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In the eight lecture we cover Chapter II.7. Tauberian Theorems in G. Tenen-
baum’s book [1], up to page 359.

Chapter II.7. Tauberian Theorems

The following are Theorems 7.1 (Abel) and 7.2 in [1]. For ϑ ∈ [0, π2 ) let S(ϑ) =
{z ∈ C | |z| < 1 ∧ | arg(1− z)| ≤ ϑ}.

Theorem 1 Suppose that f(z) =
∑
n≥0 anz

n ∈ C[[z]] has radius of convergence
1 and that f(1) =

∑
n≥0 an converges. Then for any ϑ ∈ [0, π2 ),

lim
z→1

f(z) |S(ϑ) = f(1) .

Theorem 2 Suppose that F (s) =
∑
n≥1 an/n

s converges for σ > a ≥ 0 and
that there exist c ∈ C and ω > −1 such that

∑
n≤x an ∼

c
Γ(ω+1) · x

a(log x)ω

(x→ +∞). Then for σ → a+,

F (σ) ∼ ca

(σ − a)ω+1
.

The following are Theorems 7.3 (Tauber) and 7.4 in [1].

Theorem 3 Suppose that f(z) =
∑
n≥0 anz

n ∈ C[[z]] has radius of convergence
1,
∑
n≤x nan = o(x) (x→ +∞) and that limz→1 f(z) | [0, 1) = `. Then

∞∑
n=0

an = ` .

Proof. For x > 0 we set

A(x) =
∑
n≤x

an and α(x) =

∫ x

0

tdA(t) .

For u > 0 we set

G(u) =
e−u − 1

u
, g(u) = −G′(u) =

(1 + u)e−u − 1

u2
, H(u) =

e−u

u
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and h(u) = −H ′(u) = (1+u)e−u

u2 . We have

f(e−1/x)−A(x) =
1

x

∫ x

0

G(t/x)tdA(t) +
1

x

∫ +∞

x

H(t/x)tdA(t)

=
1

x

∫ x

0

∫ +∞

t/x

g(u) dudα(t) +
1

x

∫ +∞

x

∫ +∞

t/x

h(u) dudα(t)

=
1

x

∫ x

0

g(u) du

∫ min(1,u)x

0

dα(t) +
1

x

∫ +∞

1

h(u) du

∫ ux

x

dα(t)

=

∫ 1

0

g(u)
α(ux)

x
du− α(x)

x
+

∫ ∞
1

h(u)
α(ux)

x
du .

We have α(ux)/x� u uniformly in x since α(x)/x is bounded for x > 0. Since
limx→+∞ α(ux)/x = 0 for any fixed u and since ug(u) and uh(u) are integrable
on [0, 1] and [1,+∞), respectively, the dominated convergence gives that

lim
x→+∞

(
f
(
e−1/x

)
−A(x)

)
= 0 .

This is what we wanted to prove. 2

Theorem 4 Suppose that ω > 0, A : (0,+∞) → R has bounded variation on
any bounded interval and that

F (σ) =

∫ +∞

0

e−σt dA(t)

converges for σ > 0 and satisfies F (σ) = o(1/σω) (σ → 0+). Then

A(x)−A(0) = o(xω) ⇐⇒
∫ x

0

tdA(t) = o(xω+1) (x→ +∞) .

The following are Theorems 7.5 (Karamata), 7.6 (Landau), 7.7 (General-
ized Hardy–Littlewood–Karamata), Corollaries 7.8 (Hardy–Littlewood) and 7.9
(Hardy–Littlewood–Karamata).

Theorem 5 Let A(t) be a non-decreasing function such that the integral F (σ) =∫ +∞
0

e−σt dA(t) converges for σ > 0. If there exist c ≥ 0, ω > 0 with F (σ) ∼
c/σω (x→ 0+), then

A(x) ∼ cxω

Γ(ω + 1)
(x→ +∞) .

Theorem 6 Let f ′′ exist on (0,+∞), α ∈ R, M > 0, f(x) = o(xα) (both for
x → 0+ and x → +∞) and f ′′(x) ≤ Mxα−2 (x > 0). Then f ′(x) = o(xα−1)
(both for x→ 0+ and x→ +∞).

2



We define V∗(R+) to be the functions A : R+ → R with bounded variation

on any bounded interval and with the integral
∫ +∞

0
e−σt dA(t) converging for

σ > 0. We define K(ω) to be the subclass of those functions A that for some
c ∈ R, σ → 0+ and x→ +∞ satisfy that

F (σ) :=

∫ +∞

0

e−σt dA(t) ∼ c/σω and A(x)−A(0) ∼ cxω/Γ(ω + 1) .

