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Introduction

These lecture notes of the course I was teaching in the summer term 2022/23,
i.e., in the winter and spring of 2023, have as their theme the use of analytic
methods in handling discrete, combinatorial, number-theoretic and algebraic
structures. Chapter 1 contains results on algebraic numbers, with the highlight
being the proof of transcendence of π. In Chapter 2 we explain the possibly
first main result in analytic number theory, the theorem of P. Dirichlet that for
any coprime natural numbers a and m, the arithmetic progression

a, a+m, a+ 2m, . . .

contains infinitely many prime numbers. Chapter 3 is devoted to analytical
methods in asymptotic combinatorial enumeration. In Chapter 4 we explain
the elementary proof of the Prime Number Theorem, which is the theorem
saying that the number of prime numbers in the set {1, 2, . . . , n} is for n going
to infinity asymptotically n/ log n.

What distinguishes these lecture notes is that we emphasize and state clearly
notions and theorems in mathematical analysis by which each number-theoretic
or combinatorial result was obtained. We label these analytical tools by capital
Latin letters as Theorem A, Corollary B and so on and state them explicitly,
but usually we do not prove them.

We use the following notation for numeric domains. N = {1, 2, . . . } are nat-
ural numbers, N0 = {0, 1, . . . } are nonnegative integers, Z = {. . . ,−1, 0, 1 . . . }
is the ordered integral domain of integers, Q = {mn | m,n ∈ Z, n 6= 0} is the
ordered field of fractions (rational numbers), R denotes the complete ordered
field of real numbers, which is the completion of Q, and C denotes the field of
complex numbers, which is the algebraically closed quadratic extension

C = R[i] = R[
√
−1]

of R. There are the inclusions or embeddings

N ⊂ N0 ⊂ Z ⊂ Q ⊂ R ⊂ C .

For example, the last one is the embedding a 7→ a + 0i. In fact, we begin our
notes with the analytical proof of the mentioned fundamental fact that the field
C is algebraically closed.

In Prague, June 2023 M. Klazar
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Chapter 1

Algebraicity, irrationality
and transcendence

Let X and Y be sets. The notation X ⊂ Y means that X is a subset of Y , for
any x it holds that if x ∈ X then x ∈ Y . By writing f : X → Y we say that f
is a map (function, mapping) from X to Y : f ⊂ X × Y and for every x ∈ X
there is a unique y ∈ Y such that (x, y) ∈ f , which is written as f(x) = y. We
call X the definition domain of f and for Z ⊂ X define the image of Z by f to
be the set

f [Z] := {f(x) | x ∈ Z} ⊂ Y .

Let K ⊂ L be an extension of fields (i.e., K is a subfield of L) and a ∈ L. We
say that a is irrational (over K) if a 6∈ K (this is non-standard terminology).
The element a is algebraic (over K) if

n∑
j=0

bja
j = 0L

for some bj ∈ K, not all of them 0K , where n ∈ N. The minimum such n is called
the degree deg(a) = degK(a) ∈ N of a (over K). In other words, p(a) = 0L for
a nonzero polynomial p(x) ∈ K[x], so a is a root of a nonzero polynomial with
coefficients in K. For example, if a ∈ K then a is algebraic and deg(a) = 1.
We say that a is transcendental (over K) if it is not algebraic over K. Often
algebraicity, irrationality and transcendence, without anything else said, refer
to the extension of fields Q ⊂ C.

By polynomials p(x) in K[x], where K is a field, we mean formal expressions

p(x) =

n∑
j=0

ajx
j

where n ∈ N0, the coefficients aj ∈ K and an 6= 0K . We say that the number
n =: deg p(x) ∈ N0 is the degree of the polynomial. The zero polynomial, denoted

1



by ≡ 0, has an empty list of coefficients and is the additively neutral element in
the ring, in fact an integral domain, K[x] of all polynomials. We assume that
the reader is familiar with the arithmetic of this ring. We set deg(≡ 0) := −∞.
Then

∀ p, q ∈ K[x]
(

deg(pq) = deg p+ deg q ∧ deg(p+ q) ≥ min({deg p, deg q}
)
,

with equality holding when deg p 6= deg q. We associate with every polynomial
p ∈ K[x] the polynomial map

p : K → K, a 7→ p(a) ,

defined by substituting for the variable x in p(x) =
∑n
j=0 ajx

j the element a and
then performing the arithmetic operations in K described by the expression. If
p(x) is ≡ 0, the map is the constant map sending everything to 0K . A nonzero
polynomial p = p(x) is constant if deg p = 0. Else it is non-constant and deg p ≥
1. The polynomial map of any constant polynomial is obviously a constant map.
The minimum polynomial of an element a ∈ L algebraic over K is the unique
monic (i.e., with the leading coefficient 1K) polynomial p(x) in K[x] with the
minimum degree such that p(a) = 0L.

1.1 The Fundamental Theorem of Algebra

The following theorem belongs to basic results in mathematics. Therefore we
start with it our lecture notes.

Theorem 1.1 (FTAlg) For every non-constant polynomial p(x) in C[x] there
is a number α ∈ C such that

p(α) = 0 .

In other words, every non-constant complex polynomial has a complex root.

Constant polynomials have no root and the zero polynomial has each complex
number as its root. It is not hard to show that every nonzero polynomial
p = p(x) in K[x] has at most deg p roots.

We begin by exposing main results in mathematical analysis involved in
our proof of FTAlg, and then proceed to it. Let X ⊂ C be a set of complex
numbers. Recall that X is compact if every sequence (un) ⊂ X has a convergent
subsequence with a limit in X. It is well known that X is compact iff it is closed
and bounded. A map f : X → C is continuous if for every sequence (un) ⊂ X
with limun = x0 ∈ X also lim f(un) = f(x0).

Theorem A (continuity and compactness) If X ⊂ C is a compact set and
f : X → C is a continuous map then the image f [X] ⊂ C is compact.

Corollary B (attaining extrema) If X ⊂ C is a compact set and f : X → R
is a continuous map then there are elements x0, x1 ∈ X such that

∀x ∈ X
(
f(x0) ≤ f(x) ≤ f(x1)

)
.
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Thus f attains on X at x0 and x1 its global minimum and global maximum,
respectively. Indeed, if X and f are as stated then by Theorem A the subset
f [X] ⊂ R is compact, so it is bounded and closed and contains both its infimum
and its supremum.

We review the definition of connectedness. We say that a set X ⊂ C is
disconnected if there exists two open (or closed) sets A,B ⊂ C such that

(X ⊂ A ∪B) ∧ (A ∩X 6= ∅ 6= X ∩B) ∧ (A ∩B ∩X = ∅) .

In this situation we say that A and B cut X. Else, if such sets A and B do not
exist, X is connected.

Theorem C (connectedness and compactness) If X ⊂ C is a connected
set and f : X → C is a continuous map then the image f [X] ⊂ C is connected.

Using suprema of real sets, one can show that every real interval I ⊂ R is
a connected set (recall that for us R ⊂ C) and that, in fact, connected subsets
of R are exactly the real intervals.

Corollary D (Bolzano–Cauchy) If a < b are real numbers and f : [a, b]→ R
is a continuous function such that f(a)f(b) < 0 then

∃ c ∈ (a, b)
(
f(c) = 0

)
.

Indeed, by Theorem C the image f [I], where I := [a, b], is connected and so
is a real interval. Since the values f(a), f(b) ∈ f [I] and 0 lies between them,
0 ∈ f [I].

Thus we can define, for example, the real function

√
· : [0, +∞)→ [0, +∞), c 7→

√
c ,

by taking
√
c to be the unique real solution x ≥ 0 of the equation x2 − c = 0.

It is easy to see that the square root function is continuous:

√
x−√y =

x− y√
x+
√
y
.

Using continuity of polynomials and continuity of composite functions composed
of continuous functions, we deduce the following.

Corollary E (two continuous maps) The two functions f± : [−1, 1] → C,
defined by

f±(t) := t± i
√

1− t2 ,

are continuous.

The proof of FTAlg we are going to present uses connectedness of the com-
plex unit circle

S := {z ∈ C | |z| = 1} .
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To show it we need the next simple lemma.

Lemma F (union of connected sets) If X,Y ⊂ C are connected sets such
that X ∩ Y 6= ∅ then their union X ∪ Y is connected.

Now to prove that S is connected we write it as the union

S = f−[I] ∪ f+[I]

where I = [−1, 1] and the two functions f± are defined above. They are contin-
uous by Corollary E, their images f±[I] are connected by Theorem C and the
images intersect in the points ±1. By Lemma F, S is connected.

After these analytical preparations we prove FTAlg.

Our proof of Theorem 1.1. It has the Reduction Step and the n-th Root Step.
In the former step we reduce FTAlg to proving that every binomial xn−u, n ∈ N
and u ∈ C, has a root. In the latter step we show that this is the case.

• Reduction Step. Thus we assume that for every u ∈ C and every n ∈ N there is
a v ∈ C such that vn = u, and deduce from it that every non-constant complex
polynomial p(x) has a root. We write p(x) as

p(x) =

n∑
j=0

ajx
j = xn

(
an +

n−1∑
j=0

aj
xn−j

)
,

where n ∈ N, aj ∈ C and an 6= 0, and see that lim|x|→+∞ |p(x)| = +∞. This
means that

∀ c > 0 ∃ d > 0
(
x ∈ C ∧ |x| > d⇒ |p(x)| > c

)
.

So we can take a real constant d > 0 such that |x| > d ⇒ |p(x)| > |p(0)| = |a0|.
By Corollary B, the function |p(x)| attains on the closed disc

D := {x ∈ C | |x| ≤ d}

on some µ ∈ D its minimum value |p(µ)|. Since 0 ∈ D and

∀x ∈ C \D
(
|p(µ)| ≤ |p(0)| < |p(x)|

)
,

we see that |p(µ)| is a global minimum of |p(x)| on C. We show that in fact
|p(µ)| = 0. Thus p(µ) = 0 and µ is a root of p(x).

We assume for contradiction that |p(µ)| > 0. We replace the variable x with
the variable y defined by the relation x = x − µ + µ = y + µ and, using the
Binomial Theorem, transform the polynomial p(x) in the polynomial q(y) with
the same degree and leading coefficient:

p(x) =

n∑
j=0

ajx
j =

n∑
j=0

aj(y + µ)j =

n∑
j=0

bjy
j =: q(y) ,
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where bj ∈ C, bn = an 6= 0 and b0 = q(0) = p(µ) 6= 0. To obtain a contradiction,
we order q(y) from the lowest powers of y as

q(y) = b0 + bmy
m +

n∑
j=m+1

bjy
j =: b0 + bmy

m + r(y)

with m ∈ N, b0 6= 0 and bm 6= 0 (if m = n we set r(y) to be ≡ 0) and show that
there is a ν ∈ C such that |q(ν)| < |b0|. This will be a contradiction because
|b0| = |q(0)| = |p(µ)| is the global minimum of |q(y)| = |p(x)| on C.

Using the assumption about n-th roots we set α := (−b0/bm)1/m. We note
that for y → 0 it is true that

r(y) = O(ym+1) = o(ym) ,

and thus we may take a sufficiently small δ ∈ (0, 1) such that with ν := δα,
|r(ν)| ≤ δm|b0|/2. Then

|q(ν)| = |b0 + bm(δα)m + r(ν)|
= |b0(1− δm) + r(ν)| ≤ |b0|(1− δm) + |r(ν)|
≤ |b0|(1− δm/2) < |b0| = |q(0)| = |p(µ)|

is the announced contradiction. So |p(µ)| = 0 and µ is a root of p(x).

