Lecture 1

M. Klazar

October 7, 2025

Catalan's conjecture

=

Mihăilescu's theorem

The purpose of this series of 11 lectures on Catalan's conjecture is to get me started so that I eventually, some time, write down a *complete* proof of Mihăilescu's theorem.

Catalan's conjecture

Let $\mathbb{N} = \{1, 2, \dots\}.$

Conjecture 1 (E. Catalan, 1842). If $x, y, m, n \in \mathbb{N} \setminus \{1\}$ are such that

$$x^m - y^n = 1,$$

then x = n = 3 and y = m = 2.

Mihăilescu's theorem

Catalan's conjecture was affirmatively resolved by P. Mihăilescu in [2] twenty years ago.

Theorem 2 (P. Mihăilescu, 2006). Catalan's conjecture is true.

Mihăilescu's proof is a pen-and-paper proof, it is not computer-assisted, but it relies on large swaths of algebraic number theory.

The equation
$$x^2 - y^3 = 1$$

The simplest and already non-trivial special case of Catalan's conjecture is to prove the following theorem. (By "solution" we mean in these lectures always solution in the integers, in \mathbb{Z} .)

Theorem 3 (L. Euler, 1738). The only solutions of

$$x^2 - y^3 = 1$$

are $\langle \pm 1, 0 \rangle$, $\langle \pm 3, 2 \rangle$ and $\langle 0, -1 \rangle$.

Euler proved in fact more strongly that $\langle \pm 3, 2 \rangle$ is the only solution of the equation in nonzero fractions, in \mathbb{Q}^* .

The equation
$$x^4 - 3y^2 = 1$$

References

- [1] M. Klazar, O řešení diofantické rovnice $x^2-y^3=\pm 1,$ Matematické obzory 32 (1989), 47–53 (On solving Diophantine equation $x^2-y^3=\pm 1$)
- [2] P. Mihăilescu,
- [3] E. Notari,