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Chapter 1

Roth’s theorem on
Diophantine approximation

In the first chapter ...

1.1 Liouville’s inequality and Thue equations

Recall that α ∈ C is algebraic if
∑n

j=0 cjα
j = 0, n ∈ N, for some n+ 1 fractions

cj ∈ Q where cn 6= 0. The least such n is called the degree of α. Non-algebraic
numbers are also called transcendental. In 1844 the French mathematician
Joseph Liouville (1809–1882) found the first examples of transcendental num-
bers. His method of obtaining them is based on the following lower bound on
approximability of irrational algebraic numbers by fractions.

Theorem 1.1 (Liouville, 1844) If α ∈ R is an algebraic (irrational) number
with degree n ≥ 2, then there is a constant c = c(α) > 0 such that∣∣α− p

q

∣∣ > cq−n

for every fraction p
q ∈ Q.

Proof.
2

Corollary 1.2 For every k ∈ N, k ≥ 2, the real number λk =
∑∞

j=1 k
−j! is

transcendental.

Proof. The fractions pm

qm
=
∑m

j=1 k
−j!, m = 1, 2, . . . , violate Liouville’s inequal-

ity for λk for every c > 0 and every n ∈ N. Thus λk is transcendental. Fill in
details as an exercise. 2
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A Thue equation is a Diophantine equation with two unknowns x and y and
the form

F (x, y) =
∑n

j=0 cjx
jyn−j = m,

where n ∈ N, n ≥ 3, cj ,m ∈ Z and cn 6= 0, and where F (x, y) ∈ Z[x, y] is such
that the univariate polynomial F (x, 1) ∈ Z[x] with degree n is irreducible over
Q[x]. For example, the simplest Thue equations are

x3 − 2y3 = m (∈ Z) .

In fact, every Thue equation has only finitely many solutions x, y ∈ Z, but it is
very hard to prove it.

This contrasts with the fact, well known to those who attended my course
Introduction to Number Theory, that for every d ∈ N that is not a square and
every m ∈ Z, m 6= 0, the generalized Pell equation

x2 − dy2 = m

has infinitely many (integral) solutions if it has at least one solution x, y ∈ Z.
(It is easy to see that x2 − dy2 = 0 has only the trivial solution x = y = 0.)
Thus, for example, each of the equations

x2 − 2y2 = 1, −1, 2, −2, 4, −4, 7, −7, . . .

has infinitely many (integral) solutions.
The finiteness of solution sets of Thue equations would easily follow from

any non-trivial strengthening of Liouville’s inequality in Theorem 1.1 for degrees
n ≥ 3. Those who attended my course Introduction to Number Theory know
very well that for the degree n = 2 it cannot be non-trivially strengthened (only
by some constant factors) because the following theorem, due to the German
mathematician Peter L. Dirichlet (1805–1859), holds.

Theorem 1.3 (Dirichlet, 1842) For every irrational number α ∈ R\Q there
exist infinitely many fractions p

q ∈ Q such that∣∣α− p
q

∣∣ < q−2 .

But for degrees n ≥ 3 we have the following reduction.

Proposition 1.4 (a reduction) If it is true that for every algebraic number
α ∈ R with degree n ≥ 3 there is a function ω(q) = ω(q, α) : N→ (0,+∞) such
that ω(q)→ +∞ as q →∞ and for every fraction p

q ∈ Q, q > 0, it holds that∣∣α− p
q

∣∣ > ω(q)q−n ,

then every Thue equation F (x, y) = m has only finitely many solutions x, y ∈ Z.
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Proof.
2

In view of the simplicity of the proof of Theorem 1.1, one might think that it
might not be too difficult to improve upon the argument and obtain the function
ω(q). The truth is that it can be done and the required ω(q) can be obtained,
but it is quite hard. The first who succeeded in a breakthrough result was the
Norwegian mathematician Axel Thue (1863–1922). Thue equations were named
after him to honor this achievement.

Theorem 1.5 (Thue, 1909) Suppose that α ∈ R is an algebraic number with
degree n ≥ 3 and that ε > 0. Then the inequality∣∣α− p

q

∣∣ < q−n/2−1−ε = q−n · qn/2−1−ε

has only finitely many rational solutions p
q ∈ Q, q > 0.

It is easy to see that this gives the reduction in Proposition 1.4 with the function
ω(q) = c(α, ε) · qn/2−1−ε, for every ε > 0 and some constants c(α, ε) > 0
depending only on α and ε.

1.2 Roth’s first theorem: auxiliary results

Theorem 1.6 (Roth, 1955) Let α be a real algebraic irrational number and
ε > 0. Then the inequality ∣∣α− p

q

∣∣ < q−2−ε

has only finitely many rational solutions p
q ∈ Q, q > 0.

Lemma 1.7 (4A) Let m, r1, . . . , rm ∈ N and ε ∈ (0, 1). Then∣∣{(i1, . . . , im) ∈
∏m

h=1[rh]0 :
∣∣∑m

h=1
ih
rh
− m

2

∣∣ ≥ εm}∣∣
≤ 2(r1 + 1) . . . (rm + 1) · e−ε

2m/4 .

Proof.
2

Lemma 1.8 (4B) Let n ∈ N and r ∈ N0. Then

|{(i1, . . . , in) ∈ Nn
0 : r1 + · · ·+ rn = r}| =

(
r+n−1

r

)
.

Proof. The LHS is the coefficient of xr in expanded (1 + x+ x2 + . . . )n, which
is (1− x)−n =

∑
r≥0

(−n
r

)
(−1)rxr. Thus the LHS is

(−n
r

)
(−1)r =

(
n+r−1

r

)
. 2
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Lemma 1.9 (4C) Let n,m, r1, . . . , rm ∈ N, n ≥ 2 and ε ∈ (0, 1). Then∣∣{(ih, k)m,n

h, k=1
∈ Nm×n

0 :
∑n

k=1 ih, k = rh for h ∈ [m] and∣∣∑m
h=1

ih, 1

rh
− m

n

∣∣ ≥ εm}∣∣ ≤ 2
(
r1+n−1

r1

)
. . .
(
rm+n−1

rm

)
· e−ε2m/4 .

Proof.
2

Lemma 1.10 (5B, Siegel’s lemma) M,N ∈ N, N > M , for j ∈ [M ] we
have M linear forms

Lj(z) =
∑N

k=1 aj,kzk

with N variables zk and coefficients aj,k ∈ Z such that always |aj,k| ≤ A. Then
there exists an N -tuple z ∈ ZN such that z 6= 0, Lj(z) = 0 for every j ∈ [M ]
and for every k ∈ [N ],

|zk| ≤ b(NA)M/(N−M)c .

Proof.
2
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