• n-th Root Step. We prove that for every n ∈ N and every complex number u,
the equation

xn = u

has at least one solution x ∈ C. We apply two simplifications: we may assume
that (i) n is odd and that (ii) u ∈ S (i.e., |u| = 1). Simplification (i) follows
from the facts that every n can be written (uniquely) as the product n = 2kn′

with k ∈ N0 and odd n′ ∈ N, and that the equation is solvable for any u = c+di
if n = 2: if u 6= 0, for two appropriate choices of signs in

a =
±
√√

c2 + d2 + c√
2

and b =
±
√√

c2 + d2 − c√
2

we get two different solutions a+ bi ∈ C of the equation

(a+ bi)2 = a2 − b2 + 2abi = c+ di .

For u = 0 there is of course the unique solution a + bi = 0. Simplification (ii)
follows from assuming that u 6= 0 and dividing the equation by |u|:(

x/|u|1/n
)n

= u/|u| ∈ S .

Here the real n-th root |u|1/n exists due to Corollary D.
Thus we need to show that the map

f(x) = xn : S → S ,
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where n is odd, is onto. We assume for contradiction that there is an α ∈ S\f [S].
Then, since n is odd, also −α ∈ S \ f [S]. We denote by H± the two open
halfplanes in C determined by the line going through α and −α. It follows
(since n is odd) that

(H− ∪H+) ∩ S = S \ {α, −α}, {−1, 1} ⊂ f [S] ⊂ S

and that −1 and 1 lie in different halfplanes H− and H+. We see that H− and
H+ cut f [S] and that f [S] is disconnected. But this contradicts the fact that
by Theorem C f [S] is connected as a continuous image of the connected set S.
Thus f [S] = S and every number u ∈ S has an n-th root. Our proof of FTAlg
is complete. 2

1.2 Liouville’s inequality

First examples of transcendental numbers, i.e. real (or complex) numbers that
are not roots of any nonzero rational polynomial, were found by the French
mathematician Joseph Liouville (1809–1882). His construction makes use of
the following Liouville’s inequality bounding from below distances between an
irrational algebraic number and fractions. A transcendental number is then
easily obtained as an irrational sum of a rapidly converging series of rational
summands: the partial sums approximate the sum too well and Liouville’s in-
equality is violated.

Theorem 1.2 (J. Liouville, 1844) Let α ∈ R \ Q be an irrational algebraic
real number and n := deg(α) ≥ 2. There is a real constant c = c(α) > 0 such
that for every fraction p/q ∈ Q with q ∈ N,∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qn
.

Corollary 1.3 (transcendental number λ) The real number

λ :=

∞∑
n=1

10−n! = 0.110001000000000000000001000 . . .

is transcendental.

Of course, the base 10 can be replaced with any integer m ≥ 2.
In the proofs we use two results from analysis. For the first one we review

the definition of the derivative of a real function at a point. Recall that for
a ∈ R and M ⊂ R, the number a is a limit point of the set M if

∀ k ∃ b ∈M
(
0 < |a− b| ≤ 1/k

)
.

In other words, there is a sequence (bn) ⊂ M \ {a} such that lim bn = a. Now
for a ∈ M ⊂ R, where a is a limit point of M , and a function f : M → R, the
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(finite) derivative of f at a is the number f ′(a) ∈ R such that for every k there
is an n such that

b ∈M ∧ 0 < |b− a| ≤ 1/n⇒
∣∣∣∣f(b)− f(a)

b− a
− f ′(a)

∣∣∣∣ ≤ 1/k .

We also allow that f ′(a) = ±∞ and leave the formulation of the corresponding
definition to the reader as an exercise. The next theorem is well known.

Theorem G (Lagrange’s MVT) Let a < b be real numbers and f : [a, b]→ R
be a continuous function such that for every c ∈ (a, b) the derivative f ′(c) exists
(it may be ±∞). Then

∃ c ∈ (a, b)

(
f ′(c) =

f(b)− f(a)

b− a

)
.

Also the formula for sums of geometric series is well known.

Proposition H (geometric series) For every u ∈ C with |u| < 1 and n ∈ N0,

un + un+1 + · · · = un

1− u
.

An analytic proof of Theorem 1.2. Let α and n be as stated. We take the
minimum polynomial r(x) ∈ Q[x] of α. Multiplying it by an integer we get rid
of the denominators in the coefficients and may assume that r(x) is integral,

r(x) = anx
n + · · ·+ a1x+ a0

with aj ∈ Z and an 6= 0. We set I := [α − 1, α + 1] and consider an arbitrary
fraction p

q ∈ Q with q ∈ N. If it lies outside I then, trivially,∣∣∣∣α− p

q

∣∣∣∣ > 1 ≥ 1

qn
.

Let p
q ∈ I and, for example, pq < α (the case that p

q > α is treated similarly). We

set a := p
q , b := α and regard r = r(x) as a real function r : [a, b]→ R. (This is

the polynomial function associated with r(x) when we regard it as a polynomial
in R[x].) By Theorem G there is a real number β ∈ (a, b) ⊂ I such that

r′(β) =
r(α)− r(p/q)
α− p/q

.

Now r(α) = 0 and

|r(p/q)| = |anp
n + · · ·+ a1pq

n−1 + a0q
n|

qn
≥ 1

qn
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because the integer anp
n + · · ·+a1pq

n−1 +a0q
n 6= 0. Indeed, by the minimality

of the degree of r(x), r(p/q) 6= 0. (If r(p/q) = 0 then r(x)/(x−p/q) is a rational
polynomial with degree n− 1 and root α.) Thus∣∣∣∣α− p

q

∣∣∣∣ ≥ 1/|r′(β)|
qn

.

Since |r′| : I → R is continuous and the interval I ⊂ R (or ⊂ C) is compact, by
Corollary B we can set d > 0 to be the maximum value of |r′(x)| on I. We set
c := min({1, 1/d}) > 0 and get Liouville’s inequality:∣∣∣∣α− p

q

∣∣∣∣ ≥ min({1, 1/|r′(β)|})
qn

≥ min({1, 1/d})
qn

=
c

qn
.

2

One can find the previous proof, for example, in the monograph [1, pp. 1–2] of
Alan Baker (1939–2018). Leafing through the book I see that the example with
the number λ is there too, only in [1] λ is called ξ.

Proof of Corollary 1.3. Clearly, λ is irrational. Suppose for the contrary
that it is algebraic. Let n := deg λ ≥ 2 and let c := c(λ) > 0 be the constant
for λ in Liouville’s inequality. For m ∈ N we consider the m-th partial sum of
the series defining λ:

m∑
j=1

10−j! =
pm
qm

=
pm

10m!

for some pm ∈ N. Then, by Proposition H,∣∣∣∣λ− pm
qm

∣∣∣∣ =

∞∑
j=m+1

10−j! ≤ 1/10m!·(m+1)

1− 1/10m!
≤ 10

9
· 1

qm+1
m

=
10

9qm
· 1

qmm
.

Any m so large that 10/(9qm) = 1/(9 · 10m!−1) < c produces violation of Liou-
ville’s inequality. Hence λ is transcendental. 2

The Soviet-Belarusian number theorist Vladimir G. Sprindzhuk (1936–1987)
gave in [10, p. 14] a different proof of Liouville’s inequality. We present it next, in
a simplified form; it seems that Theorem 1.2 can be proven purely algebraically,
without analysis. But it only seems.

An “algebraic” proof of Theorem 1.2. Let α, n and r(x) be as before. By
Theorem 1.1 (here analysis hides) we have the factorization

r(x) = a(x− α1)(x− α2) . . . (x− αn), αj ∈ C ,

where a ∈ N and α = α1. We denote by d ≥ 0 the maximum distance |α − αj |
for j = 2, 3, . . . , n. (One can show that the roots αj are all distinct but we
do not need it.) Let p

q be an arbitrary fraction with q ∈ N. Like in the first,
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analytical proof we distinguish two cases: |α − p
q | ≥ 1 and |α − p

q | ≤ 1. As we
know, in the former case Liouville’s inequality holds trivially:∣∣∣∣α− p

q

∣∣∣∣ ≥ 1 ≥ 1

qn
.

In the latter case |α− p
q | ≤ 1 the triangle inequality implies that |αj− p

q | ≤ 1+d

for every j = 2, 3, . . . , n. As we know from the first proof, |r(pq )| ≥ q−n. Thus∣∣∣∣α− p

q

∣∣∣∣ =
|r(p/q)|

a · |α2 − p/q| · . . . · |αn − p/q|
≥ (1 + d)1−n/a

qn
.

We set c := min({1, (1 + d)1−n/a}) and get Liouville’s inequality. 2

In reality the former proof is analytically simpler than the latter because it does
not rely on FTAlg, whereas the latter does.

1.3 e is transcendental

The transcendence of the number e = 2.71828 . . . was proven first by the French
mathematician Charles Hermite (1822–1901).

Theorem 1.4 (Ch. Hermite, 1873) The number e is transcendental.

We first give analytical tools used in the proof. One easily proves by inte-
gration by parts the following identity.

Theorem I (values of the gamma function) For every n ∈ N0,∫ +∞

0

xne−x dx = n! .

The substitution y = x −m and the identity ex+y = exey, x, y ∈ R, yield the
next result.

Proposition J (shifting by m) For every m ∈ N0 and every polynomial p(x)
in Z[x],

em
∫ +∞

m

p(x)e−x dx =

∫ +∞

0

p(x+m)e−x dx .

We present a proof of Hermite’s theorem devised by David Hilbert (1862–1943)
in 1893.

Hilbert’s proof of Theorem 1.4 ([5]). Suppose for the contrary that e is
algebraic. It follow that for some n ∈ N0 and qj ∈ Z with q0 6= 0,

q0 + q1e + · · ·+ qnen = 0 .

9



For m ∈ N we take the integral polynomials

pm(x) := xm
(
(x− 1)(x− 2) . . . (x− n)

)m+1
.

Using Proposition J and the additivity of Riemann integrals we get the identity

0 =
(
q0 + q1e + · · ·+ qnen

) ∫ +∞

0

pm(x)e−x dx

=

n∑
j=0

qje
j

∫ j

0

pm(x)e−x dx+

n∑
j=0

qj

∫ +∞

0

pm(x+ j)e−x dx

=: A(m) +B(m) .

It is not hard to show that for every m ∈ N,

|A(m)| ≤ cm

for a constant c > 1. As for B(m), Theorem I and the linearity of Riemann
integrals imply that for every m ∈ N,

B(m) = q0(−1)n(m+1)(n!)m+1 ·m! + bm · (m+ 1)!

for some bm ∈ Z. Thus B(m) are integers divisible by m!. The crucial observa-
tion is that

B(m) = 0 ⇒ m+ 1 divides q0 · (n!)m+1 .

The conclusion of this implication does not hold, for example, when m + 1 is
coprime with q0 · n!. It follows that |B(m)| ≥ m! for infinitely many m. But
since always A(m) + B(m) = 0 and A(m) is bounded exponentially in m, we
get a contradiction. 2

1.4 Hilbert’s proofs of transcendence of e and π

Here is my translation of the full article [5] of D. Hilbert.

