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Preface

The name of this course, which I am teaching in the Computer Science Section
of the Faculty of Mathematics and Physics of Charles University in Prague
for many years, is for technical reasons Algebraic Number Theory, in Czech
Algebraická teorie č́ısel (NDMI066). Years ago, for example in the summer
term of 2005/6 or in the winter term of 2007/8, I indeed lectured on the classical
algebraic number theory, which is mostly concerned with arithmetic questions
in the framework of number fields. Recall that a number field K is any field
extension K ⊃ Q such that the vector space K over Q has finite dimension.
Then I was following the nice book Number Fields [15] by D. Marcus. Topics I
have been lecturing on in the course more recently are better captured by the
above umbrella title of the lecture notes. If it is not said else, results presented
are not original. I always try to give proper attributions, if I remember them,
and apologize for possible omissions.

January 2022, Prague M. Klazar
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Chapter 1

Lecture 1. abc conjectures:
in Z and in C[t]

We begin the course with a conjecture.

The abc conjecture

The most important open problem in number theory today is the so called abc
conjecture. To state it we define for any nonzero integer n its radical r(n) as

r(n) :=
∏
p, p |n

p .

It is the product of all prime factors p of n, i.e., of all prime numbers p dividing n.
We set r(±1) := 1. It is clear that for any a, b ∈ Z \ {0} and any k ∈ N :=
{1, 2, . . . },

r(abk) = r(ab) .

Also, always r(a) ≤ |a|. Numbers a1, a2, . . . , ak ∈ Z are coprime if the maximum
d ∈ Z dividing them all is d = 1. They are pairwise coprime if each pair ai, aj
for 1 ≤ i < j ≤ k is coprime.

Conjecture 1.1 (abc conjecture).

∀ ε > 0 ∃M = M(ε) > 0 : a, b, c ∈ N pairwise coprime and a+ b = c⇒
⇒ c < M · r(abc)1+ε .

Nothing changes if one replaces “pairwise coprime” with “coprime”, and/or N
with Z \ {0} and the last bound with

max(|a|, |b|, |c|) < M · r(abc)1+ε .

The abc conjecture is not very old: it was proposed by the British mathe-
matician D. Masser [17] in 1985, and independently by the French mathemati-
cian J. Oesterlé [23] in 1988. In August 2012, the Japanese mathematician
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S. Mochizuki posted on the arXiv preprint server https://arxiv.org/ sev-
eral long articles which, as he claimed and claims, prove the abc conjecture.
In 2021 he supported this claim by turning his preprints in the publications
[18, 19, 20, 21]. Currently the majority consensus of the mathematical commu-
nity, with the exception of several people, is that these articles still do not prove
the abc conjecture. This is somewhat embarrassing, both for mathematics and
for mathematicians.

The abc conjecture posits that if a, b, c ∈ N are coprime and a+ b = c, then
the prime factorizations of a, b and c cannot involve high powers. For example,
we show below that the abc conjecture implies that each equation xn+yn = zn,
n ∈ N with n ≥ 4, has in N only finitely many coprime solutions. This is
a weaker form of the famous FLT, Fermat’s Last Theorem, that xn + yn = zn

has in fact no solution x, y, z, n ∈ N with n ≥ 3, which was proved by A. Wiles
and R. Taylor in [28, 27] in 1995. But one does not have to restrict to equal
exponents:

Proposition 1.2 (weak generalized FLT in Z). If the abc conjecture holds
then for any triple of numbers k, l,m ∈ N with 1/k+1/l+1/m < 1 the equation

xk + yl = zm

has only finitely many coprime solutions x, y, z ∈ N.

Proof. Suppose that k, l and m are as stated. We fix sufficiently small ε > 0
such that still

d := (1 + ε) · (1/k + 1/l + 1/m) < 1 .

By the abc conjecture there is a constant M > 0 such that for any coprime
numbers a, b, c ∈ N with ak + bl = cm one has the following three bounds
(logarithmic forms of the bound in the abc conjecture):

k log a, l log b, m log c < (1 + ε) log(r(abc)) + logM ≤ (1 + ε)S + logM ,

where S := log a + log b + log c. Dividing by k, l and m and adding the three
resulting bounds we get that

S < (1 + ε) · (1/k + 1/l + 1/m) · S + (1/k + 1/l + 1/m) logM .

So S < d · S + logM . Since d ∈ (0, 1), this inequality becomes impossible once
any of a, b and c is large enough. Thus the above equation has only finitely
many coprime solutions in N. 2

In a similar way one can easily deduce by the abc conjecture the Darmon–
Granville theorem [4] that if A,B,C ∈ Z \ {0} and k, l,m ∈ N are such that
1/k + 1/l + 1/m < 1 then the equation

Axk +Byl = Czm

has only finitely many coprime solutions in Z \ {0}. Their theorem is proven
also in [3, Chapter 12.6], and the proof uses the difficult theorem of G. Faltings
[6, 7] on finiteness of rational points on curves with genus at least 2.
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Proposition 1.3 (weak FLT in Z). If the abc conjecture holds then for any
integer n ≥ 4 the equation

xn + yn = zn

has only finitely many coprime solutions x, y, z ∈ N.

Proof. Just set k = l = m := n in the previous proposition. 2

These are obvious applications of the abc conjecture. A non-obvious application
is mentioned in the fascinating book [3] Heights in Diophantine Geometry by
E. Bombieri and W. Gubler. Chapter 12 is devoted to the abc conjecture and
explains besides other results a derivation from the abc conjecture of Roth’s
theorem on Diophantine approximation [25]. Recall that this theorem says that
for any real irrational algebraic number α and any ε > 0 there is a constant
c = c(α, ε) > 0 such that |α − p/q| > c/q2+ε holds for any fraction p/q with
q > 0.

We show that in the abc conjecture one cannot take M to be a fixed constant,
for ε → 0 the required M = M(ε) has to go to +∞. In particular, also the ε
cannot be omitted.

Proposition 1.4 (on ε and M). No matter how large M > 0 is, there exist
a small ε > 0 and coprime numbers a, b, c ∈ N such that

a+ b = c and c > M · r(abc)1+ε .

Proof. For any n ∈ N we define the numbers xn, yn ∈ N by the equation

xn + yn
√

2 = (3 + 2
√

2)n .

So (x1, y1) = (3, 2), (x2, y2) = (17, 12), (x3, y3) = (99, 70) and so on. It follows
that also

xn − yn
√

2 = (3− 2
√

2)n .

Thus
x2n − 2y2n = (xn + yn

√
2)(xn − yn

√
2) =

(
32 − 2 · 22

)n
= 1

—xn, yn are solutions of the Pell equation x2 − 2y2 = 1. In fact, the list of all
integral solutions of this equation is

{(±1, 0)} ∪ {(±xn, ±yn) | n ∈ N} ,

but we do not need this fact. We use that for every even n = 2m,

xn + yn
√

2 = (3 + 2
√

2)2m = (xm + ym
√

2)2 = x2m + 2y2m + 2xmym
√

2 .

Thus yn = 2xmym. It follows that if n = 2m then 2m+1 divides yn. We set

n := 2m for m = 1, 2, . . . , a := 1, b := 2y2n and c := x2n .
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Then a, b and c are coprime natural numbers and a+ b = c. For any ε > 0 and
any m ∈ N we have, since yn is a multiple of 2m+1 and r(uvk) = r(uv), that

c

r(abc)1+ε
=

x2n
r(xnyn/2m)1+ε

≥ x2n · 2(1+ε)m

(xnyn)1+ε
>

2m

x2εn
,

where the first inequality follows from r(u) ≤ |u|, and the next one from yn < xn
and 2εm > 1. Let an M > 0 be given. We take an m ∈ N so large that 2m > M ,
and then an ε > 0 so small that still 2m/x2εn > M . Then ε and the numbers
a = 1, b = 2y2n and c = x2n corresponding to the n = 2m enjoy the stated
properties. 2

The previous proof is taken from the book [5, pp. 169–170] Analytic Number
Theory by J.-M. De Koninck and F. Luca. Chapter 11 of it is devoted to the
abc conjecture and its corollaries.

The Stothers–Mason theorem

In the second half of the lecture I discuss — and prove in Theorem 1.6 —
a form of the abc conjecture for the ring C[t] of univariate polynomials with
complex coefficients. In C[t] the situation is much nicer than in Z: one does not
need the constants M and ε and the polynomial abc conjecture has a simple and
surprising proof. The radical r(a) = r(a(t)) of a nonzero polynomial a ∈ C[t] is
now defined as

r(a) := |{α ∈ C | a(α) = 0}| ,

which is the number of distinct roots of a(t). Analogues to the above properties
of integral radicals hold: for any nonzero a, b ∈ C[t] and any k ∈ N,

r(abk) = r(ab) and r(a) ≤ deg a .

The crucial tool available in C[t] but lacking in Z is formal differentiation.
For a = a(t) =

∑n
i=0 ait

i ∈ C[t] we set

a′ = a(t)′ =
d a(t)

d t
:=

n∑
i=0

iait
i−1 =

n∑
i=1

iait
i−1 = nant

n−1 + · · ·+ 2a2t+ a1 .

Obviously, a′ = 0 iff a is a constant polynomial. One easily verifies two proper-
ties of this unary operation on C[t]: the linearity

∀α, β ∈ C ∀ a, b ∈ C[t] : (αa+ βb)′ = αa′ + βb′

and the Leibniz identity

∀ a, b ∈ C[t] : (ab)′ = a′b+ ab′ .

But we need to work in a wider domain, in the field of fractions of the ring
C[t]. It is the field

C(t) = {a/b | a, b ∈ C[t], b 6= 0}
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of so called (complex) rational functions. We extend formal differentiation to
C(t) by the formula (a

b

)′
:=

a′b− ab′

b2
.

It is not hard to check that this is a correct definition (if a/b = c/d then
(a/b)′ = (c/d)′), that it is indeed an extension of the formal differentiation in
C[t], that the extension preserves the field of constants C (the elements with
zero derivative), and that the linearity and the Leibniz identity still hold.

Proposition 1.5 (logdif identity). If a1, . . . , ak ∈ C(t) are non-zero rational
functions and a := a1a2 . . . ak, then

a′

a
=

k∑
i=1

a′i
ai
.

