leq l$, so that

$$k = \min(\{\operatorname{ord}_{p}(\alpha), \operatorname{ord}_{p}(\beta)\}).$$

Then

$$\alpha + \beta = p^k(\alpha_0 + p^{l-k}\beta_0) =: p^k \gamma.$$

If k < l then γ can be written as a fraction with numerator and denominator coprime to p, so that $\operatorname{ord}_p(\alpha + \beta) = k$. If k = l then γ can be written with denominator coprime to p, and it follows that $\operatorname{ord}_p(\alpha + \beta) \geq k$.

Corollary 2. If p is a prime and $\alpha_1, \ldots, \alpha_n$ are $n \geq 2$ fractions such that

$$\operatorname{ord}_{p}(\alpha_{n}) < \operatorname{ord}_{p}(\alpha_{i}) \text{ for every } i = 1, 2, \dots, n-1,$$

then $\sum_{j=1}^{n} \alpha_j \neq 0$.

Proof. Let $k := \min(\{\operatorname{ord}_p(\alpha_i): i = 1, \ldots, n-1\}) \ (\in \mathbb{Z} \cup \{+\infty\})$ and let $\alpha := \sum_{j=1}^{n-1} \alpha_j$. Applying repeatedly item 2 of Proposition 1 we get that $\operatorname{ord}_p(\alpha) \geq k$. Since $\operatorname{ord}_p(\alpha_n) < k$, we get by this item that

$$\operatorname{ord}_p\left(\sum_{j=1}^n \alpha_j\right) = \operatorname{ord}_p(\alpha + \alpha_n) = \operatorname{ord}_p(\alpha_n) < +\infty.$$

Thus
$$\sum_{i=1}^{n} \alpha_i \neq 0$$
.

UFD = unique factorization domain

We define unique factorization domains. Recall that an (integral) domain

$$R_{\text{do}} = \langle R, 0_R, 1_R, +, \cdot \rangle$$

is a commutative ring with 1_R such that for every $a,b \in R^* = R \setminus \{0_R\}$ also $ab \neq 0_R$. If $a,b \in R$, we say that a divides b (in R_{do}), written $a \mid b$, if b = ac (= $a \cdot c$) for some $c \in R$. We say that $a \in R$ is a unit if $a \mid 1_R$ (i.e., a is multiplicatively invertible). The set of units in R_{do} is denoted by R^{\times} . It is easy to see that

$$\langle R^{\times}, 1_R, \cdot \rangle$$

is an Abelian group, the group of units of R_{do} . For $a,b\in R$ we write $a\sim b$ if a=bc for some $c\in R^{\times}$. It is easy to see that \sim is an equivalence relation. For example, in the domain

$$\mathbb{Z}_{do} = \langle \mathbb{Z}, 0, 1, +, \cdot \rangle$$

of integers we have $m \sim n$ iff $m = \pm n$. Two elements $a, b \in R$ are *coprime*, written $(a, b) = 1_R$, if they can be simultaneously divided only by units.

Let $R_{do} = \langle R, 0_R, 1_R, +, \cdot \rangle$ be a domain. We say that an element $a \in R$ is *irreducible* iff $a \in R^* \setminus R^{\times}$ and in every decomposition

$$a = bc$$
 with $b, c \in R$,

b or c is a unit.

Definition 3 (UFD). We say that R_{do} is a unique factorization domain, or UFD, if every element in $R^* \setminus R^{\times}$ expresses as a product of irreducibles, and this product is unique up to the order of factors and the \sim relation.

So for every $a \in R^* \setminus R^{\times}$ there exist $m \in \mathbb{N}$ irreducibles a_1, \ldots, a_m such that

$$a = a_1 \cdot a_2 \cdot \ldots \cdot a_m \,,$$

and if

$$a_1 \cdot a_2 \cdot \ldots \cdot a_m = b_1 \cdot b_2 \cdot \ldots \cdot b_n$$

where $m, n \in \mathbb{N}$ and every a_i and b_i is irreducible, then m = n and there exists a permutation π of the numbers $1, 2, \ldots, m = n$ such that for every $i = 1, 2, \ldots, m = n$ we have

$$a_i \sim b_{\pi(i)}$$
.