On the transcendence of the numbers e and π
By

David Hilbert in Königsberg in Prussia
——–

Let us suppose that the number e satisfies the degree n equation

a+ a1e+ a2e
2 + · · ·+ ane

n = 0 ,

whose coefficients a, a1, . . . , an are integers. If the left side of this equation is
multiplied by the integral∫ ∞

0

=

∫ ∞
0

zρ[(z − 1)(z − 2) · · · (z − n)]ρ+1e−zdz ,
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where ρ denotes a positive integer, the expression

a

∫ ∞
0

+ a1e

∫ ∞
0

+ a2e

∫ ∞
0

+ · · ·+ ane
n

∫ ∞
0

arises and this expression splits in the sum of the next two expressions:

P1 = a

∫ ∞
0

+ a1e

∫ ∞
1

+ a2e
2

∫ ∞
2

+ · · ·+ ane
n

∫ ∞
n

,

P2 = a1e

∫ 1

0

+ a2e
2

∫ 2

0

+ · · ·+ ane
n

∫ n

0

.

The formula ∫ ∞
0

zρe−zdz = ρ!

shows that the integral

∫ ∞
0

is an integer divisible by ρ! and it also easily follows,

when one applies the respective substitutions z = z′+1, z = z′+2, . . . , z = z′+n,
that

e

∫ ∞
1

, e2

∫ ∞
2

, . . . , en
∫ ∞
n

,

are integers divisible by (ρ+ 1)!. So P1 is an integer divisible by ρ! and, as we
see, modulo ρ+ 1 the congruence

(1)
P1

ρ!
≡ ±a(n!)ρ+1 (ρ+1)

holds.
On the other hand, when K, resp. k, denotes the maximum that the func-

tions
z(z − 1)(z − 2) . . . (z − n) ,

resp.
(z − 1)(z − 2) . . . (z − n)e−z ,

attain in absolute value on the interval from z = 0 to z = n, it holds that∣∣∣∣ ∫ 1

0

∣∣∣∣ < kKρ,

∣∣∣∣ ∫ 2

0

∣∣∣∣ < 2kKρ, . . .

∣∣∣∣ ∫ n

0

∣∣∣∣ < nkKρ

and from this it follows, when we set for brevity

κ = {|a1e|+ 2|a2e
2|+ · · ·+ |anen|}k ,

the inequality

(2) |P2| < κKρ .

Now one takes a positive integer ρ which, first, is divisible by the integer
a.n! and for which, second, κK

ρ

ρ! < 1 is. Then P1

ρ! is, as a consequence of the

11



congruence (1), an integer that is not divisible by ρ+1 and is necessarily different
from 0. Moreover this P2

ρ! is, as a consequence of the inequality (2) and when
taken in absolute value, smaller than 1, therefore the equality

P1

ρ!
+
P2

ρ!
= 0

is impossible.
Let π be an algebraic number, namely let the number a1 = iπ satisfy a degree

n equation with integral coefficients. If we denote by α2, . . . , αn other roots of
the equation, then, since 1 + eπi has value 0, also the expression

(1 + eα1)(1 + eα2) · · · (1 + eαn) = 1 + eβ1 + eβ2 + · · ·+ eβN

has to have value 0. Therefrom, as one easily sees, the N exponents β1, . . . ,
βN are roots of a degree N equation with integral coefficients. If moreover, say,
the M exponents β1, . . . , βM are different from 0, while the other vanish, then
these M exponents β1, . . . , βM are roots of a degree M equation of the form

f(z) = bzM + b1z
M−1 + · · ·+ bM = 0

whose coefficients are also integers and in which especially the last coefficient
bM differs from zero. The above expression then becomes the form

a+ eβ1 + eβ2 + · · ·+ eβM+ ,

where a is a positive integer.
One multiplies this expression by the integral∫ ∞

0

=

∫ ∞
0

zρ[g(z)]ρ+1e−zdz ,

where ρ denotes again a positive integer and where we set for brevity g(z) =
bMf(z); then one gets

a

∫ ∞
0

+ eβ1

∫ ∞
0

+ eβ2

∫ ∞
0

+ · · ·+ eβM
∫ ∞

0

and this expression splits in the sum of the next two expressions:

P1 = a

∫ ∞
0

+ eβ1

∫ ∞
β1

+ eβ2

∫ ∞
β2

+ · · ·+ eβM
∫ ∞
βM

,

P2 = eβ1

∫ β1

0

+ eβ2

∫ β2

0

+ · · ·+ eβM
∫ βM

0

,

where generally the integral

∫ ∞
βi

in the complex z-plane is taken from the point

z = βi along a line parallel to the real axis up to +∞, and the integral

∫ βi

0

is

12



taken from the point z = 0 along the joining straight segment up to the point
z = βi.

The integral

∫ ∞
0

is again an integer divisible by ρ! and, as one sees, modulo

ρ+ 1 the congruence

1

ρ!

∫ ∞
0

≡ bρM+Mbρ+1
M (ρ+ 1)

holds. By means of the substitution z = z′ + βi and by g(βi) = 0 one obtains
further that

eβi
∫ ∞
βi

=

∫ ∞
0

(z′ + βi)
ρ[g(z′ + βi)]

ρ+1e−z
′
dz′ = (ρ+ 1)!G(βi) ,

where G(βi) is an integral function1 in βi, with degree in βi below the number
ρM + M and with all coefficients divisible by bρM+M . Since β1, . . . , βM are
roots of the integral equation f(z) = 0 and therewith after multiplication by
the first coefficient b turn in algebraic integers,

G(β1) +G(β2) + · · ·+G(βM )

is necessarily an integer. It follows from this that the expression P1 is an integer
divisible by ρ! and modulo ρ+ 1 the congruence

(3)
P1

ρ!
≡ abρM+Mbρ+1

M (ρ+ 1)

holds.
On the other hand, when K, resp. k, denotes the maximum attained in

absolute value by the function zg(z), resp. g(z)e−z, on the straight integration
segments between z = 0 and z = βi, then∣∣∣∣ ∫ βi

0

∣∣∣∣ < |βi|kKρ (i = 1, 2, . . . ,M)

and therefrom it follows, when one sets for brevity

κ =
{∣∣β1e

β1
∣∣+
∣∣β2e

β2
∣∣+ · · ·+

∣∣βMeβM ∣∣} k ,
the inequality

(4) |P2| < κKρ .

Now one takes a positive integer ρ which, first, is divisible by abbM and for
which, second, κK

ρ

ρ! < 1 is. Then P1

ρ! is, as a consequence of the congruence (3),
an integer not divisible by ρ+ 1 and thus necessarily different from 0, and since

1integral polynomial

13



moreover P2

ρ! is, as a consequence of the inequality (4), in absolute value less
than 1, the equality

P1

ρ!
+
P2

ρ!
= 0

is impossible.
It is easy to see how by continuing in the way we passed one can equally easily

prove also the general theorem of L i n d e m a n n on the exponential function.

K ö n i g s b e r g in Prussia, January 5th, 1893.

1.5 Comments on the two previous proofs
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Chapter 2

Dirichlet’s theorem on
prime numbers in AP

The abbreviation AP stands for “arithmetic progression(s)”. These are sets
X ⊂ Z of the form

X = {a+ jm | j ∈ I}

where a ∈ Z, m ∈ N and I is a finite or infinite interval of integers. An interval in
Z is any set I ⊂ Z such that for any three integers k < l < m with k,m ∈ X also
l ∈ X. The positive integer m is the common difference of the progression. In
the analytic proof of Dirichlet’s theorem in Section 2.2 we will use the notation

(a mod m) := {a+ nm | n ∈ Z}

(a ∈ Z, m ∈ N) and Z/mZ := {(a mod m) | a ∈ [m]}.
“Dirichlet’s theorem . . . ” refers to the following famous result in which, more

precisely in Dirichlet’s proof of which, Analytic Number Theory was born.

Theorem 2.1 (P. Dirichlet, 1837) Suppose that a,m ∈ N, say 1 ≤ a < m,
are coprime numbers. Then the infinite AP

a+m, a+ 2m, a+ 3m, . . .

contains infinitely many prime numbers.

In other words, for coprime a and m there exist infinitely many primes p of the
form p ≡ a (mod m). If a and m are not coprime then the AP clearly contains no
prime number. The German mathematician (Johann) Peter (Gustav Lejeune)
Dirichlet (1805–1859)1 proved the theorem in [3]. His argument, as given in
[3], was complete only in the case when the modulus (common difference) m is
a prime number.

1His family was of French origin and the name in fact says “le jeune de Richelet”, a lad
from Richelet.
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In the next section we present an interesting elementary argument of P. Erdős
that proves some (unfortunately, only finitely many) cases of Dirichlet’s theorem.
In the section after that we give an analytic proof of full Dirichlet’s theorem.

2.1 An elementary argument of P. Erdős

For m ∈ N we define the quantity

σ = σ(m) :=
∑
p≤m

(p,m)=1

1

p
,

so σ is the sum of reciprocals of the prime numbers not exceeding m that do
not divide it. If the sum is empty, which happens only for m = 1 and 2, we
define it as 0. For example,

σ(6) =
1

5
and σ(7) =

1

2
+

1

3
+

1

5
=

31

30
(> 1) .

In 1935 the prodigious Hungarian mathematician Paul (Pál) Erdős (1913–1996)
gave in [4] an elementary proof for Dirichlet’s theorem for moduli m such that
σ(m) < 1.

Theorem 2.2 (P. Erdős, 1935) Suppose that a,m ∈ N, say 1 ≤ a < m, are
coprime numbers such that σ(m) < 1. Then there exist infinitely many prime
numbers p ≡ a (mod m).

Good news is that the argument of P. Erdős is completely elementary, free of
analysis and very nice. Bad news is that the set of m ∈ N with σ(m) < 1 is
finite. It was determined by P. Moree in [7]:

{m ∈ N | σ(m) < 1} = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21,

22, 24, 26, 28, 30, 36, 40, 42, 48, 50, 54, 60, 66, 70,

72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132,

138, 150, 156, 168, 180, 210, 240, 270, 300, 330

390, 420, 630, 840} .

We note that although 7 is outside the set, 14 = 2 · 7 lies in it and therefore the
modulus m = 7 is covered by the argument of P. Erdős. In this way all moduli
m = 1, 2, . . . , 28 are covered by the argument and m = 29 is the smallest one
that escapes it.

Open Problem. Extend the argument of P. Erdős, which we are going to
present now, so that it covers some moduli m such that no multiple of m is in
the set, for example m = 29.

16



We turn to the argument of PE. We rework and expand our explanation of
it we gave 13 years ago in [6]. If A ⊂ Z is a finite set and d ∈ N then

A(d) := #{x ∈ A | d |x} ,

i.e., A(d) counts the multiples of d in A. For a prime number p and n ∈ Z \ {0}
we define the p-adic order of n by

ordp(n) := max({k ∈ N0 | pk |n}) ,

and we set ordp(0) := +∞ for any prime p.

Lemma 2.3 Let a ∈ Z, d,m, n ∈ N, d and m be coprime, and let A ⊂ Z be the
AP

A := {a+m, a+ 2m, . . . , a+ nm} .

Then the following hold.