Proof. We expand (a1a2 . . . ak)′ by iterating the Leibniz identity and get that

a′

a
=

∑k
i=1 a1 . . . ai−1a

′
iai+1 . . . ak

a1a2 . . . ak
=

k∑
i=1

a′i
ai
.

2

For nonzero a ∈ C(t) we call the fraction a′/a the logarithmic derivative of a.
This term is motivated by the calculus formula (log(a(t)))′ = a(t)′/a(t). We
apply the logdif identity to factorization of any nonzero rational function in
linear factors: if

0 6= a

b
=
a(t)

b(t)
= α

k∏
i=1

(t− αi)mi ,

where α ∈ C× := C \ {0}, k ∈ N0 := {0, 1, . . . }, αi ∈ C are mutually distinct
numbers and mi ∈ Z \ {0}, then one quickly computes by the logdif identity
that

(a/b)′

(a/b)
=

k∑
i=1

mi

t− αi
, (∗)

where for k = 0 the above product is defined as 1, and the above sum as 0.
Now we state and prove the polynomial abc conjecture/theorem. Recall

that some polynomials in C[t] are coprime if they have no common (complex)
root. The theorem is due independently to W. W. Stothers [26] in 1981 and
R. C. Mason [16] in 1984.

Theorem 1.6 (Stothers–Mason). If a(t), b(t), c(t) ∈ C[t] are (pairwise) co-
prime nonzero polynomials that are not all constant, then

a+ b = c⇒ max(deg a, deg b, deg c) ≤ r(abc)− 1 .
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Proof. Let a, b and c be as stated. We compute:

a+ b = c;
a

c
+
b

c
= 1 ; (a/c)′ + (b/c)′ = 0 ;

a

b
= − (b/c)′/(b/c)

(a/c)′/(a/c)
. (;)

Suppose that the factorizations of a, b and c in linear factors are

a(t) = α

k∏
i=1

(t− αi)ri , b(t) = β

l∏
i=1

(t− βi)si and c(t) = γ

m∏
i=1

(t− γi)ti ,

where α, β, γ ∈ C×, k, l,m ∈ N0, αi, βi, γi ∈ C (by the assumption on a, b and c,
the numbers αi, βi and γi are mutually distinct) and ri, si, ti ∈ N. Substituting
the sums of equation (∗) in the right-hand side of the last equation in (;) we
get that

a(t)

b(t)
= −

∑l
i=1 si/(t− βi)−

∑m
i=1 ti/(t− γi)∑k

i=1 ri/(t− αi)−
∑m
i=1 ti/(t− γi)

=: −P (t)

Q(t)
=
−d(t)P (t)

d(t)Q(t)
,

where d(t) :=
∏k
i=1(t−αi) ·

∏l
i=1(t−βi) ·

∏m
i=1(t−γi). Clearly, −dP, dQ ∈ C[t].

Since the polynomials a and b are coprime, a(t)/b(t) is in lowest terms and

deg a ≤ deg(−dP ) ≤ r(abc)− 1 and deg b ≤ deg(dQ) ≤ r(abc)− 1 .

From c = a+ b we get that also deg c ≤ r(abc)− 1. 2

We have the following corollaries.

Proposition 1.7 (generalized FLT for polynomials). If k, l,m ∈ N are
numbers and a, b, c ∈ C[t] are (pairwise) coprime nonzero polynomials that are
not all constant, then

ak + bl = cm ⇒ 1

k
+

1

l
+

1

m
> 1 .

Proof. Suppose that a, b and c are as stated and satisfy the hypothesis of the
implication. By the previous theorem we then get three bounds

k deg a, l deg b, m deg c ≤ r(abc)− 1 ≤ deg a+ deg b+ deg c− 1 =: S − 1 .

Dividing by k, l and m and adding the three resulting bounds we get that

S ≤ S · (k−1 + l−1 +m−1)− (k−1 + l−1 +m−1) .

Dividing by S ≥ 1 we get that

k−1 + l−1 +m−1 ≥ 1 +
k−1 + l−1 +m−1

S
> 1 .

2

In other words, if the sum of reciprocals of k, l,m ∈ N does not exceed 1 then
the equation xk + yl = zm has no coprime and nonzero solution in C[t] such
that the three polynomials x(t), y(t) and z(t) are not all constant.
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Proposition 1.8 (FLT for polynomials). If n ≥ 3 is an integer then the
equation

xn + yn = zn

has no solution in coprime and nonzero polynomials x(t), y(t), z(t) ∈ C[t] that
are not all constant.

Proof. Just set k = l = m := n in the previous proposition. 2

Later we will see another proof of this proposition.
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Chapter 2

Lecture 2. Existence of n
√
z

for complex z

We remind an important family of complex numbers.

Roots of unity

For m ∈ N and α ∈ C, we say that α is an m-th root of 1 if

αm = 1 .

Let α be an m-th root of 1. The order of α is the minimum n ∈ N such that
αn = 1. It is easy to see that n divides m. If n = m, we say that α is a primitive
m-th root of 1. For example, i has order 4, 1 is an m-th root of 1 for every m,
and −1 is a 2m-th root of 1 for every m and is a primitive 2nd root of 1.

We can express roots of 1 by means of the complex exponential function
exp(z) and/or the real trigonometric functions cos t and sin t: the m-th roots
of 1 are exactly the m complex numbers

αj := exp((j/m)2πi) = cos((j/m)2π) + i sin((j/m)2π) (RU)

where j ∈ [m] := {1, . . . , m}. In particular, αm = 1. Instead of [m] the number
j may run through any set X ⊂ Z representing all m residues modulo m, and
one often takes X = {0, 1, . . . ,m− 1}. The m-th roots of 1 form the m vertices
of the regular m-gon that is inscribed in the (complex) unit circle

S := {z ∈ C | |z| = 1}

and has vertex 1. The primitive m-th roots of 1 correspond to the j ∈ [m]
coprime to m. In other words, to the j when the fraction j/m is in lowest
terms. For any n ∈ N we define

RUn := {α ∈ C | α is an n-th root of 1}
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and
PRUn := {α ∈ C | α is a primitive n-th root of 1} .

The cardinalities, i.e., numbers of elements, of these sets are |RUn| = n and
|PRUn| = ϕ(n), where

ϕ(n) := |{m ∈ [n] | m and n are coprime}| .

The function ϕ : N→ N is called Euler’s (totient) function. For any n ∈ N, any
number z ∈ C× has exactly n distinct n-th roots

u = |z|1/n · αj , j = 0, 1, . . . , n− 1 . (NR)

Here |z|1/n is the unique nonnegative real n-th root of |z| and the αj are defined
in equation (RU); recall from the course of mathematical analysis that

|z|1/n = sup({x ∈ R | x ≥ 0 ∧ xn ≤ |z|}) .

These are exactly the n complex solutions u of the equation un = z. For z = 0
all its n-th roots coincide and are equal to 0.

Existence of n-th roots in C

One of the fundamental mathematical results is the Fundamental Theorem
of Algebra (FTAlg): every non-constant complex polynomial has at least one
complex root. Most proofs of it rely on the fact that every complex number
has at least one n-th root for every n, and usually gloss over it by referring
to equation (NR). The goal of this lecture is to present my purely topological
proof of existence of complex n-th roots.

So we prove purely topologically that

∀u ∈ C ∀n ∈ N ∃ v ∈ C : vn = u , (nR)

without using either of the functions exp(·), cos(·) and sin(·). Instead we use
connected and disconnected subsets of C. Why we bind our hands and do
not want to use these nice special functions? The proof of existence of n-th
roots is simpler without them, both conceptually and technically. To establish
all necessary properties of the exponential function and/or the trigonometric
functions takes time if one gives all details. The existence of n-th roots based
on cosine and sine looks simple exactly because these details are usually not
given.

For my proof of claim (nR) we need the property of connectedness of sets
of complex numbers and some further properties of these sets. A set X ⊂ C is
open if

∀u ∈ X ∃ r > 0 : B(u, r) ⊂ X .

Here B(u, r) := {z ∈ C | |z − u| < r} is the open ball (with center u and
radius r). As is well known, ∅, C and every B(u, r) are open sets, any union of
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open sets is an open set and any finite intersection of open sets is an open set.
For X ⊂ C we say that a function f : X → C is continuous if

∀u ∈ X ∀ ε > 0 ∃ δ > 0 : f [B(u, δ) ∩X] ⊂ B(f(u), ε) .

Here the notation g[X] means, for a function g : A → B and a set X ⊂ A, the
image of X by g, the set

g[X] := {g(a) | a ∈ X} ⊂ B .

Similarly, for X ⊂ B the set

g−1[X] := {a ∈ A | g(a) ∈ X} ⊂ A

is the inverse image of X by g. An equivalent definition of continuity is that
for X ⊂ C a function f : X → C is continuous if

∀ open set A ⊂ C ∃ an open set B ⊂ C : f−1[A] = B ∩X .

We say that a set X ⊂ C is disconnected if there exist two open sets A,B ⊂ C
such that

(X ⊂ A ∪B) ∧ (A ∩X 6= ∅ 6= B ∩X) ∧ (A ∩B ∩X = ∅) .

In this situation we say that A and B tear X. If no such two open sets A and
B exist, we say that the set X is connected. Proofs of the following three useful
results on connectedness are left to the reader as exercises.

1. If X,Y ⊂ C are connected sets and X ∩ Y 6= ∅ then X ∪ Y is connected.

2. Any real interval I ⊂ C— we regard R as a subset of C— is connected.

3. For any connected set X ⊂ C and any continuous function f : X → C the
set f [X] is connected.

Proposition 2.1 (connectedness of S). The unit circle

S = {z ∈ C | |z| = 1} ⊂ C

is a connected set.

Proof. We express S as the union S = S− ∪ S+ with the sets S− = f−[I] and
S+ = f+[I] (S−, resp. S+, is the lower, resp. upper, semicircle of S), where
I = [−1, 1] ⊂ C is a real interval and the functions

f−, f+ : I → C

are given by

f−(t) = t− i
√

1− t2 and f+(t) = t+ i
√

1− t2 .
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It is clear that f− and f+ are continuous and that S− ∩ S+ = {−1, 1}. Hence
the above properties 1–3 show that S is a connected set. 2

The function
√
· used in the proof is the root of a nonnegative real number,

which we mentioned above. A simpler proof of connectedness of S uses the
representation S = f [J ], where J = [0, 2π] and f(t) = cos t + i sin t. But recall
that we do not want to use trigonometric functions.

