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In this lecture we present the resolution of the equation xm− y2 = 1, m ∈ N
with m ≥ 3, due to V. Lebesgue. We begin by introducing two tools for the
proof: p-adic order of fractions and the ring of Gaussian integers on Z[i].

p-adic order

For a prime p and nonzero α ∈ Q we define ordp(α) (∈ Z) as the unique integer
k such that

α = pkβ

where β is a fractions with neither the numerator nor the denominator divisible
by p. We set ordp(0) := +∞. We compute with +∞ as follows: +∞ + c =
c+ (+∞) := +∞ for any c ∈ R ∪ {+∞}, and c < +∞ for any c ∈ R. We prove
the next lemma in the next lecture as Corollary 2.

Lemma 1. If p is a prime and α1, α2, . . . , αn are n ≥ 2 fractions such that
the minimum

min({ordp(αi) : i = 1, 2, . . . , n})

is attained for a unique index i, then
∑n

j=1 αj 6= 0.

Gaussian integers

By Gaussian integers we mean the integral domain

Z[i]do = 〈Z[i], 0, 1, +, ·〉

in which
Z[i] = {a+ bi : a, b ∈ Z} (⊂ C) ,

0 = 0 + 0i, 1 = 1 + 0i, and + and · are addition and multiplication of complex
numbers.

The theorem of V. Lebesgue on xm − y2 = 1

Resolution of the equation xm − y2 = 1 for m ∈ N with m ≥ 2 is easy for even
m = 2n. Then

xm − y2 = (xn − y)(xn + y) = 1

1



and we see that the only solutions are ±1, 0. The case when m ≥ 3 is odd is
harder and was resolved by V. Lebesgue in [1].

Theorem 2 (V. Lebesgue, 1850). Let m ∈ N with m ≥ 3 and odd. Then

xm − y2 = 1

has only the trivial solution 1, 0.

Proof. Let m ≥ 3 be an odd integer and a, b ∈ Z with b 6= 0 be such that
am − b2 = 1. We derive a contradiction. If b is odd then am ≡ 2 modulo 4,
which is impossible. Thus b is even and nonzero, and a is odd. We consider the
factorization

am = (1 + bi)(1− bi)
in Gaussian integers.

It is easy to see that 1 + bi and 1 − bi are coprime in Z[i]dom. Indeed, if
α ∈ Z[i] divides both 1 + bi and 1 − bi, then n = αα (∈ N) divides, in Z, the
number 2 · 2 = 4 and the odd number (1 + bi)(1 − bi) = am. Thus n = 1, α
is a unit in Z[i]dom, and 1 + bi and 1 − bi are coprime. Since Z[i]dom is UFD
(see Theorem 9 in the next lecture), using item 2 of Proposition 4 in the next
lecture we get α ∈ Z[i], ε, ε′ ∈ Z[i]× and u, v ∈ Z such that

1 + bi = εαm = (ε′α)m = (u+ vi)m and 1− bi = ε(α)m = (ε′α)m = (u− vi)m

— every unit ±1 and ±i in Z[i]× (see Proposition 6 in the next lecture) is an
m-th power. Since m is odd, we have

2 = (u+ vi)m + (u− vi)m = 2u · β, β ∈ Z[i] ,

and deduce that u = ±1. We exclude the possibility u = −1. Since (1 + v2)m =
(u2 + v2)m = 1 + b2 is odd, the number v is even. From

1 + bi = (u+ vi)m =
∑m

j=0

(
m
j

)
um−j(vi)j ≡ um +mum−1vi (mod 4)

(congruence in Z[i]dom) we deduce that um ≡ 1 modulo 4 (congruence in Z),
which excludes u = −1.

Thus u+ vi = 1 + vi with even and nonzero v (since b 6= 0). Comparing the
real parts in 1 + bi = (1 + vi)m we get an identity in Z,

1 =
∑(m−1)/2

j=0 (−1)j
(
m
2j

)
v2j , or −

(
m
2

)
v2 +

∑(m−1)/2
j=2 (−1)j

(
m
2j

)
v2j = 0 .

For m = 3 the last sum is empty (zero) and the equality is impossible as v 6= 0.
For odd m ≥ 5 we show that the equality does not hold by means of Lemma 1
and prime p = 2. We set A =

(
m
2

)
v2 and Bj =

(
m
2j

)
· v2j for j = 2, 3, . . . , m−12 ,

and show that ord2(A) < ord2(Bj) for every j. Indeed,

Bj = A · 1
j(2j−1)

(
m−2
2j−2

)
v2j−2 =: A · Cj

and ord2(Cj) ≥ 2j−2−blog2(j)c > 0, so that by the additivity of ord2(·) (item 1
of Proposition 1 in the next lecture) we have ord2(A) = ord2(Bj)− ord2(Cj) <
ord2(Bj). We get a contradiction �

The previous proof is taken from [2, Chapter 2].
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