1. A(d) = bn/dc or bn/dc+ 1.

2. The latter case holds for A(d) iff

∃ j ∈ {1, 2, . . . , r(n, d)}
(
d | (a+ jm)

)
where r(n, d) = n− dbn/dc is the remainder for the division of n by d.

3. If a = 0 and m = 1 then the latter case does not occur and A(d) = bn/dc.

4. It holds that
ordp

(∏
x∈A x

)
=
∑
i≥1A(pi) .

It actually holds for any finite set A ⊂ Z.

Proof. Let a, d, m, n and A be as stated. We note that (j, k ∈ Z) if j 6≡
k (mod d) then also a + jm 6≡ a + km (mod d). Hence we observe that for
every interval I ⊂ Z with length |I| = d there is exactly one j ∈ I such that
a + jm ≡ 0 (mod d) and that for |I| < d there is at most one such j. We
consider the partition

[n] = {1, 2, . . . , n} = {1, 2, . . . , r(n, d)}︸ ︷︷ ︸
I0

∪ I1 ∪ I2 ∪ · · · ∪ Ibn/dc

where I0 < I1 < I2 < · · · < Ibn/dc are intervals in Z and each Ii, i ≥ 1, has
length d. By the observation we see that

A(d) = bn/dc+ δ, δ ∈ {0, 1} ,

where δ = 1 iff ∃ j ∈ I0 with d | (a+ jm). Thus we deduce parts 1–3; for part 3
note that if a = 0 and m = 1 then for no j ∈ I0 the number d divides the
number a+ jm = j < d.
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In part 4 we assume that A ⊂ Z is any finite set. For 0 ∈ A the stated
equality holds, ordp(0) = +∞ and A(pi) ≥ 1 for every i ∈ N. For 0 6∈ A we
use additivity of p-adic orders (ordp(kl) = ordp(k) + ordp(l) for every k, l ∈ Z),
double-count the pairs in the finite set

S := {(i, x) ∈ N×A | pi |x}

and get that ordp
(∏

x∈A x
)

=
∑
x∈A ordp(x) indeed equals∑

x∈A #{i ∈ N | (i, x) ∈ S} =
∑
i∈N #{x ∈ A | (i, x) ∈ S} =

∑
i≥1A(pi) .

2

Parts 3 and 4 of the lemma imply the well known formula

ordp(n!) =
∑
i≥1

bn/pic

due originally to Adrien-Marie Legendre (1752–1833). Parts 1, 3 and 4 show
that every binomial coefficient is a natural number. Namely, for every n,m ∈ N,
n ≤ m, and prime p the p-adic order of(

m

n

)
=
m(m− 1) . . . (m− n+ 1)

n!
=:

N

D

equals ordp(N)− ordp(D) =
∑
i≥1(A(pi)− B(pi)) =

∑
i≥1 δ(i), for the n-term

APs
A = {m− n+ 1, m− n+ 2, . . . , m} and B = {1, 2, . . . , n}

and with δ(i) ∈ {0, 1}, thus ordp(
(
m
n

)
) ≥ 0. Below we will see that part 2 is

crucial for the functioning of PE’s argument.
We extend p-adic order to fractions: if m/n ∈ Q is nonzero, we set

ordp(m/n) := ordp(m)− ordp(n) ∈ Z .

Again ordp(0/n) := +∞.
We begin the proper argument of PE. Let an m ∈ N with m ≥ 3 be the

given modulus and an a ∈ N coprime to m, 1 ≤ a < m, be the given coprime
residue class. We are going to show that if σ(m) < 1 then there exist infinitely
many primes p ≡ a (mod m). Let p1 < p2 < · · · < ph < m be all prime
numbers not exceeding m and not dividing it. Since m ≥ 3, h ≥ 1. We
set P := p1p2 . . . ph and take the unique numbers q1, . . . , qh ∈ N such that
1 ≤ qi < m and qipi ≡ a (mod m). Thus every qi is coprime to m. For n ∈ N
and divisible by P we define

Pn(a, m) :=
(a+m)(a+ 2m) . . . (a+ nm)

n!
∈ Q

and

Qn(a, m) :=
Pn(a, m)

Pn/p1(q1, m)Pn/p2(q2, m) . . . Pn/ph(qh, m)
∈ Q .
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Proposition 2.4 (properties of Pn(a,m) and Qn(a,m)) Let m, a, pi, qi and

P be as above, recall that σ = σ(m) =
∑h
i=1 1/pi, let n ∈ N be a multiple of P

and let p be a prime number. The following hold.

1. For n→∞ on multiples of P ,

Qn(a, m) = m(1−σ)n+o(n) .

2. Let p and m be coprime and k := ordp(Pn(a,m)). Then 1 ≤ pk < (n+1)m.

3. If p |m and σ ≤ 1 then ordp(Qn(a,m)) ≤ 0.

4. Suppose that n ≥ m and that p >
√

(n+ 1)m. Then

ordp(Pn(a,m)) ∈ {0, 1} and ∀ i ∈ [h]
(
ordp(Pn/pi(qi,m)) ∈ {0, 1}

)
.

5. With the assumptions of part 4, if in addition p 6≡ a (mod m) and
ordp(Pn(a,m)) = 1 then

∃ i ∈ [h]
(
ordp(Pn/pi(qi,m)) = 1

)
.

Proof. 1. For every j ∈ [n], jm < a + jm < (j + 1)m. We multiply these 2n
inequalities, divide the resulting pair of inequalities by n! and get that

mn < Pn(a, m) < (n+ 1)mn .

So Pn(a,m) = mn+o(n) for n → ∞. We substitute this asymptotics in the
definition of Qn(a,m) and obtain part 1.

2. Let p, m and k be as stated. Consider the APs

A := {a+m, a+ 2m, . . . , a+ nm} and B := {1, 2, . . . , n} .

As above, by parts 1, 3 and 4 of Lemma 2.3 we have that

k = ordp
(∏

x∈A x
)
− ordp

(∏
x∈B x

)
=
∑
i≥1(A(pi)−B(pi)) =

∑
i≥1 δ(i)

where δ(i) ∈ {0, 1} for every i ∈ N and δ(i) = 0 if pi ≥ (n + 1)m (since
max(A),max(B) < (n+ 1)m). We obtain part 2.

3. Now p does not divide any of the factors a + jm and qi + jm in the
numerators of the fractions Pn(a,m) and Pn/pi(qi,m) and therefore

ordp
(
Qn(a, m)

)
= −ordp

(
n!

n/p1!n/p2! ... n/ph!

)
≤ 0

because n
p1

+ n
p2

+ · · ·+ n
ph
≤ n — the displayed ratio of factorials is a natural

number as it is a multiple of a multinomial coefficient.
4. Let n, m and p be as stated. Then p ≥

√
(m+ 1)m > m and p is coprime

to m. For i = 0, 1, . . . , h we again consider the APs

Ai := {qi +m, qi + 2m, . . . , qi + (n/pi) ·m} and B := {1, 2, . . . , n}
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where q0 := a and p0 := 1. Let ki := ordp(Pn/pi(qi,m)). Again by parts 1, 3
and 4 of Lemma 2.3,

ki = ordp
(∏

x∈Ai x
)
− ordp

(∏
x∈B x

)
=
∑
l≥1(Ai(p

l)−B(pl)) =
∑
l≥1 δi(l)

where δi(l) ∈ {0, 1} for every i = 0, 1, . . . , h and every l ∈ N. But now δi(l) = 0
for l ≥ 2 because p2 > (n + 1)m > max(Ai), i = 0, 1, . . . , h. We easily get
part 4.

5. We assume that n, m and p are as in part 4 and that in addition p 6≡
a (mod m) and ordp(Pn(a,m)) = 1. By parts 2 and 4 of Lemma 2.3 there is
a j ∈ [r(n, p)] such that p divides a+ jm. Thus 1 ≤ j ≤ r := n− pbnp c and

a+ jm = pb, b ∈ N .

Clearly, b and m are coprime. Since 1 ≤ j < p, 1 ≤ a < m and p > m, we
see that b = (a + jm)/p ∈ [1,m). But b > 1 because p is not a modulo m. So
1 < b < m and since b and m are coprime, there is an i ∈ [h] such that pi | b. We
write that b = pic, c ∈ N. By the above definitions we have that a = piqi + tm
for some t ∈ Z. From pi, qi > 0 and a < m it follows that t ≤ 0. We substitute
in the last displayed equation the expressions for b and a and get that

piqi + (t+ j)m = ppic .

It follows that pi | (t+j) and we write that t+j = pij
′ for some j′ ∈ Z. Canceling

pi we get that
qi + j′m = pc .

If we show that j′ ∈ [r(n/pi, p)], we are done because then by parts 2 and 4 of
Lemma 2.3 it holds that

ordp(Pn/pi(qi, m)) = 1 .

The first inequality in 1 ≤ j′ ≤ r′ := n
pi
− pbn/pip c clearly holds because

j′ = (pc − qi)/m > (m − m)/m = 0. Suppose for contradiction that r′ < j′.
Then

0 ≤ pir′ < pij
′ = t+ j ≤ j ≤ r and 0 ≤ pir′ < r

where r is the remainder for division of n by p. But pir
′ = n − p · pibn/pip c,

which implies that pir
′ is the same remainder. Thus pir

′ = r, which contradicts
the last displayed inequality. 2

Proof of Theorem 2.2. Let a,m ∈ N, m ≥ 3 and 1 ≤ a < m, be coprime
numbers such that σ = σ(m) =

∑h
i=1

1
pi
< 1 and let P = p1p2 . . . ph be the

product of all primes not exceeding m and not dividing it. Then for n → ∞
(with n ≥ m) via multiples of P we have the relations

m(1−σ)n+o(n) = Qn(a, m) =
∏
p

pordp(Qn(a,m))

≤
∏

p≤
√

(n+1)m

(n+ 1)m
∏

p<(n+1)m
p≡a (mod m)

p .
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The first equality holds by part 1 of the last proposition. We get the second
equality by taking the prime factorization of Qn(a,m). Finally, for n ≥ m we
cover all prime numbers p by the following five sets:

X1 ∪ · · · ∪X5 := {p | p ≥ (n+ 1)m} ∪
∪{p |

√
(n+ 1)m < p < (n+ 1)m ∧ p ≡ a (mod m)} ∪

∪{p |
√

(n+ 1)m < p < (n+ 1)m ∧ p 6≡ a (mod m)} ∪
∪{p | (p, m) = 1 ∧ p ≤

√
(n+ 1)m} ∪ {p | p |m} .

By part 2 of Proposition 2.4, p ∈ X1 ⇒ ordp(Qn(a,m)) = 0 and corresponding
factors in the factorization are bounded by ≤ 1. For p ∈ X2 corresponding
factors are bounded, due to part 4, by the second product on the right-hand
side. For p ∈ X3 corresponding factors are bounded, due to parts 4 and 5, by
≤ 1. For p ∈ X4 corresponding factors are bounded, due to part 2, by the first
product. By part 3, p ∈ X5 ⇒ ordp(Qn(a,m)) ≤ 0 and corresponding factors
are bounded by ≤ 1.

As for the first product,∏
p≤
√

(n+1)m

(n+ 1)m ≤
(
(n+ 1)m

)√(n+1)m
= mo(n) .