We also need an extension of the root function
√
· to the complex domain.

Another exercise for the reader is to establish the following result:

∀ a+ bi ∈ C ∃ c+ di ∈ C : (c+ di)2 = a+ bi . (
√
·)

(Hint: use the quadratic formula.) Using this and the previous proposition we
easily prove claim (nR).

Theorem 2.2 (existence of n-th roots in C). For every n ∈ N and every
u ∈ C there is a v ∈ C such that

vn = u .

Proof. We may assume that u is nonzero, so let u ∈ C× and n ∈ N. Since
| 1|u| · u| = 1 and we can take n-th root of any nonnegative real number, we may

assume that |u| = 1, i.e., u ∈ S. Since n = 2jk for a j ∈ N0 and an odd k ∈ N
and by claim (

√
·) we can take repeatedly roots of complex numbers, we may

assume that n is an odd number. Thus we assume that u ∈ S and that n ∈ N
is odd and look for a v ∈ S such that vn = u. So we need to show that the
function

f : S → S, f(z) = zn ,

is onto, f [S] = S. The key property of f is that f(−z) = −f(z) because n is
odd.

For contradiction, let w ∈ S \ f [S]. Then also −w ∈ S \ f [S]. We take the
line ` ⊂ C going through the antipodal points −w and w on S and partition C
in the disjoint union

C = A ∪ ` ∪B ,

where A and B are the two open half-planes determined by `. These sets are
open not only by name but they are really open sets. It is easy to see that

(A ∪B) ∩ S = S \ {−w, w}, A = −B := {−z | z ∈ B}

and that {−1, 1} ⊂ (A ∪ B) ∩ f [S]. It follows that A and B tear f [S] and the
set f [S] is disconnected. On the other hand, f is continuous and S is connected
by Proposition 2.1, so by the above property 3 the set f [S] is connected. This
is the desired contradiction. 2
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The 1st application of roots of unity: primes ≡ 1 mod m

We prove that for every m ∈ N there exist infinitely many prime numbers
congruent to 1 modulo m. Dirichlet’s theorem on primes in arithmetic progres-
sion is the deep generalization that

∀ coprime m, a ∈ N ∃∞ many primes p : p ≡ a (mod m) .

All known proofs are analytic and difficult. The proof of the special case for a =
1, given here, is simple and algebraic. It is based on the cyclotomic polynomials

Φn(x) :=
∏

α∈PRUn

(x− α) ∈ C[x], n ∈ N .

In the next lecture we show that Φn(x) ∈ Z[x]. The factorization

xn − 1 =
∏

α∈RUn

(x− α)

and the disjoint union

RUn =
⋃
d |n

PRUd

(we say more on it below) give the factorization

xn − 1 =
∏
d |n

Φd(x) .

For example, x4 − 1 = (x− 1) · (x+ 1) · (x2 + 1), corresponding to the divisors
d = 1, 2 and 4 of the number n = 4. Comparing degrees of polynomials on
both sides we get the following identity; in the proof we restate the argument
in elementary terms.

Proposition 2.3 (an identity for ϕ). For every n ∈ N,

n =
∑

d∈N, d |n

ϕ(d) .

Proof. For any given n ∈ N and any divisor d ∈ N of n we define the sets of
fractions

A := {j/n | j ∈ [n]} and Bd := {j/d | j ∈ [d] and is coprime with d} .

Thus in each set Bd the fractions are in lowest terms. If d and d′ are distinct
divisors of n then Bd ∩ Bd′ = ∅ because for any j

d ∈ Bd and any j′

d′ ∈ Bd′ one

has that j
d = j′

d′ ⇐⇒ jd′ = j′d ⇐⇒ j = j′ ∧ d = d′. Also, the union of all Bd
equals A because every fraction j

d ∈ Bd can be extended as j/d = j · nd /n ∈ A
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and every fraction j
n ∈ A can be brought to lowest terms as j

n = j′

d ∈ Bd for
some divisor d of n. So

n = |A| =
∑
d |n

|Bd| =
∑
d |n

ϕ(d) .

2

For example, 12 = ϕ(1)+ϕ(2)+ϕ(3)+ϕ(4)+ϕ(6)+ϕ(12) = 1+1+2+2+2+4.
We mention the well known formula

ϕ(n) = n ·
∏
p |n

(
1− p−1

)
.

It can be proven combinatorially by inclusion–exclusion, or by algebraic argu-
ments.

Theorem 2.4 (∞ many primes ≡ 1 (mod m)). For any number m ∈ N the
sequence

P (m) := (1 +m, 1 + 2m, 1 + 3m, . . . )

contains infinitely many prime numbers.

Interestingly, it suffices to establish existence of only one prime in P (m).

Theorem 2.5 (one prime ≡ 1 (mod m)). For any number m ∈ N the se-
quence

P (m) = (1 +m, 1 + 2m, 1 + 3m, . . . )

contains at least one prime number.

We show that Theorem 2.5 ⇒ Theorem 2.4. For any m ∈ N, let pm ∈ P (m) be
one prime number congruent to 1 modulo m. Clearly, P (km) ⊂ P (m) for every
k ∈ N. Also, pm > m and therefore

lim
k→∞

pkm = +∞ .

Hence {pkm | k ∈ N} give infinitely many different primes in P (m). We prove
Theorem 2.5 in the next lecture.

13



Chapter 3

Lecture 3. Prime numbers
p = 1 +mn and FLT in C[t]

In this lecture we prove

Theorem 3.1 (Theorem 2.5).

∀m ∈ N ∃ p : p ≡ 1 (mod m) .

Last time we saw how this implies that for any m ∈ N there exist even infinitely
many primes of the form p = 1 +mn, n ∈ N.

First we show that cyclotomic polynomials have integral coefficients. From
the definition it is clear that each polynomial Φn(x) is monic, has leading coef-
ficient 1.

Lemma 3.2. For every n ∈ N,

Φn(x) =
∏

α∈PRUn

(x− α) ∈ Z[x] .

More precisely, each Φn(x) is integral (has integral coefficients) and has constant
coefficient Φn(0) = ±1.

Proof. We proceed by induction on n. For n = 1 it all holds as Φ1(x) = x− 1.
Let n > 1, m := ϕ(n),

Φn(x) =:

m∑
j=0

ajx
j and Ψn(x) :=

∏
d |n, d<n

Φd(x) =:

n−m∑
j=0

bjx
j .

Comparing the coefficients of xj , j = 0, 1, 2, . . . , on both sides of the equation

xn − 1 = Φn(x) ·Ψn(x)

14



we get the system of equations

−1 = a0b0, 0 = a0b1 + a1b0, c2 := [x2](xn − 1) = a0b2 + a1b1 + a2b0, . . . ,

where by the inductive assumption the bi are integers (they are coefficients in
a polynomial obtained as a product of integral polynomials), the ai are the
unknowns and [xj ] . . . denotes the coefficient of xj in the expression . . . . Since
b0 = ±1 by the inductive assumption (it is a product of ±1s), a0 = −1/b0 = ±1
too. By solving for the ai,

a1 = (1/b0)(−a0b1), a2 = (1/b0)(c2 − a0b2 − a1b1), . . . ,

we see that each ai ∈ Z because 1/b0 = ±1, each bi and each ci is an integer
and so is each already obtained aj for j < i. 2

Proof of Theorem 3.1. Let m ∈ N. We produce a prime p of the form
p = 1 +mn. Consider the polynomials

f(x) := Φm(x) and g(x) :=
∏

d |m, d<m

Φd(x)

(for m = 1 we set g(x) := 1). By the previous lemma we know that f, g ∈ Z[x]
and from the previous lecture we know that

xm − 1 = f(x) · g(x) . (fg)

By the definition of f and g, the roots of f are exactly the primitive m-th roots
of 1 and the roots of g are all remaining m-th roots of 1. Thus the polynomials
f and g have no common complex root and therefore are coprime as elements
of the polynomial ring Q[x], in other words if h ∈ Q[x] divides both f and g
then h is a unit of the ring, h ∈ Q×. Hence there exist polynomials α, β ∈ Q[x]
such that

αf + βg = 1 .

Below we explain how this identity, called Bézout’s in the polynomial case but
Bachet’s for general rings, follows from the fact that the ring Q[x] is Euclidean,
i.e., division with remainders works in it. Multiplying by an appropriate c ∈ N
we get the identity

a(x) · f(x) + b(x) · g(x) = c (Bézout)

where now a, b ∈ Z[x] and we may assume that c ≥ 3. From the definition of f
and since c ≥ 3, it follows that

N 3 |f(c)| ≥ 2

and there exists a prime number p dividing f(c) ∈ Z (we excluded that f(c) =
±1).

We show that p is the desired prime congruent to 1 modulo m. Equation
(fg) gives that cm − 1 = f(c) · g(c) and therefore p divides cm − 1. We show
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that p does not divide cd − 1 for any divisor d < m of m. For contradiction, let
p | cd − 1 where d ∈ N divides m and is smaller than m. From

cd − 1 =
∏
e | d

Φe(c)

and the definition of g it follows that cd−1, and so also p, divides g(c). But then
by setting x = c in identity (Bézout) we see that p divides c and (since p | cm−1)
also 1, which is a contradiction. We have shown that the multiplicative order of
c modulo p is m, the number m is the minimum j ∈ N such that cj ≡ 1 modulo
p. The Little Theorem of Fermat says that also cp−1 ≡ 1 modulo p. It follows
that the order m divides p− 1, which is exactly what we wanted to show. 2

This proof is taken from the book [22] by W. Narkiewicz.

The 2nd application of roots of unity: FLT in C[t]

We give another (and somewhat more complicated) proof of FLT in C[t]. We
assume that a number n ∈ N with n ≥ 3 and three coprime nonzero polynomials
a, b, c ∈ C[t], not all of them constant, are such that

a(t)n + b(t)n = c(t)n ,

and deduce a contradiction. The contradiction will consist in producing another
three coprime nonzero polynomials α(t), β(t) and γ(t), not all of them constant,
solving the equation and such that

max(degα, deg β, deg γ) < max(deg a, deg b, deg c) .