The coprime squares argument in UFD

In the next two propositions we generalize to UFD the argument used in the two previous lectures. Its simplest form is

$$a, b, c \in \mathbb{N} \land (a, b) = 1 \land ab = c^2 \Rightarrow a = a_0^2 \land b = b_0^2 \text{ with } a_0, b_0 \in \mathbb{N}.$$

Proposition 4. Let $R_{do} = \langle R, 0_R, 1_R, +, \cdot \rangle$ be UFD, let $a, b, c, d \in R$, let $k \in \mathbb{N}$ with $k \geq 2$ and let $(a, b) = 1_R$. Then the following holds.

- 1. If a divides bc then a divides c.
- 2. If $ab \sim c^k$ then $a \sim a_0^k$ and $b \sim b_0^k$ for some coprime $a_0, b_0 \in R$.
- 3. If c is irreducible and $ab \sim cd^k$, then $\{a,b\} \sim \{ca_0^k,b_0^k\}$ for some coprime $a_0,b_0 \in R$.

Proof. 1. If $c = 0_R$ then $a \mid c$. If $b = 0_R$, then $a \in R^{\times}$ and again $a \mid c$. We assume that $b, c \neq 0_R$. Hence also $a \neq 0_R$ and we write the three elements as (possibly empty) products

$$a = a_1 \cdot \ldots \cdot a_l, b = b_1 \cdot \ldots \cdot b_m \text{ and } c = c_1 \cdot \ldots \cdot c_n$$

of irreducibles a_i , b_i and c_i . Here $l, m, n \in \mathbb{N}_0$ and if l = 0 then a is a unit, and similarly for m and n. It is easy to see that if l = 0 or n = 0 then the claim holds. We assume that $l, n \geq 1$. By the assumption bc = ad for some $d \in R^*$. Considering the irreducible factorization of d and using that R_{do} is UFD and $(a, b) = 1_R$, we see that there is an injection $f: [l] \to [n]$ such that

$$a_i \sim c_{f(i)}$$
 for $i \in [l]$.

Hence $a \sim \prod_{i=1}^{l} c_{f(i)}$ and $a \mid c$.

2. It is easy to see that the claim holds if $c = 0_R$. Thus we assume that $a, b, c \neq 0_R$ and write them as products of irreducibles a_i, b_i and c_i as in 1. We get the relation

$$\prod_{i=1}^l a_i \cdot \prod_{i=1}^m b_i \sim \prod_{i=1}^n c_i^k.$$

If l=0 then $a\in\mathbb{R}^{\times}$ and we have $a=a\cdot 1_R^k$ and $b\sim a^{-1}\cdot c^k$. Similarly if m=0. Thus we assume that $l,m\geq 1$. Since a and b are coprime and R_{do} is UFD, every product of k irreducibles $c_i^k=c_i\cdot\ldots\cdot c_i$ is completely contained

(up to the \sim relation) among the a_i s or among the b_i s, and every a_i and b_i is \sim to some c_i . The claim follows.

3. An exercise for the interested reader.

Proposition 5. Let $R_{do} = \langle R, 0_R, 1_R, +, \cdot \rangle$ be UFD. If $a, b, c, d \in R$ and $k \in \mathbb{N}$ with $k \geq 2$ are such that c is irreducible and divides both a and b, but this is not true for c^2 nor for any other irreducible different from c, and $ab \sim d^k$, then

$$\{a, b\} \sim \{ca_0^k, c^{k-1}b_0^k\}$$

for some coprime $a_0, b_0 \in R$.

Proof. An exercise for the interested reader.