Dividing the above displayed bound on Qn(a,m) by this one we therefore get,
for n→∞ on multiples of P , the lower bound∏

p<(n+1)m
p≡a (mod m)

p > m(1−σ)n+o(n) → +∞ (σ ∈ [0, 1)) .

Thus the set of primes p such that p ≡ a (mod m) is infinite. 2

2.2 H.N. Shapiro’s analytic proof

We prove Theorem 2.1 in a stronger form given in Theorem 2.30 below: if
a,m ∈ N are coprime numbers then for all real x > 1,∑

p≤x
p≡a (mod m)

log p

p
=

log x

ϕ(m)
+O(1)

where p denotes prime numbers and the empty sum is defined as 0. For x→ +∞
the right side goes to +∞ with and Theorem 2.1 follows. The proof is due
to Harold N. Shapiro (1922–2013) in [9], its characteristic feature is Proposi-
tion 2.29 which elaborates a consequence of the counterfactual that L(χ) = 0.
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Recall that Euler’s totient function ϕ : N → N counts coprime residue classes,
so that

ϕ(n) = |{m ∈ [n] | (m, n) = 1}| = n(1− 1/p1)(1− 1/p2) . . . (1− 1/pk)

where p1 < p2 < · · · < pk are (all) prime divisors of n.
We say that a function f : N → C is completely multiplicative if f(mn) =

f(m)f(n) for every m,n ∈ N. It is strongly bounded if

∃ c > 0 ∀ finite interval I ⊂ N
(∣∣∑

x∈I f(x)
∣∣ ≤ c) .

Strong boundedness implies boundedness. The function f is strongly bounded iff
the stated inequality holds for every interval I = [n]. Clearly, if f is completely
multiplicative and bounded then |f(n)| ≤ 1 for every n. For a,m ∈ N the
characteristic (indicator) functions

χm, Ia,m : N→ {0, 1}

are defined by

χm(n) = 1 ⇐⇒ (n, m) = 1 and Ia,m(n) = 1 ⇐⇒ n ≡ a (mod m)

—χm is the indicator function of numbers coprime to m and Ia,m of numbers
congruent to a modulo m. Note that χm is completely multiplicative but that
it is not strongly bounded. Ia,m is not strongly bounded either.

The first of the two hearts of this proof, in fact of any proof, of Dirichlet’s
theorem is the next partition of Ia,m in a linear combination of completely mul-
tiplicative functions that are also strongly bounded, except one. Interestingly,
even though Ia,m has values just 0 and 1, functions in the linear combination
are complex-valued.

Theorem 2.5 (complex partitions of Ia,m) For every m ∈ N there exists
a finite set D = D(m) of functions χ : N→ C with the following properties.

1. χm ∈ D and every χ ∈ D is completely multiplicative and, except χm,
strongly bounded. Also, χ ∈ D ⇒ χ ∈ D.

2. For any a ∈ N coprime to m and for any χ ∈ D there is a coefficient
ca,χ ∈ C such that, for any a′ ≡ 1 (mod m),

ca, χm = ca′, χ =
1

ϕ(m)
and Ia,m =

∑
χ∈D(m)

ca, χ · χ .

The functions in D(m) are called Dirichlet characters (modulo m) and we obtain
them from so called characters of (finite Abelian) groups. The real-valued χ in
D(m) (for example χm) are called real Dirichlet characters, and else they are
non-real Dirichlet characters.
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For the proof of Theorem 2.5 we need several results on characters. A group
means in this proof always a finite Abelian group

G = (G, 1G, ·) ,

in multiplicative notation. A character χ of G is a group homomorphism

χ : (G, 1G, ·)→ (C×, 1, ·)

from G to the multiplicative group of nonzero complex numbers. So χ : G →
C \ {0}, χ(ab) = χ(a)χ(b) for every a, b ∈ G and χ(1G) = 1. We denote the set
of characters of G by G∗. Every set G∗ contains the principal character χ0 such
that χ0(g) = 1 for every g ∈ G.

Proposition 2.6 (existence of characters) If G ⊂ H is an extension of
groups with cyclic factor group H/G of order n ∈ N, then for every charac-
ter χ ∈ G∗ there exist exactly n distinct characters ψ ∈ H∗ such that

ψ |G = χ ,

and every extension of χ to a character of H is one of them.

Proof. Let aG be a generator of H/G: a ∈ H, an = b ∈ G and every c ∈ H has
the unique standard expression

c = aig with 0 ≤ i < n ∧ g ∈ G .

Let ψ ∈ H∗ and χ ∈ G∗ be such that ψ |G = χ. Then, with the standard
expression for c,

ψ(c) = ψ(a)iψ(g) = ψ(a)iχ(g) .

Also, ψ(a)n = ψ(an) = ψ(b) = χ(b) and ψ(a) is an n-th root of χ(b). So
we associate with each of the n numbers α ∈ C, αn = χ(b), the function
ψα : H → C× defined by

ψα(c) := αiχ(g)

for the standard expression c = aig. Since ψα(a) = α, these n maps are distinct
and the above ψ is one of them. It remain to show that each ψ = ψα is
a character of H. Let cj = aijgj with j = 1, 2 be two standard expressions. If
0 ≤ i1 + i2 < n then

ψ(c1c2) = ψ(ai1+i2g1g2) = αi1+i2χ(g1g2) = αi1χ(g1)αi2χ(g2) = ψ(c1)ψ(c2) .

Else i1 + i2 = n+ j with 0 ≤ j < n. But then also

ψ(c1c2) = ψ(anajg1g2) = ψ(ajbg1g2) = αjχ(b)χ(g1)χ(g2)

= αj+nχ(g1)χ(g2) = αi1χ(g1)αi2χ(g2) = ψ(c1)ψ(c2) .

So ψα ∈ H∗. 2

23



Corollary 2.7 (|G∗| = |G|) For every group G we have that |G∗| = |G|, there
are as many characters of G as G has elements.

Proof. Let G = (G, 1G, ·) be any group. We set G0 = ({1G}, 1G, ·) to be the
trivial subgroup of G. For n ∈ N0, if the subgroups G0, G1, . . . , Gn of G have
been already defined and still Gn 6= G, we take any new element g ∈ G \ Gn
and set

Gn+1 := 〈Gn ∪ {g}〉 ,

i.e., Gn+1 is the subgroup of G generated by the stated union. Since G is finite
there is an n such that Gn = G. We get a chain of subgroups

{1G} = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G

such that every factor-group Gi/Gi−1, i ∈ [n], is cyclic with order ni :=
|Gi/Gi−1| ≥ 2. For n = 0 trivially |G∗| = |G| because then G = G0 = Gn =
{1G} and G∗ = {χ0}. We assume that n ≥ 1. We express the cardinality |G|
by the cancelative product

|G| = |G0| ·
n∏
i=1

|Gi|
|Gi−1|

=

n∏
i=1

|Gi/Gi−1| =
n∏
i=1

ni .

By the previous proposition, the map

G∗i 3 ψ 7→ ψ |Gi−1 = χ ∈ G∗i−1

is ni-to-1 and onto. Thus also |G∗i |/|G∗i−1| = ni. As we know, |G∗0| = 1. Thus

|G∗| = |G∗n| = |G∗0| ·
n∏
i=1

|G∗i |
|G∗i−1|

=

n∏
i=1

ni = |G| .

2

Corollary 2.8 (detecting a 6= 1G) For every group G and every element a in
G \ {1G} there is a character χ ∈ G∗ such that χ(a) 6= 1.

Proof. In the chain of subgroups of G in the previous proof we set G1 = 〈{1G}∪
{a}〉 = 〈{a}〉. Then G1 is a cyclic group generated by a and |G1| = n1 ≥ 2. So
there exists a ψ ∈ G∗1 such that ψ(a) 6= 1. Using Proposition 2.6 we extend ψ
along the chain to a character of G and get the desired χ. 2

Proposition 2.9 (1st orthogonal relation) For every group G and every
character χ ∈ G∗, ∑

a∈G
χ(a) =

{
|G| . . . χ = χ0 and
0 . . . χ 6= χ0 .
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Proof. For χ = χ0 the claim holds trivially. If χ 6= χ0 then there is a b ∈ G
with χ(b) 6= 1. But then

S :=
∑
a∈G

χ(a) =
∑
a∈G

χ(ab) =
∑
a∈G

χ(a)χ(b) = S · χ(b)

and S = 0. 2

For a group G we define on its characters G∗ a binary operation �:

χ� ψ : G→ C×, (χ� ψ)(g) := χ(g)ψ(g), g ∈ G .

It is easy to check that χ� ψ ∈ G∗.

Proposition 2.10 (on �) For every group G,

G∗ = (G∗, χ0, �)

is a group.

Proof. Since for every χ ∈ G∗ and every g ∈ G we have that (χ0 ∈ G∗)

(χ� χ0)(g) = χ(g)χ0(g) = χ(g) = χ0(g)χ(g) = (χ0 � χ)(g) ,

χ � χ0 = χ = χ0 � χ and χ0 is a neutral element with respect to �. In the
same way we check associativity and commutativity of �. If χ, ψ, θ ∈ G∗ then
for every g ∈ G,

[(χ� ψ)� θ](g) = · · · = χ(g)ψ(g)θ(g) = · · · = [χ� (ψ � θ)](g)

and
[χ� ψ](g) = χ(g)ψ(g) = ψ(g)χ(g) = [ψ � χ](g) .

So (χ � ψ) � θ = χ � (ψ � θ) and χ � ψ = ψ � χ. For any χ ∈ G∗ we define
χ−1 : G→ C× by (χ−1)(g) := 1/χ(g). It is easy to check that χ−1 ∈ G∗. Since

[χ� χ−1](g) = χ(g) · (1/χ(g)) = 1

for every g ∈ G, χ� χ−1 = χ0 and χ−1 is an inverse of χ in the group G∗. 2

Proposition 2.11 (2nd orthogonality relation) For any group G and any
element g ∈ G, ∑

χ∈G∗
χ(g) =

{
|G∗| = |G| . . . g = 1G and
0 . . . g 6= 1G .
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Proof. For g = 1G the claim is trivial. For g 6= 1G there is by Corollary 2.8
a character ψ ∈ G∗ such that ψ(g) 6= 1. Then, like before,

S :=
∑
χ∈G∗

χ(g) =
∑
χ∈G∗

(χ� ψ)(g) =
∑
χ∈G∗

χ(g)ψ(g) = S · ψ(g)

and S = 0. The second equality holds due to the previous proposition because
in the group G∗ the map χ 7→ χ� ψ is a permutation of G∗. 2

Proposition 2.12 (roots of unity) ∀G ∃n ∀χ ∈ G∗ ∀ g ∈ G
(
χ(g)n = 1

)
— values of characters are roots of unity and ∀G ∀χ ∈ G∗ ∀ g ∈ G

(
|χ(g)| = 1

)
.

Proof. We set n := |G| to the order of G. Since gn = 1G for every g ∈ G, for
every χ ∈ G∗ and every g ∈ G one has that χ(g)n = χ(gn) = χ(1G) = 1. 2

We define Dirichlet characters.

Proof of Theorem 2.5. Let m ∈ N. We consider the multiplicative and
ϕ(m)-element group

G(m) := ((Z/mZ)×, (1 mod m), ·)

of residues classes modulo m coprime to m. We associate to each of the ϕ(m)
characters χ′ ∈ G(m)∗ a map χ : N→ C by setting for n ∈ N its value to

χ(n) :=

{
χ′
(
(n mod m)

)
. . . (n, m) = 1 and

0 . . . (n, m) > 1 .