This results in an infinite descent, an infinite strictly descending sequence of
natural numbers. It does not exist and we have a contradiction. Arguments
of this kind, showing insolubility of certain Diophantine equations, go back to
P. de Fermat in the 17th century .

So let n and polynomials a, b and c be as stated. Then

a(t)n = c(t)n − b(t)n =

n−1∏
j=0

(c(t)− ξj · b(t)) , (fact.)

where ξ = exp(2πi/n) is a primitive n-th root of 1. This identity follows from
the already mentioned factorization

xn − 1 =
∏

α∈RUn

(x− α) =

n−1∏
j=0

(x− ξj)

by substituting x := c/b and then multiplying by bn. The polynomial ring C[t],
where we now work, is Euclidean and — we review it now — therefore is a UFD,
a unique factorization domain.
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A review of divisibility in rings

To continue cogently in the proof we need some notions and results in ring
theory. Let R be a commutative ring with 1R. We say that it is an integral
domain if for every a, b ∈ R one has that ab = 0R ⇒ a = 0R ∨ b = 0R. An
element a ∈ R is a unit if ab = 1R for some b ∈ R. The units in R form a group
R× = (R×, 1R, ·). A non-zero and non-unit element a ∈ R is irreducible (in R)
if a = bc with b, c ∈ R is possible only when b or c is a unit. R is a field if
every nonzero element in R is a unit, R× = R \ {0R}. Elements a, b ∈ R are
coprime (in R) if their common divisors in R are only units. An integral domain
R is a UFD if every non-zero and non-unit element in it factorizes uniquely in
a product of irreducible elements. By uniqueness of irreducible factorizations in
R we mean that if bi, ci ∈ R are such that

b1b2 . . . bk = c1c2 . . . cl

and every bi and every ci is irreducible, then k = l and there exist a bijection
π : [k] = [l]→ [k] = [l] and units d1, . . . , dk ∈ R such that

bi = di · cπ(i), i = 1, 2, . . . , k .

For example, the UFD of integers Z has units {−1, 1}, irreducible elements

{±p | p is a prime number}

and unique irreducible factorizations like

−12 = 3 · (−2) · 2 = (−2) · (−2) · (−3) = . . . .

A property of an integral domain R that implies uniqueness of irreducible
factorizations is that R is a PID, a principal ideal domain. It means that every
ideal I ⊂ R is generated by a single element, there is a g ∈ I such that I =
{ag | a ∈ R}. Recall that an ideal in a ring R is any set I ⊂ R such that
a, b ∈ I ⇒ a − b ∈ I and a ∈ R, b ∈ I ⇒ ab ∈ I. Every PID R enjoys Bachet’s
identity that

a, b ∈ R are coprime⇒ ∃ c, d ∈ R : ca+ bd = c ·R a +R b ·R d = 1R .

Indeed, the ideal I := {ca + db | c, d ∈ R} is generated by some g ∈ I, which
means that g divides both a ∈ I and b ∈ I and therefore g must be a unit
with an inverse h ∈ R, and 1R = hg ∈ I. C. G. Bachet de Méziriac (1581–
1638) established the identity for the ring Z and E. Bézout (1730–1783) proved
it for a polynomial ring. Thus we think that the terminology we use here
(sometimes the identity is completely attributed to Bézout) is fair. Now to
establish uniqueness of irreducible factorizations, it clearly suffices to prove the
implication

a, b, c ∈ R, a is irreducible and divides bc⇒ a divides b or c .
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With Bachet’s identity it is easy. Suppose that a is irreducible, divides bc and
does not divide b. Thus a and b are coprime and

a′a+ b′b = 1R

for some a′, b′ ∈ R by Bachet’s identity. Multiplying by c we get the identity

ca′a+ b′bc = c

showing that a divides c.
A stronger property of an integral domain R implying that it is a PID is

that R is Euclidean. It means that

∃ a function | · | : R \ {0R} → N0 ∀ a, b ∈ R, b 6= 0R ∃ c, r ∈ R :

: a = bc+ r ∧ (r = 0R ∨ |r| < |b|) . (Eucl.)

We show that any Euclidean R is a PID. Suppose that I ⊂ R is an ideal. We
take a nonzero element a ∈ I with the minimum value of |a|. Then we write
according to property (Eucl.) any x ∈ I as

x = ab+ r, b, r ∈ R, r = 0R ∨ |r| < |a| .

But r = x− ab ∈ I and the minimality of |a| implies that r = 0R. Thus x = ab
and I is generated by a.

It is well known that the ring C[t] is Euclidean, with the function |·| being the
degree of a nonzero polynomial. By the above review this means that irreducible
factorizations in C[t] are unique, in the above explained sense, whenever they
exist. But do they exist? They do and the most straightforward argument
showing it relies on the FTAlg. We already used in the first lecture that every
non-constant polynomial a ∈ C[t] factorizes as

a(t) = α

n∏
i=1

(t− αi) ,

where α ∈ C×, all αi ∈ C and are not necessarily distinct and n = deg a ∈ N.
Clearly, α is a unit (C× equals to the units of C[t]) and each factor t − αi is
irreducible. A more elementary argument, which does not need the FTAlg and
which works more generally for any polynomial ring F [t] where F is a field, uses
additivity of the degree function: for every two nonzero polynomials a and b in
F [t],

deg(ab) = deg a+ deg b .

Also, deg a = 0 iff a is a unit in F [t] (a nonzero constant polynomial). Thus if
polynomials a, b, c ∈ F [t], a 6= 0, are such that a = bc and neither of b and c is
a unit, then max(deg b,deg c) < deg a. This descent shows that every nonzero
and non-unit polynomial in F [t] is a product of irreducible polynomials. Hence
we can conclude that C[t], and more generally any F [t] (since F [t] is Euclidean),
is a UFD. We summarize this review in a proposition.
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Proposition 3.3 (on polynomials over F ). For every field F the ring of
polynomials F [t] with coefficients in F is Euclidean and is a UFD.

Back to the proof of FLT in C[t]

Having recalled all this we resume the proof of FLT in C[t] and invoke the
next result whose proof we leave to the reader as an exercise.

Proposition 3.4 (on n-th powers). Suppose that R is a UFD, n ∈ N, a ∈ R
is nonzero and a1, . . . , ak ∈ R are pairwise coprime elements such that

a1a2 . . . ak = an .

Then there exist units bi ∈ R and pairwise coprime elements ci ∈ R such that

ai = bi · cni , i = 1, 2, . . . , k .

We apply the proposition to the above factorization (fact.) — the n factors on
the right-hand side are pairwise coprime, for else we could linearly combine two
of them and show that c(t) and b(t) are not coprime — and get polynomials
wj ∈ C[t] such that

c(t)− ξj · b(t) = wj(t)
n, j = 0, 1, . . . , n− 1 .

Why are there no units on the right-hand side? Due to the nice property of the
ring C[t] (not shared by the ring Z) that any unit, i.e., any c ∈ C×, is an n-th
power; we saw a proof of it in the previous lecture. Thus we absorbed the units
in the powers wj(t)

n. The crucial step in obtaining an infinite descent is the
next identity expressing the linear dependence of the three factors for j = 2, 0, 1
on the left-hand side (now we need that n ≥ 3):

c(t)− ξ2 · b(t) + ξ · (c(t)− b(t)) = (1 + ξ) · (c(t)− ξ · b(t)) .

Substituting the n-th powers wj(t)
n we get the equation

w2(t)n︸ ︷︷ ︸
α(t)n

+ (ψ · w0(t))n︸ ︷︷ ︸
β(t)n

= (η · w1(t))n︸ ︷︷ ︸
γ(t)n

,

where ψ, η ∈ C are such that ψn = ξ and ηn = 1 + ξ (we again use existence of
n-th roots in C). We already know that the polynomials α, β and γ are nonzero
and pairwise coprime. No two of them are constant, for else a liner combination
would show that b and c, and thus also a, is constant. We have a new (coprime,
nonzero and non-constant) solution

α(t)n + β(t)n = γ(t)n

of Fermat’s equation. Clearly,

max(degα, deg β, deg γ) ≤ 1

n
max(deg a, deg b, deg c)

< max(deg a, deg b, deg c)
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because max(deg a,deg b,deg c) > 0. An infinite descent was established. 2

The previous proof of FLT in C[t] is taken from the book [24, p. 7] of A. van der
Poorten; we corrected some typographical and other errors in it and supplied
the review of divisibility in rings.

The 3rd application of roots of unity: the regular 17-gon

A classical problem that originated in antiquity was — and still is — to deter-
mine all n ∈ N such that the regular n-gon can be constructed by straightedge
and compass. The following classical characterization is well known.

Theorem 3.5 (Gauss–Wantzel). The regular n-gon can be constructed by
straightedge and compass ⇐⇒ n has the form

n = 2kp1p2 . . . pr ,

where k, r ∈ N0 (for r = 0 we define the product of primes pi as 1) and p1 <
p2 < · · · < pr are distinct Fermat primes, prime numbers of the form

Fm := 22
m

+ 1, m ∈ N0 .

The sufficiency part ⇐ in the theorem is due to C. F. Gauss, and the necessity
part ⇒ to P. Wantzel. F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537
are all prime numbers and this is the complete list of currently known Fermat
primes. It is not known if these are already all Fermat primes or if there exist
some more. The Wikipedia page [9] states: “As of 2014, it is known that Fm is
composite for 5 ≤ m ≤ 32”. The ancient problem of constructing regular n-gons
remains wide open because we are (currently) unable to determine all Fermat
primes. A nice book on the numbers Fm is [14] by M. Kř́ıžek, F. Luca and
L. Sommer. In the next lecture we show that the regular 17-gon, corresponding
to the Fermat prime F2, can be constructed by straightedge and compass.
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Chapter 4

Lecture 4. Gauss and the
regular 17-gon

In today’s lecture we show that the real number

z1 := 2 cos(2π/17)

is constructible: z1 can be obtained from the numbers in Q (or, equivalently,
just from the number 1) by repeated applications of the arithmetic operations
+, −,×, : and the operation

√
· of square root extraction. Hence the regular

17-gon, associated to the Fermat prime F2, can be constructed by straightedge
and compass because

α := 2π/17

is its central angle. It was discovered by the 19 years old C. F. Gauss in 1796.
We begin with two detours, and give one more after the construction. The

first detour is a nice application of Bachet’s identity.