Units in Gaussian integers

We find units in the domain $\mathbb{Z}[i]_{do}$. Recall that

$$\mathbb{Z}[i]_{do} = \langle \mathbb{Z}[i], 0, 1, +, \cdot \rangle,$$

is the domain of Gaussian integers.

Proposition 6. $\mathbb{Z}[i]^{\times} = \{-1, 1, -i, i\}.$

Proof. Consider the map $f: \mathbb{Z}[i] \to \mathbb{N}_0$ that is for $\alpha = a + bi \in \mathbb{Z}[i]$ defined by

$$f(\alpha) := \alpha \cdot \overline{\alpha} = (a+bi)(a-bi) = a^2 + b^2$$
.

Clearly, $f(\alpha\beta) = f(\alpha)f(\beta)$. Each of the four stated elements is a unit. On the other hand, if $\alpha = a + bi$ is a unit then $\alpha\beta = 1$ for some $\beta \in \mathbb{Z}[i]$ and

$$1 = f(1) = f(\alpha\beta) = f(\alpha) \cdot f(\beta) = (a^2 + b^2)f(\beta)$$
.

Thus $a^2 + b^2 = 1$ (and $f(\beta) = 1$). Hence $a = \pm 1, b = 0$ or $a = 0, b = \pm 1$. Thus $\alpha \in \{-1, 1, -i, i\}$.

Euclidean domains

We define Euclidean domains. Recall that a linear order $\langle X, \prec \rangle$ is a well ordering if every nonempty subset of X has a minimum element.

Definition 7 (Euclidean domain). $R_{do} = \langle R, 0_R, 1_R, +, \cdot \rangle$ is an Euclidean domain iff there exists a well ordering $\langle X, \prec \rangle$ and a map

$$f \colon R^* = R \setminus \{0_R\} \to X$$

with the property that for every $a, b \in R$ with $b \neq 0_R$ there exist $c, d \in R$ such that

$$a = bc + d \wedge (d = 0_R \vee f(d) \prec f(b)).$$

A prominent example of an Euclidean domain is the domain of integers. For it we have $\langle X, \prec \rangle = \langle \mathbb{N}, < \rangle$, with the standard ordering < of natural numbers, and f(n) = |n|. We postpone the proof of the next theorem to the next lecture.

Theorem 8. Every Euclidean domain is UFD.

$\mathbb{Z}[i]_{ ext{do}}$ is Euclidean and hence UFD

Theorem 9. The domain $\mathbb{Z}[i]_{do}$ is Euclidean.

Proof. We again take $\langle X, \prec \rangle = \langle \mathbb{N}, < \rangle$. The required map $f : \mathbb{Z}[i] \to \mathbb{N}_0$ is the map used in Proposition 5, $f(\alpha) = \alpha \overline{\alpha}$ (contrary to Definition 6 we allow the value f(0) = 0). Let $\alpha \in \mathbb{Z}[i]$ and $\beta \in \mathbb{Z}[i]^*$ be given. We define

$$\frac{\alpha}{\beta} =: u_0 + v_0 i \text{ with } u_0, v_0 \in \mathbb{Q}.$$

Let $\gamma := u + vi \in \mathbb{Z}[i]$ where $u, v \in \mathbb{Z}$ are such that

$$|u-u_0|, |v-v_0| \le 1/2.$$

Finally, $\delta := \alpha - \beta \gamma$. Then $\alpha = \beta \gamma + \delta$ and

$$f(\delta) = f(\beta) \cdot f\left(\frac{\alpha}{\beta} - \gamma\right) = f(\beta) \cdot \left((u_0 - u)^2 + (v_0 - v)^2\right)$$

$$\leq f(\beta)\left(\frac{1}{4} + \frac{1}{4}\right) = \frac{f(\beta)}{2} < f(\beta).$$

Thus by Theorem 7 the domain of Gaussian integers $\mathbb{Z}[i]_{do}$ is UFD and Propositions 4 and 5 hold in it.