We define D(m) := {χ | χ′ ∈ G(m)∗}.
1. We have χm ∈ D(m) because χm arises from the principal character

χ′0 ∈ G(m)∗.
Let χ ∈ D(m) and k, l ∈ N. If one of k and l is not coprime to m then nor

is kl and χ(kl) = 0 = 0 = χ(k)χ(l). So let (k,m) = (l,m) = 1. Then

χ(kl) = χ′
(
(kl mod m)

)
= χ′

(
(k mod m) · (l mod m)

)
= χ′

(
(k mod m)

)
· χ′
(
(l mod m

)
) = χ(k)χ(l) .

Let χ ∈ D(m) \ {χm}, so χ arises from a non-principal χ′ ∈ G(m)∗, and let
I ⊂ N be a nonempty finite interval. We show that

|
∑
n∈I χ(n)| ≤ ϕ(m)− 1 .

We split I = I0 ∪ I1 ∪ · · · ∪ Ik in the intervals I0 < I1 < · · · < Ik such that
each Ii with i ≥ 1 has length m and |I0| < m. Numbers in each Ii are mutually
non-congruent modulo m. Therefore for i ≥ 1,∑

n∈Ii χ(n) =
∑
g∈G(m)∗ χ

′(g) = 0
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by Proposition 2.9. As for
∑
n∈I0 χ(n), if I0 contains all ϕ(m) residues modulo

m coprime to m then also
∑
n∈I0 χ(n) = 0, else

|
∑
n∈I0 χ(n)| ≤ 1 + 1 + · · ·+ 1 ≤ ϕ(m)− 1

by Proposition 2.12 and the triangle inequality. Altogether we get the stated
bound on |

∑
n∈I χ(n)|.

Finally, by the previous proposition we know that every nonzero value of
every χ ∈ D(m) lies on the unit circle S ⊂ C. Since z ∈ S ⇒ 1/z = z, if
χ ∈ D(m) arises from χ′ ∈ G(m)∗ then χ arises from (χ′)−1 ∈ G(m)∗ and
χ ∈ D(m).

2. For a ∈ N coprime to m and for χ ∈ D(m) arising from χ′ ∈ G(m)∗ we
define

ca, χ :=
χ′
(
(a mod m)−1

)
ϕ(m)

.

Then, for any a′ ≡ 1 (mod m),

ca, χm =
χ′0
(
(a mod m)−1

)
ϕ(m)

=
1

ϕ(m)
and ca′, χ =

χ′(1G(m))

ϕ(m)
=

1

ϕ(m)
.

Finally, let a ∈ N be coprime to m and n ∈ N be arbitrary. Then by Proposi-
tion 2.11 and the definition of ca,χ, the value

(∑
χ∈D(m) ca,χ · χ

)
(n) equals

1

ϕ(m)

∑
χ′∈G(m)∗

χ′
(
(a mod m)−1

)
· χ′
(
(n mod m)

)
=

=
1

ϕ(m)

∑
χ′∈G(m)∗

χ′
(
(a mod m)−1 · (n mod m)

)
=

=

{
1 . . . n ≡ a (mod m) and
0 . . . else ,

= Ia,m(n) .

2

We proceed to the next part of the proof which uses the von Mangoldt
function Λ: N → [0,+∞). It has values Λ(n) = log p if n = pk for some k ∈ N
and prime p, and Λ(n) = 0 else.

Proposition 2.13 (Λ and log) For every n ∈ N,∑
d |n

Λ(d) = log n .

Proof. If n = pa11 pa22 . . . pakk is the prime factorization of n then

∑
d |n

Λ(d) =

k∑
i=1

ai∑
j=1

log pi =

k∑
i=1

ai log pi = log
(
pa11 pa22 . . . pakk

)
= log n .

2
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Proposition 2.14 (on
∑

log p) For every real x > 1,∑
p≤x

log p < (2 log 2)x .

Proof. We deduce for n ∈ N the two inequalities∏
n+1<p≤2n+1

p ≤
(

2n+ 1

n

)
=

(2n+ 1)!

n!(n+ 1)!
< 4n .

The first one follows at once from the divisibility of the binomial coefficient by
every prime in the stated range. The second inequality is a corollary of the
binomial expansion 2 · 4n = (1 + 1)2n+1 =

∑n
i=0

(
2n+1
i

)
. Thus for every n ∈ N

we have the estimate ∑
n+1<p≤2n+1

log p < (2 log 2)n .

We use it to prove by induction on m ∈ N the bound∑
p≤m

log p < (2 log 2)m .

For m = 1 and 2 it clearly holds (with the empty sum defined as 0). For even
m > 2 the bound holds too by induction because the sum is the same as for
m− 1. Let m = 2n+ 1 > 2 be odd. Then∑
p≤m

log p =
∑

p≤n+1

log p+
∑

n+1<p≤2n+1

log p < (2 log 2)(n+ 1) + (2 log 2)n

= (2 log 2)m

where we bounded the last sum by the above estimate and the sum before it by
induction. We set m := bxc and have the stated inequality. 2

Proposition 2.15 (on
∑

Λ(n)) For every real x > 1,∑
n≤x

Λ(n) < 3x .

Proof. It is not hard to compute that the maximum value of (log x)/
√
x for

x > 1 equals 2/e. Using this and the bound in the previous proposition we get
that

∑
n≤x

Λ(n) =
∑
p≤x

log p+
∑

pk≤x, k≥2

log p < (2 log 2)x+ (2 log 2)

blog x/ log 2c∑
k=2

x1/k

≤ (2 log 2)x+ 2
√
x log x ≤ (2 log 2 + 4/e)x < 3x .

2
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Proposition 2.16 (on
∑

log n) For all real x > 1,∑
n≤x

log n = x log x+O(x) .

Proof. This follows from the integral estimates∫ bxc
1

log t dt ≤
∑
n≤x

log n ≤
∫ bxc+1

2

log t dt

and from the antiderivative
∫

log t = t log t− t. 2

Proposition 2.17 (on
∑

(log p)/p) For all real x > 1,∑
p≤x

log p

p
= log x+O(1) .

Proof. We have that

x log x+O(x)
Prop. 2.16 and 2.13

=
∑
n≤x

log n =
∑
n≤x

∑
d |n

Λ(d)

swapping
∑

s
=

∑
d≤x

bx/dcΛ(d)

bαc=α−{α}
= x

∑
d≤x

Λ(d)

d
+ δ

∑
d≤x

Λ(d), δ ∈ [−1, 0] ,

def. of Λ, Prop. 2.15
= x

(∑
p≤x

log p

p
+

∑
pk≤x, k≥2

log p

pk

)
+O(x)

∑
n, k≥2(logn)/nk conv.

= x
∑
p≤x

log p

p
+O(x) .

Dividing by x we get the stated result. 2

A new actor enters the stage, for any function f : N→ C we define the series

L(f) :=

∞∑
n=1

f(n)

n
.

Its convergence for strongly bounded f follows from the next useful inequality.

Proposition 2.18 (Abel’s inequality) Let n ∈ N, for i ∈ [n] let ai ∈ C and
bi ∈ R satisfy b1 ≥ b2 ≥ · · · ≥ bn ≥ 0, and let Ai := a1 + a2 + · · ·+ ai. Then

|a1b1 + a2b2 + · · ·+ anbn| ≤ max
1≤i≤n

|Ai| · b1 .
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Proof. We set A0 = b0 = bn+1 := 0. Then∣∣∣∣ n∑
k=1

akbk

∣∣∣∣ =

∣∣∣∣ n∑
k=1

(Ak −Ak−1)bk =

∣∣∣∣ n∑
k=0

Akbk −
n∑
k=0

Akbk+1

∣∣∣∣
=

∣∣∣∣ n∑
k=1

Ak(bk − bk+1)

∣∣∣∣ ≤ n∑
k=1

|Ak|(bk − bk+1)

≤ max
1≤k≤n

|Ak|
n∑
k=1

(bk − bk+1) = max
1≤k≤n

|Ak| · b1 .

2

Proposition 2.19 (Dirichlet’s convergence criterion) Let (an) ⊂ C and
(bn) ⊂ R be two sequences such that (i) (an) is strongly bounded, in the sense
that for some c > 0 one has |

∑
n∈I an| ≤ c for every finite interval I ⊂ N, (ii)

b1 ≥ b2 ≥ · · · ≥ 0 and (iii) lim bn = 0. Then the series

∞∑
n=1

anbn

converges, possibly non-absolutely.

Proof. Let c > 0 be such that |
∑
n∈I an| ≤ c holds for every finite interval

I ⊂ N. For a given ε > 0 we take a large n0 ∈ N such that 0 ≤ c · bn0
< ε. Then

for every m > n ≥ n0,∣∣∣∣ m∑
k=1

akbk −
n∑
k=1

akbk

∣∣∣∣ =

∣∣∣∣ m∑
k=n+1

akbk

∣∣∣∣ Abel’s ineq.

≤ cbn+1 < cbn0
< ε .

Thus the sequence of partial sums of
∑
n≥1 anbn is Cauchy and this series con-

verges. 2

Corollary 2.20 (on L(f)) If f : N→ C is strongly bounded then the series

L(f) =

∞∑
n=1

f(n)

n

converges, possibly non-absolutely.

Proof. Use the previous criterion with an := f(n) and bn := 1/n. 2

We come to the second heart of the proof of Dirichlet’s theorem. Namely,
L-series of non-principal Dirichlet characters have nonzero sums.
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Theorem 2.21 (L(χ) 6= 0) For every m ∈ N and every Dirichlet character
χ ∈ D(m), χ 6= χm, the sum

L(χ) =

∞∑
n=1

χ(n)

n
6= 0 .

To prove this theorem we need several auxiliary results.

Proposition 2.22 (AGM inequality) If n ∈ N and a1, a2, . . . , an are non-
negative real numbers then

a1 + a2 + · · ·+ an
n

≥ (a1a2 . . . an)1/n .

Proof. Derivatives show that ex−1 ≥ x for every x ≥ 0. Let a := (a1 + a2 +
· · · + an)/n > 0 (for a = 0 all ai = 0 and the AGM inequality holds trivially)
and let xi := ai/a. We multiply the n inequalities exi−1 ≥ xi and get that

1 = e(a1+a2+···+an)/a−n ≥ x1x2 . . . xn =
a1a2 . . . an

an
,

which after rearrangement gives the AGM inequality. 2

Proposition 2.23 (a non-increasing sequence) If n ∈ N, t ∈ [0, 1) and

bn :=
1

n(1− t)
− tn

1− tn

then
1 ≥ b1 ≥ b2 ≥ · · · ≥ 0 .

Proof. Since bn → 0, it suffices to prove that bn − bn+1 ≥ 0 for every n. Now
(1− t)(bn − bn+1) equals

A :=
1

n(n+ 1)
− tn

(1 + t+ t2 + · · ·+ tn−1)(1 + t+ t2 + · · ·+ tn)
.

Note that tn = t(n−1)/2 ·tn/2 ·t1/2 and that 0 ≤ t1/2 < 1. By the AGM inequality,

1 + t+ t2 + · · ·+ tn−1

n
≥ t(n−1)/2 and

1 + t+ t2 + · · ·+ tn

n+ 1
≥ tn/2 .