Proposition 4.1 (m-gon and n-gon give mn-gon). If m,n ∈ N are co-
prime numbers and both the regular m-gon and the regular n-gon can be con-
structed by straightedge and compass, then so can be the regular mn-gon. In
fact, then the regular mn-gon can be constructed only by compass.

Proof. Bachet’s identity for the ring Z tells us that for some r1, r2 ∈ Z one has
that r1m+ r2n = 1. Thus

r2 ·
2π

m
+ r1 ·

2π

n
= 2π · r2n+ r1m

mn
=

2π

mn

is the central angle of the regular mn-gon. It is clear that if the central angles
of the regular m-gon and n-gon are given, say determined by pairs of radii in
the unit circle, then their above linear combination can be constructed only by
compass. 2
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The second detour concerns moduli m ∈ N possessing so called primitive
roots. A primitive root modulo m is a residue class a modulo m that is coprime
with m and is such that

{ai mod m | i = 1, 2, . . . , ϕ(m)}
= Z×m = {x mod m | x ∈ [m] and is coprime with m} .

In algebraic terms, a modulo m is a generator of the multiplicative group Z×m =
(Z×m, 1, ·). So m possesses a primitive root iff the group Z×m is cyclic. For
example, m = 4 has the primitive root a = 3, but m = 8 does not have any
primitive root because all squares 12, 32, 52 and 72 are 1 modulo 8. A known
theorem says that

m has a primitive root ⇐⇒ m = 1, 2, 4, pk and 2pk ,

where k ∈ N and p > 2 is a prime number, but we only prove the case m =
p. This was done by the 24 years old C. F. Gauss in his tract Disquisitiones
Arithmeticae (Arithmetical Investigations) in 1801.

Theorem 4.2 (primitive roots of p). Every prime number has a primitive
root.

Proof. Recall that the multiplicative order of an a ∈ Z modulo m ∈ N, where
a and m are coprime, is the minimum e ∈ N such that ae ≡ 1 modulo m. By
Euler’s generalization of Fermat’s Little Theorem, aϕ(m) ≡ 1 modulo m and
therefore e divides ϕ(m). If a and m are not coprime then there is no such e.

Let p be a prime number. For every d ∈ N dividing ϕ(p) = p− 1 we define
the set of nonzero residues modulo p

Ad := {a mod p | a has multiplicative order d modulo p} .

It follows from the definition of multiplicative order that (i) the sets

{Ad | d divides p− 1}

form a partition of Z×p (in a moment we show that each Ad is nonempty). It
suffices to prove (ii) the implication

Ad 6= ∅ ⇒ |Ad| = ϕ(d) .

The facts (i), (ii) and the identity

|Z×p | = p− 1 =
∑
d | p−1

ϕ(d)

of Proposition 2.3 imply that |Ad| = ϕ(d) for every divisor d of p − 1. In
particular, |Ap−1| = ϕ(p − 1) > 0, in the group Z×p there exist elements with
the maximum possible multiplicative order p− 1 and Z×p is cyclic.
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We prove the implication (ii). Let d be a divisor of p− 1 and let a ∈ Ad (so
Ad 6= ∅). We define

B := {a mod p, a2 mod p, . . . , ad mod p}

and
R := {x mod p | xd − 1 ≡ 0 mod p} .

Then (iii) |B| = d because for |B| < d the element a would have multiplicative
order smaller than d. Also, (iv) B ⊂ R and (v) |R| ≤ d. The fact (iv) follows
from a ∈ Ad and the fact (v) follows from the bound on the number of roots
of a polynomial (here xd − 1) over a field (here Zp) in that field. (We use that
Zp = (Zp, 0, 1,+, ·) is a field.) The facts (iii), (iv) and (v) imply that (vi) R = B.
Clearly, (vii) Ad ⊂ R. The facts (vi) and (vii) imply that (viii) Ad ⊂ B and so
every x ∈ Ad has the form x = ai for a unique i ∈ [d]. Finally, it follows that
(ix) for every i ∈ [d] one has that ai ∈ Ad iff i and d are coprime. By the facts
(viii) and (ix), |Ad| = ϕ(d) and the implication (ii) is proven. 2

The proof is like a chess miniature, black mates in nine moves. We not only
proved that the group Z×p is cyclic, but we even got the formula ϕ(p − 1) for
the number of its generators. For example, modulus 17 has ϕ(16) = 16/2 = 8
primitive roots, i.e., every other nonzero residue class is a primitive root. One
of them is 3, which will be used in the next Gaussian construction:

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3m 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6

where 3m =: k is reduced mod 17. We let m run in 0, 1, . . . , 15 rather than in
1, 2, . . . , 16 because we are following the construction in the book [11].

Theorem 4.3 (Gaussian construction of the reg. 17-gon). Suppose that
α = 2π/17, z1 = 2 cosα and z2 := 2 cos(4α). The number z1 is constructible
because the real numbers z1 > z2 are solutions of the quadratic equation

z2 − y1z + y3 = 0 ,

where the four real numbers y1, y2, y3 and y4 are determined by the conditions
that y1 > y2 are solutions of the quadratic equation

y2 − x1y − 1 = 0

and y3 > y4 are solutions of the quadratic equation

y2 − x2y − 1 = 0 ,

where the real numbers x1 > x2 are solutions of the quadratic equation

x2 + x− 4 = 0 .

Thus the regular 17-gon can be constructed by straightedge and compass.
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Proof. For k = 1, 2, . . . , 16 we set εk := cos(kα) + i sin(kα). These are the

roots of the polynomial p(x) := 1 + x + x2 + · · · + x16 = x17−1
x−1 . Recall that

k = 3m modulo 17; according to the above table we set

x1 :=
∑

m is even

εk = ε1 + ε9 + ε13 + ε15 + ε16 + ε8 + ε4 + ε2

and
x2 :=

∑
m is odd

εk = ε3 + ε10 + ε5 + ε11 + ε14 + ε7 + ε12 + ε6 .

From εk + ε17−k = 2 cos(kα), k = 1, 2, . . . , 16, we get that

x1 = 2(cosα+ cos(8α) + cos(4α) + cos(2α))

and
x2 = 2(cos(3α) + cos(7α) + cos(5α) + cos(6α)) .

Since (x − u)(x − v) = x2 − (u + v)x + uv, to show that x1 and x2 are root of
a monic integral quadratic polynomial it suffices to compute x1 + x2 and x1x2.
As for the sum,

x1 + x2 = 2

8∑
k=1

cos(kα) =

16∑
k=1

εk = −[x15]p(x) = −1 .

For the product we need the identity

2 cosu cos v = cos(u+ v) + cos(u− v) . (id.)

Using it, the fact that cos(kα) = cos((17 − k)α), k = 1, 2, . . . , 16, and using
multiset notation, we get that

x1x2 = 4 · (cosα+ cos(8α) + cos(4α) + cos(2α)) · (cos(3α) + cos(7α) +

+ cos(5α) + cos(6α))

= 2
∑

r∈{4, 8, 6, 7, 11, 15, 13, 14, 7, 11, 9, 10, 5, 9, 7, 8}

cos(rα) +

+ 2
∑

r∈{2, 6, 4, 5, 5, 1, 3, 2, 1, 3, 1, 2, 1, 5, 3, 4}

cos(rα)

= 8

8∑
r=1

cos(rα) = 4(x1 + x2)

= −4 .

Thus x1 and x2 are the roots of x2 +x−4. Since cosα+cos(2α) > 2 cos(π/4) >
− cos(8α) and cos(4α) > 0, we have that x1 > 0 and hence (from x1 +x2 = −1)
x1 > x2. Such inequalities (we have similar ones for the yi and zi) are needed
for telling apart the roots of each quadratics.
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We set

y1 :=
∑

m≡0 (mod 4)

εk = ε1 + ε13 + ε16 + ε4 = 2(cosα+ cos(4α)) ,

y2 :=
∑

m≡2 (mod 4)

εk = ε9 + ε15 + ε8 + ε2 = 2(cos(8α) + cos(2α)) ,

y3 :=
∑

m≡1 (mod 4)

εk = ε3 + ε5 + ε14 + ε12 = 2(cos(3α) + cos(5α)) and

y4 :=
∑

m≡3 (mod 4)

εk = ε10 + ε11 + ε7 + ε6 = 2(cos(7α) + cos(6α)) .

Clearly, y1 + y2 = x1. By (id.),

y1y2 = 2
∑

r∈{9, 3, 12, 6}

cos(rα) + 2
∑

r∈{7, 1, 4, 2}

cos(rα) = 2

8∑
r=1

cos(rα) = −1 .

Thus y1 and y2 are the roots of y2 − x1y − 1. It is clear that y1 > y2 because
cos decreases on [0, π]. Similarly, y3 + y4 = x2,

y3y4 = 2
∑

r∈{10, 9, 12, 11}

cos(rα) + 2
∑

r∈{4, 3, 2, 1}

cos(rα) = 2

8∑
r=1

cos(rα) = −1 ,

y3 and y4 are the roots of y2 − x2y − 1 and y3 > y4.
Finally, z1 + z2 = y1 and (by (id.)) z1z2 = 4 cosα cos(4α) = 2 cos(5α) +

2 cos(3α) = y3. Thus z1 and z2 are the roots of z2 − y1z + y3. It is clear that
z1 > z2. 2

The previous proof and the proof of Proposition 4.1 are taken from the classical
book [11] by G. H. Hardy and E. M. Wright. They mention the explicit formula

z1 = 2 cos(2π/17) =
1

8

(
− 1 +

√
17 +

√
34− 2

√
17

)
+

+
1

8

√
68 + 12

√
17− 16

√
34 + 2

√
17− 2(1−

√
17)

√
34− 2

√
17 .

The third detour concerns irreducibility of the polynomial p(x) = 1 + x +
x2 + · · ·+ x16 in Z[x]. We prove more generally that every polynomial xp−1

x−1 =

1 + x+ · · ·+ xp−1 is irreducible in Z[x].