Theorem 7 Let ω ≥ 0 and A ∈ V∗(R+). If for some c ∈ R we have that

F (σ) :=

∫ ∞
0

e−σt dA(t) ∼ c

σω
(x→ 0+)

and B ∈ K(ω + 1) is such that the measure tdA(t) + dB(t) is positive, then
A ∈ K(ω).

Corollary 8 Suppose that K > 0 and that f(z) =
∑
n≥0 anz

n ∈ R[[z]] has
radius of convergence 1 and nan ≥ −K. Then

lim
z→1−

f(z) = `⇒
∑
n≥0

an = ` .

Corollary 9 Suppose that F (s) =
∑
n≥1 an/n

s converges for σ > 1, there exist

real numbers c,K > 0, ω ≥ 0 such that an ≥ −K(log n)ω−1 (n ≥ 2) and that
F (σ) ∼ c/(σ − 1)ω (σ → 1+). Then for x→ +∞,∑

n≤x

an
n
∼ c

Γ(ω + 1)
(log x)ω .

The following are Theorems 7.10 (Karamata–Freud), 7.11 and Lemma 7.12
in [1].

Theorem 10 Suppose that A(t) is non-decreasing and such that the integral

F (σ) :=

∫ ∞
0

e−σt dA(t)

converges for σ > 0. Suppose that c ≥ 0, ω > 0 and ψ(t) is non-decreasing
with limt→+∞ ψ(t) = +∞, ψ(t)/tω is non-decreasing for large t and F (σ) =(
c+O(1/ψ(1/σ))

)
σ−ω (σ → 0+). Then

A(x) =
(
c+O(1/ log(ψ(x)))

) xω

Γ(ω + 1)
. (x→ +∞)

In the following `(p) denotes the sum of absolute values of the coefficients of
a polynomial p.
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Theorem 11 Suppose that f(t) has bounded variation on [0, 1]. Then there
exist constants A1 and A2 (depending only on f) such that for any n ∈ N there
exist polynomials p, q ∈ R[t] with degrees at most n such that

p ≤ f ≤ q (on [0, 1]) ∧
∫ 1

0

(q − p) ≤ A1

n
∧ `(p) + `(q) ≤ An2 .

Lemma 12 For n ∈ N let the n-th Chebyshev polynomial Tn be defined by
Tn(cosx) = cos(nx). Then

Tn(x) = 1
2

∑
0≤m≤n/2

(−1)m
n

n−m

(
n−m
m

)
(2x)n−2m

and `(Tn) ≤ n(1 +
√

2)n.

The following are Theorems 7.13 (“Effective” Ikehara–Ingham–Delange the-
orem), 7.14 (Ganelius) and 7.15.

Theorem 13 Let A(t) be a non-decreaing function such that the integral

F (s) =

∫ +∞

0

e−st dA(t)

converges for σ > a > 0. Suppose that there exist c ≥ 0 and ω > −1 such that
the function

G(s) :=
F (s+ a)

s+ a
− c

sω+1
(σ > 0)

satisfies

η(σ, T ) := σω
∫ T

−T
|G(2σ + iτ)−G(σ + iτ)|dτ = o(1) (σ → 0+)

for each fixed T > 0. Then

A(x) =
(
c/Γ(ω + 1) +O(ρ(x))

)
eaxxω (x ≥ 1)

with
ρ(x) := inf

T≥32(a+1)

(
1/T + η(1/x, T ) + 1/(Tx)ω+1

)
.

The big O constant for A(x) depends only on a, c and ω. An admissible choice
for this constant is

52 + 1652c(a+ 1)(ω + 2) + 69c(1 + e1−ω(ω + 1)ω+2)/Γ(ω + 1) .

Theorem 14 Suppose that g : R→ R is integrable and bounded, that for some
T > 0 one has that

sup
x≤y≤x+1/T

(g(y)− g(x)) ≤ K <∞
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and that for |τ | ≤ T ,

ĝ(τ) :=

∫ ∞
−∞

e−iτxg(x) dx = 0 .

Then
‖g‖∞ := sup

x∈R
|g(x)| ≤ 16K .

Theorem 15 Suppose that g : R → R is integrable and bounded and that for
some T > 0 one has that

sup
x≤y≤x+1/T

(g(y)− g(x)) ≤ K <∞ .