It follows that A ≥ 0, as we need. 2

We prove Theorem 2.21 first only for real Dirichlet characters, but in a more
general setting. If f : N→ C is completely multiplicative then f(1)2 = f(12) =
f(1) and f(1) = 0 or 1, and in the former case f(n) = f(n)f(1) = 0 for every
n ∈ N. We assume that this degenerate case does not occur.
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Theorem 2.24 (L(f) 6= 0) For any function f : N→ R that is completely mul-
tiplicative with f(1) = 1 and strongly bounded, the sum

L(f) =

∞∑
n=1

f(n)

n
6= 0 .

Proof. We assume for contradiction that
∑
n≥1 f(n)/n = 0 and for t ∈ [0, 1)

take the non-negative and non-increasing sequence (bn) = (bn(t)) defined in the
previous proposition. Then for t ∈ [0, 1),

O(1)
f is s. b., Props. 2.18, 2.19, 2.23

= −
∞∑
n=1

f(n)bn

def. of bn=

∞∑
n=1

f(n)tn

1− tn
− 1

1− t

∞∑
n=1

f(n)

n

L(f) = 0, sum of GS
=

∞∑
n=1

f(n)

∞∑
k=1

tkn

swapping
∑

s by AC
=

∞∑
m=1

tm
∑
n |m

f(n)

f is c. m., f(1) = 1, m = p
a1
1 . . . parr=

∞∑
m=1

tm
r∏
i=1

ai∑
j=0

f(pi)
j

≥ 3

4

∑
m=p2

tm → +∞ for t→ 1− ,

which is a contradiction. We justify the last inequality. First note that |f(p)| ≤ 1
for every prime p because f is completely multiplicative and (strongly) bounded.
If f(pi) 6= 1, resp. = 1, then

∑ai
j=0 f(pi)

j = (1 − f(pi)
ai+1)/(1 − f(pi)), resp.

= ai + 1. Always
∑ai
j=0 f(pi)

j ≥ 0 and
∏r
i=1 · · · ≥ 0. If m = p2

1 then
∏r
i=1 · · · =

1 + f(p1) + f(p1)2 = ( 1
2 + f(p1))2 + 3

4 ≥
3
4 . Thus we get the last displayed

inequality. 2

It is time to introduce the Möbius function µ : N → {−1, 0, 1}. It has the
values µ(1) = 1,

µ(p1p2 . . . pk) = (−1)k

(the primes pi are distinct), and µ(n) = 0 if n is not a product of distinct primes.

Proposition 2.25 (on µ) The Möbius function has the following properties.

1. For every n ∈ N \ {1}, ∑
d |n

µ(d) = 0 .

For n = 1 this sum equals 1.
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2. If two functions f, g : N → C are related by f(n) =
∑
d |n g(d) then for

every n ∈ N,

g(n) =
∑
d |n

µ(n/d)f(d) =
∑
kl=n

µ(k)f(l) .

3. For every n ∈ N \ {1} and real x > 0,∑
d |n

µ(d) log(x/d) = Λ(n) .

For n = 1 this sum equals log x.

Proof. 1. For n = 1 the sum equals 1 trivially. Let n = pa11 pa22 . . . pakk > 1, so
k ≥ 1. Then

∑
d |n

µ(d) =
∑
X⊂[k]

(−1)|X| =

k∑
i=0

(
k

i

)
(−1)i = (1− 1)k = 0 .

2. Let f and g be as stated and let n ∈ N. Then∑
d |n

µ(n/d)f(d) =
∑
ab=n

µ(a)f(b) =
∑
acd=n

µ(a)g(c) =
∑
c |n

g(c)
∑
a |n/c

µ(a) = g(n) .

In the second equality we used the assumed relation between f and g, and in
the last equality we used part 1.

3. For n = 1 it holds trivially. Let n > 1. Then by part 1 the displayed sum
equals

(log x)
∑
d |n

µ(d)−
∑
d |n

µ(d) log d = −
∑
d |n

µ(d) log d .

But inverting by part 2 the relation log n =
∑
d |n Λ(d) of Proposition 2.13 we

get, using again part 1, that also

Λ(n) =
∑
d |n

µ(d) log(n/d) = (log n)
∑
d |n

µ(d)−
∑
d |n

µ(d) log d = −
∑
d |n

µ(d) log d .

2

Proposition 2.26 (if L(χ) 6= 0 1) Let m ∈ N and χ ∈ D(m) with χ 6= χm. If
L(χ) 6= 0 then for all x > 1,∑

n≤x

χ(n)Λ(n)

n
= O(1) .
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Proof. Let m and χ be as stated and let L(χ) 6= 0. Then for x > 1,

O(1)
χ is s. b., Prop. 2.18

=
∑
n≤x

χ(n) log n

n

Prop. 2.13
=

∑
n≤x

χ(n)

n

∑
d |n

Λ(d)

χ is c. m., swapping
∑

s
=

∑
d≤x

χ(d)Λ(d)

d

∑
e≤x/d

χ(e)

e

χ is s. b., Prop. 2.18
=

∑
d≤x

χ(d)Λ(d)

d

(
L(χ)−O(d/x)

)
χ is bounded

= L(χ)
∑
d≤x

χ(d)Λ(d)

d
−O(1/x)

∑
d≤x

Λ(d)

Prop. 2.15
= L(χ)

∑
d≤x

χ(d)Λ(d)

d
+O(1) .

Dividing by the sum L(χ) we get the stated result. 2

Proposition 2.27 (if L(χ) 6= 0 2) Let m ∈ N and χ ∈ D(m) with χ 6= χm. If
L(χ) 6= 0 then for all x > 1,∑

p≤x

χ(p) log p

p
= O(1) .

Proof. Let m and χ be as stated and let L(χ) 6= 0. Then for x > 1,

O(1)
Prop. 2.26

=
∑
d≤x

χ(d)Λ(d)

d

def. of Λ
=

∑
p≤x

χ(p) log p

p
+

∑
pk≤x, k≥2

χ(pk) log p

pk

χ is b.,
∑
n, k≥2(logn)/nk conv.

=
∑
p≤x

χ(p) log p

p
+O(1)

and
∑
p≤x(χ(p) log p)/p = O(1) as claimed. 2

Proposition 2.28 (for χm) Let m ∈ N. Then for x > 1,∑
p≤x

χm(p) log p

p
= log x+O(1) .
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Proof. By Proposition 2.17, for x > 1 the sum equals∑
p≤x

log p

p
−

∑
p≤x, p |m

log p

p
= log x+O(1) .

2

For any function f : N→ C and any real x > 1 we define the finite sum

S(f, x) :=
∑
n≤x

f(n)Λ(n)

n
.

Proposition 2.29 (on S(χ, x)) For every m ∈ N and every χ ∈ D(m) the
following hold.

1. χ = χm ⇒ S(χ, x) = log x+O(1) for all real x > 1.

2. χ 6= χm and L(χ) 6= 0 ⇒ S(χ, x) = O(1) for all real x > 1.

3. χ 6= χm and L(χ) = 0 ⇒ S(χ, x) = − log x+O(1) for all real x > 1.

Proof. 1. By Proposition 2.28, for x > 1 the sum S(χm, x) equals

∑
p≤x

χm(p) log p

p
+

∑
pk≤x, k≥2

χm(pk) log p

pk
= log x+O(1)

because the series
∑
n,k≥2(log n)/nk (absolutely) converges.

2. This was proved in Proposition 2.26.
3. We suppose that χ ∈ D(m) is not χm and that L(χ) = 0. Then for every

x > 1,

S(χ, x)
part 3 of Prop. 2.25

= − log x+
∑
n≤x

χ(n)

n

∑
d |n

µ(d) log(x/d)

χ is c. m., swapping
∑

s
= − log x+

∑
d≤x

χ(d)µ(d) log(x/d)

d

∑
e≤x/d

χ(e)

e

Prop. 2.18, χ is s. b.
= − log x+

∑
d≤x

(. . . )
(
L(χ)−O(d/x)

)
|χ(d)µ(d)| ≤ 1, L(χ) = 0

= − log x+O

(
1

x
·
∑
d≤x

log(x/d)

)
= − log x+O(1)

as
∑
d≤x log(x/d) = bxc log x−

∑
d≤x log d = O(x) by Proposition 2.16. 2

Proof of Theorem 2.21. If χ ∈ D(m) \ {χm} is real, L(χ) 6= 0 was proven in
Theorem 2.24. We assume for contradiction that ψ ∈ D(m)\{χm} is a non-real
Dirichlet character with L(ψ) = 0. It follows from part 1 of Theorem 2.5 and
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from the definition of L(f) that ψ ∈ D(m)\{χm} and that also L(ψ) = 0. Since
ψ 6= ψ,

N := #{χ ∈ D(m) \ {χm} | L(χ) = 0} ≥ 2 .

But for x > 1,

0
Λ is nonneg.

≤
∑
n≤x

n≡1 (mod m)

Λ(n)

n
=
∑
n≤x

I1,m(n)Λ(n)

n

part 2 of Thm. 2.5
=

∑
n≤x

1

ϕ(m)

∑
χ∈D(m)

χ(n)Λ(n)

n

Prop. 2.29, swapping
∑

s
=

∑
χ∈D(m)

S(χ, x)

ϕ(m)
=

(1−N) log x

ϕ(m)
+O(1)

since N ≥ 2
< − log x

ϕ(m)
+O(1)

and 0 < −(log x)/ϕ(m) +O(1) is contradictory for x→ +∞. 2

Now we can prove Dirichlet’s theorem on prime numbers in AP in the fol-
lowing asymptotic form.

Theorem 2.30 (stronger Dirichlet’s theorem) If a,m ∈ N are coprime
then for all real x > 1, ∑

p≤x
p≡a (mod m)

log p

p
=

log x

ϕ(m)
+O(1) .

Proof. Let a,m ∈ N be coprime numbers. Then for all x > 1,∑
p≤x

p≡a (mod m)

log p

p

Ia,m
=

∑
p≤x

Ia,m(p) log p

p

part 2 of Thm. 2.5
=

∑
p≤x

∑
χ∈D(m)

ca, χ · χ(p) · log p

p

swapping
∑

s
=

∑
χ∈D(m)

ca, χ
∑
p≤x

χ(p) log p

p

part 2 of Thm. 2.5
=

1

ϕ(m)

∑
p≤x

χm(p) log p

p
+

+
∑

χ∈D(m)
χ 6=χm

ca, χ
∑
p≤x

χ(p) log p

p

Thm. 2.21, Prop. 2.27 and 2.28
=

log x

ϕ(m)
+O(1) .

2
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2.3 Remarks on the previous proof
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Chapter 3

An elementary proof of
PNT
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Chapter 4

Stirling’s asymptotic
formula by Newton’s
integral
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Chapter 5

Counting graphs by
multivariate Cauchy’s
formula
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Chapter 6

The Jacobi identity
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Chapter 7

“The function ζ(s) and the
Dirichlet series related to
it”

We review Chapter I with this heading in the classical tract [11] of E. C. Titch-
marsh (and D. R. Heath-Brown) on the zeta function ζ(s), and then in Sec-
tion 7.2 comment on used analytic tools. We keep the original numbering of
formulas in [11] and the formulas themselves, slightly adapt notation, and para-
phrase and often directly quote Titchmarsh’s words.