Theorem 4.4 (Eisenstein’s). Every integral polynomial

a(x) := anx
n + · · ·+ a1x+ a0, n ∈ N ,

such that for some prime p the coefficient an is not divisible by p, each of the
coefficients an−1, . . . , a1, a0 is divisible by p and the coefficient a0 is not divisible
by p2 is irreducible in Z[x].
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Proof. Suppose for contradiction that a(x) is as stated and

a(x) =

n∑
i=0

aix
i =

k∑
j=0

bjx
j ·

l∑
j=0

cjx
j =: b(x) · c(x)

for some bj , cj ∈ Z and k, l ∈ N with bkcl 6= 0. Reducing this equality modulo p
we see that b(x) (resp. c(x)) has a unique coefficient not divisible by p, namely bk
(resp. cl). This follows from the fact that (coefficient-wise) reduction modulo p
is a ring homomorphism from Z[x] to Zp[x]. But then a0 = b0c0 is divisible by
p2, contrary to the assumption. 2

Corollary 4.5 (on xp−1
x−1 ). For every prime number p, the polynomial

a(x) :=
xp − 1

x− 1
= xp−1 + · · ·+ x+ 1

is irreducible in Z[x].

Proof. Let p be a prime number. To make Eisenstein’s theorem applicable to
a(x) we change the variable by setting x := y + 1. It is easy to check that the
new polynomial

b(y) := a(y + 1) =
(y + 1)p − 1

(y + 1)− 1
=

p∑
j=1

(
p

j

)
yj−1 ∈ Z[y]

satisfies for the prime p the hypothesis of Theorem 4.4. Therefore b(y) is irre-
ducible in Z[y] and a(x) is irreducible in Z[x]. 2
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Chapter 5

Lecture 5.
Non-commutativity:
Wedderburn’s theorem and
Alimov’s theorem

The 4th application of roots of unity: Wedderburn’s theorem

(November 11, 2021) The most famous result in algebra on non-existence of an
algebraic structure is the Feit–Thompson theorem [8]:

No finite non-commutative simple group G with odd order exists.

Explicitly, in set-theoretic terms, the theorem says the following. There does
not exist any triple

G = (G, 1G, ·G)

of a set G, its element 1G ∈ G and a map (an operation on G)

·G : G×G→ G

such that

1. G is finite and has cardinality |G| ≡ 1 (mod 2),

2. 1G is the neutral element of the operation: 1G ·G g = g ·G 1G = g for
every g ∈ G,

3. the operation is associative: (g ·G h) ·G i = g ·G (h ·G i) for every g, h, i ∈ G,

4. every element g ∈ G has an inverse h ∈ G in the operation: g ·G h =
h ·G g = 1G,
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5. there exist two elements g, h ∈ G such that g ·G h 6= h ·G g and

6. G has no nontrivial normal subgroup.

Property 5 accounts for non-commutativity of G and property 6 for its “sim-
plicity”. We review definition of normal subgroups and do it for any group, that
is, any triple G = (G, 1G, ·G) with properties 2–4. A subset H ⊂ G is a normal
subgroup of G if 1G ∈ H, the set H is closed to ·G and to taking inverses, and
for every g ∈ G one has that

{g ·G h | h ∈ H} =: gH = Hg := {h ·G g | h ∈ H}.

For example, H = {1G} and H = G are always normal subgroups of G. These
are the trivial normal subgroups, any other normal subgroup of G is nontrivial.
We call a group simple if it has no nontrivial normal subroup.

The Feit–Thompson theorem says that the above properties 1–6 of a triple
(G, 1G, ·G) are altogether contradictory and no triple satisfying them simulta-
neously can exist. In [8] it takes over 250 pages to bring the conjunction of
properties 1–6 to contradiction. Fortunately, thanks to formalized mathematics
and to (a team led by) G. Gonthier [10], nowadays (unlike, say, in 1963 or in
2010) we possess absolute certainty that the Feit–Thompson theorem holds and
that its proof is correct.

Unfortunately, in the case of the Wiles–Taylor theorem [27, 28] (earlier, as
a conjecture, called FLT)

No quadruple x, y, z, n ∈ N exists such that xn + yn = zn and n ≥ 3.

we are not yet in this desirable state, no formalization of it is (as far as I know)
in sight. Note that the two articles [27, 28] comprise together of 129 pages,
which amount to about a half of [8]. I think that until a proof of the Wiles–
Taylor theorem is formalized, we cannot be completely sure of its correctness.
Certainly not with the degree of certainty comparable to that we enjoy with
regard to the Feit–Thompson theorem. I know that not everybody shares this
opinion ([12]).

But let us proceed to the main topic of today’s lecture, which is another
result on non-existence of a non-commutative algebraic structure. A skew field
K is a quintuple

K = (K, 0K , 1K , +K , ·K)

of a set K, its two distinct elements 0K , 1K ∈ K and two operations +K and
·K on K such that

SF1 0K (resp. 1K) is the neutral element of +K (resp. of ·K),

SF2 both operations are associative and +K is commutative,

SF3 ∀x ∈ K (resp. ∀x ∈ K \ {0K}) ∃ y ∈ K such that x+ y := x +K y = 0K
(resp. xy := x ·K y = yx = 1G),
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SF4 ∀x, y, z ∈ K : x(y+ z) = (xy) + (yz) =: xy+ xz and (y+ z)x =: yx+ zx
and

SF5 ∃x, y ∈ K : xy 6= yx.

The additive (resp. multiplicative) inverse y in axiom SF3 is denoted, as usual,
by −x (resp. by x−1). A skew field K is (in)finite if the underlying set K is
(in)finite. Infinite skew fields exist: an example are rational quaternions

Q = (Q, 0, 1, +, ·) with Q = {a+ bi+ cj + dk | a, b, c, d ∈ Q} ,

where i, j, k ∈ Q (we identify i with 0 + 1i + 0j + 0k etc.) are three distinct
imaginary units, 0 := 0+0i+0j+0k, 1 := 1+0i+0j+0k, + is coordinate-wise
addition in Q4, and · is defined via both distributive laws in axiom SF4 and via
the products of the imaginary units (i2 = ii etc.)

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i and ik = −j .

One can check that Q is a skew field. However, finite skew fields — unlike finite
fields where axiom SF5 is replaced with commutativity of ·K — do not exist.
We begin the proof of this fact with a lemma on divisibility in Z.

Lemma 5.1. Let m,n, q ∈ N with q ≥ 2 be such that qm − 1 | qn − 1. Then in
fact m |n.

Proof. Let m,n, q ∈ N be as stated. We divide n by m with remainder:

n = ma+ b where a, b ∈ N0 ∧ 0 ≤ b < m .

Since qm − 1 divides qn − 1 = qn − qm + qm − 1 = qm(qn−m − 1) + qm − 1, it
follows that qm − 1 divides qn−m − 1. Iterating this a times we get that qm − 1
divides qb − 1. Thus b = 0 and m divides n. 2

Now we prove the promised theorem on nonexistence of finite skew fields.

Theorem 5.2 (Wedderburn’s). No finite skew field K exists.

Proof. Let K be a finite skew field. We deduce a contradiction (no worry, in
much less than 250 pages). We set K× := K \ {0K}, and similarly for other
subsets of K. It is not hard to see that the conjugation relation ∼ on K×, given
by

x ∼ y ⇐⇒ ∃ s ∈ K× : s−1xs = y ,

is an equivalence relation (i.e., is reflexive, symmetric and transitive). For any
x ∈ K× we define its conjugation class

Ax := {y ∈ K× | x ∼ y} .

Since ∼ is an equivalence, these sets form a partition of K×: they are nonempty
(x ∈ Ax), their union is K× and any two of them either coincide or are disjoint.
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We call Ax nontrivial if |Ax| ≥ 2, and trivial if Ax = {x}. It follows from axiom
SF5 that there is at least one nontrivial conjugation class.

For any x ∈ K we define its centralizer

Cx := {y ∈ K | xy = yx} .

We show that for any x ∈ K×,

|K×| = |C×x | · |Ax| . (c)

For any fixed x ∈ K× we consider the surjective map

f : K× → Ax, f(s) = s−1xs .

We fix an s ∈ K× and count the s1 ∈ K× such that f(s1) = f(s). This equality
means that

s−11 xs1 = s−1xs ⇐⇒ xs1s
−1 = s1s

−1x ⇐⇒ s1s
−1 ∈ C×x ⇐⇒ s1 ∈ C×x s ,

where C×x s := {ys | y ∈ C×x }. It is easy to see that |C×x s| = |C×x |. Thus f
always maps |C×x | elements to a single element, and we get equation (c).

We define the center of K as

Z := {x ∈ K | ∀ y ∈ K : xy = yx} .

We have that q := |Z| ≥ 2 because 0K , 1K ∈ Z. It is easy to see that Z is closed
to both operations +K and ·K and to taking both inverses to its elements. Hence

Z = (Z, 0K , 1K , +K , ·K)

is a (commutative!) field.
The key insight of the proof is that

K and every centralizer Cx is a (finite) vector space over the field Z .

The addition of vectors is just +K , and multiplication by a scalar in Z is via
·K . It is easy to see that every centralizer Cx is closed to these operations. By
the elementary linear algebra,

|K| = qn and |Cx| = qnx , (d)

where n ∈ N (resp. nx ∈ N) is the dimension of the vector space K (resp. Cx)
over Z. Axiom SF5 implies that K 6= Z and thus n ≥ 2.

Let Ax1
, Ax2

, . . . , Axt
, where t ∈ N, be the list of all nontrivial conjugation

classes. Note that the union of the remaining trivial conjugation classes is
exactly Z×. Thus we have the partition

K× = Z× ∪
t⋃
i=1

Axi
.
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From it we get by equations (c) and (d) the equality

qn − 1 = q − 1 +

t∑
i=1

qn − 1

qni − 1
,

where ni is the dimension of the vector space Cxi over Z. For any i = 1, 2, . . . , t
we have that qni − 1 | qn − 1 and that ni < n (since |Axi | ≥ 2). By Lemma 5.1,
each ni divides n.

Now comes the time of cyclotomic polynomials Φd(x). We use the factoriza-
tion

xm − 1 =
∏
d |m

Φd(x) .