Then

‖g‖∞ ≤ 16K + 6

∫ T

−T
|ĝ(τ)|dτ .

The next is Theorem 7.16 (Berry–Essen) in [1]. A function F : R→ [0,+∞)
is a distribution function if it is non-decreasing and

lim
x→−∞

F (x) = 0 ∧ lim
x→+∞

F (x) = 1 .

The characteristic function of F is then

f(τ) :=

∫ +∞

−∞
eiτx dF (x) .

Theorem 16 Let F and G be two distribution functions with respective char-
acteristic functions f and g. Suppose that on R the function G is differentiable
with G′ bounded. Then for any T > 0,

‖F −G‖∞ ≤ 16
‖G′‖∞
T

+ 6

∫ T

−T

∣∣∣f(τ)− g(τ)

τ

∣∣∣dτ .
The following are Theorems 7.17, 7.18 (Fatou–Korevaar), 7.19 and 7.20.

Theorem 17 Let g be an integrable and bounded function on R, let C > 0 and
let ψ : R→ [1,+∞) be a non-decreasing function such that ψ(x) = 1 for x ≤ 0
and ψ(2x) ≤ Cψ(x) for x ≥ 0. Suppose that for some T > 0 we have that
(i) sup0≤y≤1/T (g(x + y) − g(x)) ≤ K/ψ(x) (x ∈ R) and (ii) ĝ ∈ C∞([−T, T ]).
Then there is an N = N(C,K) ∈ N and an A = A(C,K, T,M) > 0, where
M = supn≤N ‖ĝ(n)‖[−T,T ], such that for any x ∈ R,

|g(x)| ≤ A/ψ(x) .

Theorem 18 Suppose that f(z) =
∑
n≥0 anz

n ∈ C[[z]] converges for |z| < 1
and has a holomorphic extension to z = 1. If there is a function ψ satisfying
assumptions of Theorem 17 and such that an ≥ −1/ψ(n) then

∑
n≥0 an = f(1)

and for x→ +∞, ∑
n≤x

an = f(1) +O
(
1/ψ(x)

)
.
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Theorem 19 Suppose that F (s) =
∑
n≥1 an/n

s converges for σ > 1 and has
a holomorphic extension to s = 1. If there is a function ψ satisfying assumptions
of Theorem 17 and such that an ≥ −1/ψ(log n) (n ≥ 2), then for x→ +∞,∑

n≤x

an
n

= F (1) +O
(
1/ψ(log x)

)
.

Theorem 20 In Theorem 19 the conclusion persists under the assumption that
for n ≥ 2, ∑

m≤n

am � n/ψ(log n) .

Finally, the following are Theorems 7.21 (Ingham, 1945) and 7.22 (Lan-
dau, 1910), Corollary 7.23 (Ingham, 1945), Theorem 7.24 (Ska lba, 1998), Corol-
lary 7.25 (Ska lba, 1998), Theorem 7.26 (Drmota, 1998) and Lemma 7.27 (Reg-
ularity of Lambert’s summation method).

Let f, g : N→ C be such that f(n) =
∑
d |n g(d) and let F (x) =

∑
n≤x f(n)

and G(x) =
∑
n≤x g(n).

Theorem 21 If F (x) ∼ ax (x→ +∞) then for x→ +∞,∑
n≤x

g(n)

n
=
G(x)

x
+ a+ o(1) .

Theorem 22 If g is real and for any n ∈ N one has that g(n) ≥ −K (for
a constant K > 0) then the claim of Theorem 21 implies that∑

n≥1

g(n)

n
= a .

Corollary 23 If F (x) ∼ ax (x→ +∞) and g(n) is bounded from below then∑
n≥1

g(n)

n
= a .

Theorem 24 If F (x) ∼ ax (x → +∞) and f(n) � 1 then G(x) = o(x)
(x→ +∞) and ∑

n≥1

g(n)

n
= a .

Corollary 25 If f : R→ C is 2π-periodic and Riemann integrable, then

1

2π

∫ 2π

0

f(u) du =
∑
n≥1

g(n)

n
.
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Theorem 26 If f is real and bounded from below and∑
n≥1

g(n)

n
= a

then F (x) ∼ ax (x→ +∞).

Lemma 27 Let ϕ(y) = y/(ey − 1). If
∑
n an = a then for y → 0+,∑

n

anϕ(ny) = a+ o(1) .
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