7.1 Chapter I in [11]

1.1. Definition of ζ(s). The first two formulas are

ζ(s) =

∞∑
n=1

1

ns
(1.1.1)

and

ζ(s) =
∏
p

(
1− 1

ps

)−1

. (1.1.2)

Here n ∈ N = {1, 2, . . . } and p runs through primes. Either can be taken as
a definition of ζ(s); s ∈ C with s = σ+ it. The Dirichlet series (1.1.1) converges
for σ > 1 and uniformly converges for σ > 1 + δ, δ > 0 (Comment 7.2.1).
“It therefore defines an analytic function ζ(s), regular for σ > 1.” (Com-
ment 7.2.2)

The infinite product (1.1.2) absolutely converges for σ > 1, for so does∑
p

∣∣∣∣ 1

ps

∣∣∣∣ =
∑
p

1

pσ
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(Comment 7.2.3). We see that

ζ(s) =
∏
p

(
1 +

1

ps
+

1

p2s
+ . . .

)
.

Unique prime factorization and formal multiplication yield (1.1.1). To prove
rigorously that (1.1.2) holds for σ > 1, we take only finitely many factors.
Multiplication of absolutely convergent series (Comment 7.2.4) leads to∏

p≤P

(
1 +

1

ps
+

1

p2s
+ . . .

)
= 1 +

1

ns1
+

1

ns2
+ . . .

where each ni has all prime factors ≤ P . Since every n ≤ P has this form, if
ζ(s) is defined by (1.1.1) then∣∣∣∣ζ(s)−

∏
p≤P

(
1− 1

ps

)∣∣∣∣ =

∣∣∣∣ζ(s)− 1− 1

ns1
− 1

ns2
− . . .

∣∣∣∣
≤ 1

(P + 1)s
+

1

(P + 2)s
+ . . . .

“This tends to 0 as P → ∞, if σ > 1; and (1.1.2) follows.” This fundamental
identity is due to Euler.

“Since a convergent infinite product of non-zero factors is not zero, we deduce
that ζ(s) has no zeros for σ > 1 (Comment 7.2.5). This may be proved
directly as follows.” For σ > 1 one has that(

1− 1

2s

)(
1− 1

3s

)
. . .

(
1− 1

P s

)
ζ(s) = 1 +

1

ms
1

+
1

ms
2

+ . . .

where each mi has all prime factors > P . Hence∣∣∣∣(1− 1

2s

)(
1− 1

3s

)
. . .

(
1− 1

P s

)
ζ(s)

∣∣∣∣ ≥ 1− 1

(P + 1)s
− 1

(P + 2)s
− · · · > 0

if P is large enough. So |ζ(s)| > 0.
Recall that π(x) denotes the number of primes ≤ x. “We can transform

(1.1.2) into a relation between ζ(s) and π(x); for if σ > 1,

log ζ(s) = −
∑
p

log

(
1− 1

ps

)
= −

∞∑
n=2

{π(n)− π(n− 1)} log

(
1− 1

ns

)

= −
∞∑
n=2

π(n)

{
log

(
1− 1

ns

)
− log

(
1− 1

(n+ 1)s

)}

=

∞∑
n=2

∫ n+1

n

s

x(xs − 1)
dx = s

∫ ∞
s

π(x)

x(xs − 1)
dx . (1.1.3)

43



The rearrangement of the series is justified (Comment 7.2.6) since π(n) ≤ n
and

log(1− n−s) = O(n−σ) . ”

Multiplying in
1

ζ(s)
=
∏
p

(
1− 1

ps

)
we get that

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
(σ > 1) (1.1.4)

where µ is the Möbius function. “’The process is easily justified as in the case
of ζ(s).” (Comment 7.2.7)

We have that ∑
d | q µ(d) = 1 (q = 1), 0 (q > 1) . (1.1.5)

This follows from the identity

1 =
∞∑
m=1

1

ms

∞∑
n=1

µ(n)

ns
=

∞∑
q=1

1

qs

∑
d | q

µ(d) .

It also gives the Möbius inversion

g(q) =
∑
d | q f(d) (1.1.6)

and

f(q) =
∑
d | q

µ

(
q

d

)
g(d) (1.1.7)

where g, f : N→ C.

7.2 Analysis in Chapter I

Comment 7.2.1 (convergence of the series ζ(s))

The domain of convergence of ζ(s), s = σ + it, follows from the computation

|n−s| =
∣∣ exp(−σ log n)

∣∣ · ∣∣ exp
(
i(−t) log n

)∣∣ = n−σ · 1 = n−σ

and from the domain of convergence of ζ(s) for real s. It is in fact absolute
convergence.

Comment 7.2.2 (ζ(s) is an analytic function)

Comment 7.2.3 (convergence of infinite products)

Comment 7.2.4 (multiplying AC series)

Comment 7.2.5 (ζ(s) 6= 0 for σ > 1)

Comment 7.2.6 (rearrangement of a series)

Comment 7.2.7 (Dirichlet series for µ(n))
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Chapter 8

“The analytic character of
ζ(s), and the functional
equation”

We treat Chapter II in [11] with this heading in the same way as Chapter I, and
again in Section 8.2 comment on used analytic tools.

8.1 Chapter II in [11]

2.1. Analytic continuation and the functional equation, first method.
“We have next to inquire whether the analytic function ζ(s) can be continued
beyond this region.” (i.e. beyond σ > 1). “The result is

Theorem 2.1. The function ζ(s) is regular for all values of s except s = 1,
where there is a simple pole with residue 1. It satisfies the functional equation

ζ(s) = 2sπs−1 sin 1
2sπΓ(1− s)ζ(1− s).” (2.1.1)

(Comment 8.2.1) “We shall first give a proof depending on the following
summation formula.

Let φ(x) be any function with a continuous derivative in the interval [a, b].
Then, if [x] denotes the greatest integer not exceeding x,

∑
a<n≤b

φ(n) =

∫ b

a

φ(x) dx+

∫ b

a

(x− [x]− 1
2 )φ′(x) dx+

+ (a− [a]− 1
2 )φ(a)− (b− [b]− 1

2 )φ(b). (2.1.2)
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(Comment 8.2.2) Since the formula is plainly additive with respect to the
interval (a, b] it suffices to suppose that n ≤ a < b ≤ n+ 1. One then has∫ b

a

(x− n− 1
2 )φ′(x) dx = (b− n− 1

2 )φ(b)− (a− n− 1
2 )φ(a)−

∫ b

a

φ(x) dx,

on integrating by parts (Comment 8.2.3). Thus the right hand side of (2.1.2)
reduces to (b − [n])φ(b). This vanishes unless b = n + 1, in which case it is
φ(n+ 1), as required.”

We apply the summation formula to φ(n) = n−s, s 6= 1, and a, b ∈ N and
get that

b∑
n=a+1

1

ns
=
b1−s − a1−s

1− s
− s

∫ b

a

x− [x]− 1
2

xs+1
dx+ 1

2 (b−s − a−s). (2.1.3)

We assume that σ > 1, a = 1 and b → ∞. We add 1 to each side and get
that

ζ(s) = s

∫ ∞
1

[x]− x+ 1
2

xs+1
dx+

1

s− 1
+

1

2
. (2.1.4)

“Since [x]−x+ 1
2 is bounded, this integral is convergent for σ > 0, and uniformly

convergent in any finite region to the right of σ = 0. It therefore defines an
analytic function of s, regular for σ > 0. The right-hand side therefore provides
the analytic continuation of ζ(s) up to σ = 0, and there is clearly a simple pole
at s = 1 with residue 1.” (Comment 8.2.4)

If 0 < σ < 1 then∫ 1

0

[x]− x
xs+1

dx = −
∫ 1

0

x−s dx =
1

s− 1
,

s

2

∫ ∞
1

dx

xs+1
=

1

2
,

and (2.1.4) turns in

ζ(s) = s

∫ ∞
0

[x]− x
xs+1

dx (0 < σ < 1). (2.1.5)

(Comment 8.2.5) “Actually (2.1.4) gives the analytic continuation of ζ(s)
for σ > −1; for if

f(x) = [x]− x+ 1
2 , f1(x) =

∫ x

1

f(y) dy,

then f1(x) is also bounded, since, as is easily seen,∫ k+1

k

f(y) dy = 0

for any integer k. Hence∫ x2

x1

f(x)

xs+1
dx =

[
f1(x)

xs+1

]x2

x1

+ (s+ 1)

∫ x2

x1

f1(x)

xs+1
,
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(Comment 8.2.6) which tends to 0 as x1 →∞, x2 →∞ if σ > −1. Hence the
integral in (2.1.4) is convergent for σ > −1. Also it is easily verified that

s

∫ 1

0

[x]− x+ 1
2

xs+1
dx =

1

s− 1
+

1

2
(σ < 0).

Hence

ζ(s) = s

∫ ∞
0

[x]− x+ 1
2

xs+1
dx (−1 < σ < 0).” (2.1.6)

(Comment 8.2.7) We use the expansion into Fourier series

[x]− x+ 1
2 =

∞∑
n=1

sin 2nπx

nπ
(2.1.7)

(x 6∈ Z) (Comment 8.2.8). We substitute it in (2.1.6), integrate term by term
and get that

ζ(s) =
s

π

∞∑
n=1

1

n

∫ ∞
0

sin 2nπx

xs+1
dx

=
s

π

∞∑
n=1

(2nπ)s

n

∫ ∞
0

sin y

ys+1
dy

=
s

π
(2π)s{−Γ(−s)} sin 1

2sπζ(1− s),

which is (2.1.1) (Comment 8.2.9). It primarily holds for −1 < σ < 0. “Here,
however, the right-hand side is analytic for all values of s such that σ < 0. It
therefore provides the analytic continuation of ζ(s) over the remainder of the
plane, and there are no singularities other than the pole already encountered at
s = 1. (Comment 8.2.10)

We have still to justify the term-by-term integration. Since the series (2.1.7)
is boundedly convergent, term-by-term integration over any finite range is per-
missible. It is therefore sufficient to prove that

lim
λ→∞

∞∑
n=1

1

n

∫ ∞
λ

sin 2nπx

xs+1
dx = 0 (−1 < σ < 0).

Now∫ ∞
λ

sin 2nπx

xs+1
dx =

[
− cos 2nπx

2nπxs+1

]∞
λ

− s+ 1

2nπ

∫ ∞
λ

cos 2nπx

xs+2
dx

= O

(
1

nλσ+1

)
+O

(
1

n

∫ ∞
λ

dx

xσ+2

)
= O

(
1

nλσ+1

)
,

and the desired result clearly follows.” (Comment 8.2.11)
Alternative forms of (2.1.1).
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8.2 Analysis in Chapter II

Comment 8.2.1 (the functional equation (2.1.1))

Comment 8.2.2 (summation formula (2.1.2))

Comment 8.2.3 (integration by parts 1)

Comment 8.2.4 (extending ζ(s) by (2.1.4))

Comment 8.2.5 (derivation of (2.1.5))

Comment 8.2.6 (integration by parts 2)

Comment 8.2.7 (derivation of (2.1.6))

Comment 8.2.8 (Fourier series)

Comment 8.2.9 (where does −Γ(−s) come from)

Comment 8.2.10 (extending ζ(s) to C \ {1})

Comment 8.2.11 (justifying the term-by-term
∫

)
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