Thus we transform the above equality to

∏
d |n

Φd(q) = q − 1 +

t∑
i=1

∏
d |n Φd(q)∏
e |ni

Φe(q)
.

Since every cyclotomic polynomial is integral (Lemma 3.2), all Φd(q),Φe(q) ∈ Z.
Since ni |n and ni < n, every number Φe(q) in the denominator of the fraction
appears in the product in the numerator, but differs from Φn(q). It follows that
Φn(q) ∈ Z divides q − 1. But this is impossible because

|Φn(q)| =
∏

α∈PRUn

|q − α| >
∏

α∈PRUn

(q − 1) = (q − 1)ϕ(n) ≥ q − 1 .

The crucial strict inequality follows from the facts that q ≥ 2 and that n ≥ 2
(so always α 6= 1). We have a contradiction (after 2 pages). 2

Alimov’s theorem: commutativity and infinitesimals

One of the simplest frameworks where one can talk about infinitesimals,
positive quantities q that are infinitely close to 0 (so that 0 < q < 1/n for
every n ∈ N), are ordered semigroups A = (A,+, <). Here A is a set, + is an
associative (but not necessarily commutative) operation on A and < is a strict
linear order on A such that + is monotonous with respect to it. In more details,
<⊂ A × A is a transitive and irreflexive relation on A and for any a, b, c ∈ A
we have that

a < b⇒ a+ c < b+ c ∧ c+ a < c+ b .

An anomalous pair a, b ∈ A (necessarily a 6= b) in an ordered semigroup A
satisfies

∀n ∈ N : na < nb < (n+ 1)a or ∀n ∈ N : na > nb > (n+ 1)a ,

where
na := a+ a+ · · ·+ a︸ ︷︷ ︸

n summands

.
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One can view it so that the distinct elements a and b are infinitely close each
to the other: if the first system of inequalities holds then (0 <) a < b but the
“distance” from a to b cannot be magnified to exceed a no matter by which
n ∈ N we multiply it. In a way this “distance” is positive but at the same time
is infinitely close to zero. We illustrate anomalous pairs with two examples.

Example 1. Consider the ordered semigroup ((0,+∞),+, <) of positive real
numbers with usual addition and ordering. This semigroup is commutative and
has no anomalous pair because for 0 < a < b one has that

nb > (n+ 1)a for any n >
a

b− a
,

and that na < (n + 1)a for any n— neither the first nor the second system of
inequalities can hold.

Example 2. Consider the ordered semigroup ({a, b}∗,+, <) where {a, b}∗ is
the set of all nonempty words over the two-element alphabet {a, b}, the operation
+ is concatenation of words (for example, abba+ ab = abbaab) and < compares
words first by their length, and for equal lengths lexicographicly with a < b (for
example, bbab < bbba but bbba < bbaba). This semigroup is not commutative
(for example, a+ b 6= b+ a) and has many anomalous pairs, for instance

a < b < aa < bb < aaa < bbb < aaaa < . . . .

Interestingly, non-commutativity forces appearance of anomalous pairs (in-
finitesimals):

Theorem 5.3 (Alimov’s). Any ordered semigroup A without anomalous pairs
is commutative.

We prove the theorem next time.
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Chapter 6

Lecture 6. Proof of
Alimov’s theorem. The
Chevalley–Warning
theorem

(November 18, 2021) In fact, no student appeared. Here is what I prepared for
the lecture.

We prove Alimov’s theorem that if the ordered semigroup A = (A,+, <) has
no anomalous pair, i.e., no pair of elements a, b ∈ A such that

∀n ∈ N : na < nb < (n+ 1)a or ∀n ∈ N : na > nb > (n+ 1)a ,

then A is commutative, a+ b = b+ a for any a, b ∈ A.
Since + is monotonous with respect to < and < is trichotomic, in A we have

the cancellation law

∀ a, b, c ∈ A : a+ c < b+ c⇒ a < b ,

and the same holds when c is added from the left and/or < is replaced with =.
Let a, b ∈ A be arbitrary. Then exactly one of b + a > b, b + a = b and

b + a < b holds. In the first case associativity and monotonicity of + and the
cancellation law give that

∀ c ∈ A : b+ (a+ c)
asoc.
= (b+ a) + c

monot.
> b+ c

canc.
; ∀ c ∈ A : a+ c > c .

In the 2nd, resp. the 3rd, case we similarly get that

∀ c ∈ A : a+ c = c, resp. ∀ c ∈ A : a+ c < c .

Thus for any a ∈ A exactly one of the following three cases occurs:

∀ c ∈ A : a+ c > c︸ ︷︷ ︸
a is “positive”

, ∀ c ∈ A : a+ c = c︸ ︷︷ ︸
a is a “zero element”

and ∀ c ∈ A : a+ c < c︸ ︷︷ ︸
a is “negative”

.
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So A is partitioned in positive, zero and negative elements; each of these classes
may be empty. In the three above formulas we add a from the left, but the
same partition of A results from adding a from the right. For example, if a is
positive, then for the same b as above we have a+ b > b and

∀ c ∈ A : (c+ a) + b = c+ (a+ b) > c+ b; ∀ c ∈ A : c+ a > c .

Similarly for zero and negative elements.
In particular, if a, b ∈ A are zero elements then a + b = a and a + b = b,

hence a = b. Thus A has at most one zero element, which will be denoted as
0. We may assume that 0 ∈ A exists; if not we simply add 0 to A and define
0 + a = a + 0 := a for any a ∈ A and a > 0 (resp. a < 0) for any positive
(resp. negative) a ∈ A. Using 0 we may equivalently define the positive, zero
and negative elements of A as, respectively,

{a ∈ A | a > 0}, {a ∈ A | a = 0} and {a ∈ A | a < 0} .

Indeed, if a is in the first set then, by monotonicity of +, a + c > c for any c
and a is positive. If a is positive then in particular a = a+ 0 > 0. Similarly in
the other two cases.

We start the proof of Alimov’s theorem proper. We assume that there is no
anomalous pair in A and show that

∀ a, b ∈ A : a+ b = b+ a .

If a = 0 or b = 0 then it certainly holds. Thus we need to distinguish only three
cases, according to whether a and b are positive or negative.

(i) a, b > 0. We show that if a+ b 6= b+ a then a+ b, b+ a is an anomalous
pair. Indeed if, say, a+ b < b+ a then for any n ∈ N we have that

(n+ 1)(a+ b)
asoc.
= a+ n(b+ a) + b

a > 0
> n(b+ a) + b

b > 0
> n(b+ a)

L
> n(a+ b) ,

so n+ 1)(a+ b) > n(b+ a) > n(a+ b). We used lemma L:

r, s, t, u ∈ A, r < s, t < u⇒ r + t < s+ u .

Thus a+ b = b+ a.
(ii) a, b < 0. We proceed as in the previous case; we only start with a+ b >

b+ a and revert the inequalities in the previous computation.
(iii) a < 0 < b. Now we have three sub-cases.
(a) a+ b = 0. By associativity of +,

a+ (b+ a) = (a+ b) + a = 0 + a = a+ 0
canc.
; b+ a = 0

and a+ b = b+ a = 0.
(b) a + b > 0. Also b > 0. For a + b 6= b + a, say a + b < b + a, we get the

contradiction

2(b+ a)
asoc.
= (b+ (a+ b)) + a

case (i) for b, a+ b
= ((a+ b) + b) + a

asoc.
= (a+ b) + (b+ a)

monot.
< (b+ a) + (b+ a)

= 2(b+ a) .
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For a + b > b + a we get a similar contradiction, only the last inequality is
reverted. Thus a+ b = b+ a.

(c) a + b < 0. Also a < 0. For a + b 6= b + a, say a + b < b + a, we get the
same contradiction

2(b+ a)
asoc.
= b+ ((a+ b) + a)

case (ii) for a, a+ b
= b+ (a+ (a+ b))

asoc.
= (b+ a) + (a+ b)

monot.
< (b+ a) + (b+ a)

= 2(b+ a) .

Similarly for a+ b > b+ a. Again a+ b = b+ a. 2

This proof is taken from [1]. Who was N. G. Alimov? In [1] we read that
the paper was received on March 8, 1949, and that it was presented by the
member of the Academy of Sciences A. N. Kolmogorov, but there is no address
or affiliation of the author. I found the anonymous document [13] in Russian,
with the head “Department of mathematical analysis”. It describes the history
of the Department, a part of the Faculty of Physics and Mathematics (which was
founded, as we read at the start, on July 1, 1917) of Tomsk State University. The
section “They were the first” mentions on p. 6 Nikolai Grigor’evich Alimov who
almost surely was N. G. Alimov of [1]. We read, for example, that he was born
on April 2, 1900, started to work in Tomsk State University as a docent since
1934 (more precisely and significantly, “he was fulfilling duties of a docent”),
that since 1938 he worked in the Department as a senior lecturer and that in
1939 he left the Department as he was transferred to the Pedagogical Institute
in Yaroslavl. At this point [13] leaves him; the date of his death is not given.
His another publication referenced in Mathematical Reviews is [2].

The Chevalley–Warning theorem

Lemma 6.1 If F is a finite field and n ∈ N is not divisible by |F | − 1 or n = 0
(and 00F := 1F ), then ∑

a∈F
an = 0F .

Proof. For n = 0 the result holds, the sum then equals |F |F = 0F (see the
notation in the next proof) because the characteristic p of F divides |F |.

We assume that n > 0 and is not divisible by |F | − 1. It is true that the
multiplicative group F× = (F×, 1F , ·) of F is cyclic (we proved it only for
F = Zp) and thus any generator g ∈ F× of this group has the property that
gn 6= 1F . But then from the equation∑

a∈F
an =

∑
a∈F

(ga)n = gn
∑
a∈F

an

it follows that the sum has to be 0F . 2
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Theorem 6.2 (Chevalley–Warning) Let p be a prime number, m,n ∈ N, F
be a finite field with characteristic p and P1, . . . , Pm ∈ F [x1, . . . , xn] be nonzero
polynomials such that

m∑
i=1

degPi < n .

Then

N := |{x := (x1, . . . , xn) ∈ Fn | P1(x) = · · · = Pm(x) = 0F }| ≡ 0 (mod p) .

In particular, if each polynomial Pi has zero constant term then N ≥ 2 and the
system

P1(x) = · · · = Pm(x) = 0F

has a non-trivial (non-zero) solution.

Proof. For k ∈ N0 we denote by kF ∈ F the element of the field obtained as

kF := 1F + 1F + · · ·+ 1F︸ ︷︷ ︸
k summands

.

It is clear that kF = 0F iff k ≡ 0 modulo p. We see that

E :=
∑
x∈Fn

m∏
i=1

(
1F − Pi(x)|F |−1

)
= NF

because Pi(x)|F |−1 ∈ {0F , 1F } and vanishes iff Pi(x) = 0F . It suffices to show
that the expression E on the left-hand side vanishes, equals 0F . By expanding
the |F | − 1-th powers, multiplying out and regrouping the summands, we write
it as (we set D := (|F | − 1)

∑m
i=1 degPi)

E =
∑
k∈Nn

0
k1+···+kn≤D

c(k)

n∏
i=1

∑
xi∈F

xkii ,

where c(k) ∈ F and D is an upper bound on the degrees of monomials in E.
By the assumption, D < (|F | − 1)n. Thus for every k in the sum there is an
i ∈ [n] such that 0 ≤ ki < |F | − 1. By the previous lemma, the corresponding
inner sum is 0F and so E = 0F .

The second claim follows from the fact that if every Pi has zero constant
term, then the system has always the trivial zero solution and thus it has at
least p ≥ 2 solutions. 2

Corollary 6.3 (on multigraphs) Every loop-less multigraph M that is ob-
tained from a 4-regular multigraph (a multigraph where every vertex is incident
with four edges) by adding one edge contains a non-empty 3-regular submulti-
graph.
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Proof. Let M = (V,E) be the described multigraph. We associate with it the
polynomial system of |V | quadratic equations over F := Z3:∑

e∈E
a(e, v) · x2e = 0F , v ∈ V ,

where the xe are |E| unknowns and the coefficient a(e, v) ∈ {0F , 1F }, with
a(e, v) = 1F iff v ∈ e. The condition on degrees of equations in the previous
theorem is satisfied because

|E| = 1 + 4|V |/2 = 1 + 2|V | > 2|V | .

By the theorem there exist ye ∈ F , e ∈ E, which are not all zero and solve the
system. Let E′ := {e ∈ E | ye 6= 0F }. Then E′ 6= ∅ and if we set

V ′ :=
⋃
E′ ⊂ V ,

also V ′ 6= ∅. We claim that the submultigraph M ′ := (V ′, E′) of M = (V,E) is
3-regular. Indeed, for any vertex v ∈ V ′ we have that (by degM ′(v) we denote
the number of edges in M ′ incident with the vertex v)

(degM ′(v))F =
∑
e∈E′

a(e, v) =
∑
e∈E

a(e, v) · y2e = 0F

because y2e = 1F for ye 6= 0F , and of course y2e = 0F for ye = 0F . So degM ′(v)
is divisible by 3 and because it lies in the set {1, 2, 3, 4, 5}, it equals 3. 2
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Chapter 7

N. Alon’s Combinatorial
Nullstellensatz

A monomial (or a term) cxk11 . . . xknn in a non-zero polynomial f ∈ F [x1, . . . , xn]
is a maximal monomial if c 6= 0F and k1 + · · ·+ kn = deg f .

Theorem 7.1 (N. Alon) Let F be an integral domain, n ∈ N,

f ∈ F [x1, . . . , xn]

be a nonzero polynomial and let cxk11 . . . xknn be a maximal monomial in f . Then
for every n-tuple of sets Ai ⊂ F with |Ai| > ki there exist elements ai ∈ Ai such
that

f(a1, . . . , an) 6= 0F .

Proof. We proceed by induction on deg f ∈ N0. For deg f = 0, so f = c ∈ F×,
the claim holds trivially: k1 = · · · = kn = 0, the Ai 6= ∅ and f has the only
value c 6= 0F .

Let d := deg f > 0, cxk11 . . . xknn be a maximal monomial in f and let Ai ⊂ F
be n sets with |Ai| > ki elements. We may assume that k1 > 0. We take any
element a1 ∈ A1 and express f as

f(x1, . . . , xn) = (x1 − a1) · g(x1, . . . , xn) + h(x2, . . . , xn) .

This identity was obtained by dividing the polynomial f ∈ F [x2, . . . , xn][x1] =:
G[x1] by the polynomial x1 − a1. So g ∈ G[x1], deg g = d− 1,

cxk1−11 xk22 . . . xknn

is a maximal monomial in g and h is a constant polynomial in G[x1], i.e.,
h ∈ G = F [x2, . . . , xn].

If h(a2, . . . , an) 6= 0F for some elements a2 ∈ A2, . . . , an ∈ An then

f(a1, a2, , . . . , , an) = (a1 − a1) · g(a1, . . . , an) + h(a2, . . . , an) 6= 0F
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and we are done.
Else, if h(a2, . . . , an) = 0F for any choice of elements a2 ∈ A2, . . . , an ∈ An,

we apply to g (and the sets A1 \ {a1}, A2, . . . , An and the displayed maximal
monomial in g) the inductive assumption, pick appropriate elements a ∈ A1,
a 6= a1, a2 ∈ A2, . . . , an ∈ An such that g(a, a2, . . . , an) 6= 0F and get again
that

f(a, a2, , . . . , , an) = (a− a1) · g(a, a2, . . . , an) + h(a2, . . . , an) 6= 0F .

2

Corollary 7.2 (on hyperplanes) In Rn, it is not possible to cover all vertices
of the (discrete) cube {0, 1}n but one with less than n hyperplanes.

Proof. Suppose for the contrary that Hi ⊂ Rn, i = 1, . . . ,m, m < n, are m
hyperplanes in Rn such that they cover all vertices of the cube but the origin
(0, . . . , 0). Thus they have equations

pi(x1, . . . , xn) = αi,1x1 + · · ·+ αi,nxn + βi, i ∈ [m] ,

where every βi 6= 0 and for every v ∈ {0, 1}n \ {(0, . . . , 0)} there is an i ∈ [m]
such that pi(v) = 0. We consider the polynomial

f(x1, . . . , xn) :=

m∏
i=1

βi · (1− x1) . . . (1− xn)−
m∏
i=1

pi(x1, . . . , xn) .

Since m < n, it has degree n and has the maximal monomial

(−1)nβ1 . . . βm x1 . . . xn .

By our assumptions, f(v) = 0 for every v ∈ {0, 1}n. But the previous theorem,
applied to f and to the sets A1 = · · · = An = {0, 1}, gives us a v ∈ {0, 1}n such
that f(v) 6= 0. We got a contradiction. 2
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[14] M. Kř́ıžek, F. Luca and L. Sommer, 17 Lectures on Fermat Numbers. From
Number Theory to Geometry, Springer, New York, 2001.

[15] D. Marcus, Number Fields, Springer, Berlin, 1977.

[16] R. C. Mason, Diophantine Equations over Function Fields, London Mathe-
matical Society Lecture Note Series, 96, Cambridge University Press, Cam-
bridge, UK, 1984.

[17] D. W. Masser, Open problems. In: W. W. L. Chen (ed.), Proceedings of the
Symposium on Analytic Number Theory, Imperial College, London, 1985.

[18] S. Mochizuki, Inter-universal Teichmüller theory IV: Log-volume computa-
tions and set-theoretic foundations, Publ. Res. Inst. Math. Sci., 57 (2021),
627–723.

[19] S. Mochizuki, Inter-universal Teichmüller theory III: Canonical splittings
of the log-theta-lattice, Publ. Res. Inst. Math. Sci., 57 (2021), 403–626.

[20] S. Mochizuki, Inter-universal Teichmüller theory II: Hodge-Arakelov-
theoretic evaluation, Publ. Res. Inst. Math. Sci., 57 (2021), 209–401.

[21] S. Mochizuki, Inter-universal Teichmüller theory I: Construction of Hodge
theaters, Publ. Res. Inst. Math. Sci., 57 (2021), 3–207.

[22] W. Narkiewicz, The Development of Prime Number Theory. From Euclid
to Hardy and Littlewood, Springer, Berlin, 2000.
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Kř́ıžek, Michal, 20

Leibniz, Gottfried W.
identity of, 4

logarithmic derivative, 5
Luca, Florian, 4, 20

Marcus, Daniel, ii
Mason, Richard C., 5
Masser, David, 1
Mochizuki, Shinichi, 2
monic polynomial, 14
multiplicative order, 22
multiset notation, 24

Narkiewicz, W ladys law, 16
normal subgroup, 28

nontrivial, 28
trivial, 28

number field, ii

Oesterlé, Joseph, 1
open ball in C, 9
open set in C, 9
ordered semigroup, 31

Pell equation, 3
PID, 17
van der Poorten, Alfred, 20
primitive root, 22

radical
in C[t], 4
in Z, 1

(complex) rational functions, 5
rational quaternions, 29
m-th root of unity, 8

order of, 8
primitive, 8

n-th root of z ∈ C, 9
existence of, 9–11

Roth, Klaus
theorem on Dioph. approx., 3

simple group, 28
skew field, 28
Sommer, Lawrence, 20
Stothers, Walter W., 5

Taylor, Richard
and FLT, 2

A and B tear X, 10
theorem

Alimov’s, 32
Darmon–Granville, 2
Dirichlet’s, 12
Eisenstein’s, 25
existence of n-th roots in C, 11
Feit–Thompson, 27
Fermat’s Last, 2
Gauss–Wantzel, 20
Gaussian construction of the reg.

17-gon, 23
∞ many primes ≡ 1 (mod m), 13
Little of Fermat, 16, 22

Euler’s generalization, 22
of Faltings, 2
on primitive roots, 22
one prime ≡ 1 (mod m), 13, 14
primitive roots of p, 22
Roth’s, 3
Stothers–Mason, 5
Wedderburn’s, 29
Wiles–Taylor, 28

Thompson, John G.
a theorem of, 27

UFD, 16
unit circle, 8

connectedness of, 10
unit in a ring, 17

Wantzel, Pierre
and regular n-gons, 20

Wiles, Sir Andrew

44



and FLT, 2
Wright, Sir Edward M., 25

45


