# Lecture 7. The prime number theorem and the Riemann hypothesis. The Selberg-Delange method. Two arithmetic applications 

M. Klazar

April 12, 2024

In the seventh lecture we cover Chapter II.4. The prime number theorem and the Riemann hypothesis, Chapter II.5. The Selberg-Delange method and Chapter II.6. Two arithmetic applications in G. Tenenbaum's book [7], up to page 317.

## Chapter II.4. The prime number theorem and the Riemann hypothesis

The following are Theorems 4.1 and 4.2 and Lemma 4.3 (Hadamard's three circles lemma) in [7].

Theorem 1 For some $c>0$ and every $x \geq 2$,
$\psi(x)=x+O(x \exp (-c \sqrt{\log x}))$ and $\pi(x)=\operatorname{li}(x)+O(x \exp (-c \sqrt{\log x}))$.
This is the Prime Number Theorem with strong error term, $\psi(x)=\sum_{n \leq x} \Lambda(n)$, $\pi(x)=\sum_{p \leq x} 1$ and $\operatorname{li}(x)=\int_{2}^{x} \mathrm{~d} t / \log t$.

The Riemann hypothesis is the conjectured location of all nontrivial zeros of $\zeta(s)$ on the line $\sigma=\frac{1}{2}$. The Lindelöf hypothesis is the conjectured asymptotics $\zeta\left(\frac{1}{2}+i \tau\right) \ll_{\varepsilon} \tau^{\varepsilon}(\tau \geq 2)$. It is named after the Finnish mathematician Ernst L. Lindelöf (1870-1946).

Theorem 2 "The Riemann hypothesis implies that of Lindelöf. More precisely, if all non-trivial zeros of $\zeta(s)$ have real parts equal to $\frac{1}{2}$, then, for any $\varepsilon>0$, we have

$$
\log (\zeta(s))<_{\varepsilon}(\log |\tau|)^{2-2 \sigma+\varepsilon} \quad\left(\frac{1}{2}<\sigma \leq 1,|\tau| \geq 2\right) . "
$$

Here $\log (r \exp (i \varphi))=\log r+i \varphi, r>0$ and $\varphi \in[-\pi, \pi)$.
Lemma 3 If $F(s)$ is holomorphic in $0<R_{1} \leq|s| \leq R_{2}$ then the function

$$
M(r)=\max _{|s|=r}|F(s)|
$$

is logarithmically convex on $\left[R_{1}, R_{2}\right]$.

This result is in fact due not to Hadamard but to Littlewood [5].
Finally, the following are Theorem 4.4, Corollary 4.5, Theorem 4.6. Lemmas 4.7 and 4.8 and Theorem 4.9 in [7].

Theorem 4 Let $\Theta:=\inf \left(\left\{\xi>0 \mid \psi(x)-x \ll x^{\xi}(x \geq 2)\right\}\right)$. Then

$$
\Theta=\sup (\{\beta>0 \mid \zeta(\rho)=\zeta(\beta+i \gamma)=0\})
$$

Corollary 5 The Riemann hypothesis is equivalent to the asymptotics that for any $\varepsilon>0, \psi(x)=x+O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)(x \geq 2)$.

We define $\psi_{0}(x):=(\psi(x)+\psi(x-)) / 2$ and

$$
\langle x\rangle:=\min _{p, \nu \geq 1, p^{\nu} \neq x}\left|x-p^{\nu}\right| .
$$

Theorem 6 For $x \geq 2$,

$$
\psi_{0}(x)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\log (2 \pi)-\log \left(1-x^{-2}\right) / 2
$$

where we sum over non-trivial zeros $\rho=\beta+i \gamma$ of $\zeta(s)$ so that $\rho$ and $\bar{\rho}$ are paired. Also, for $x, T \geq 2$ one has that

$$
\psi_{0}(x)=x-\sum_{|\gamma| \leq T} \frac{x^{\rho}}{\rho}-\log (2 \pi)-\log \left(1-x^{-2}\right) / 2+R(x, T)
$$

where $R(x, T) \ll(x / T) \log ^{2}(x T)+(x \log x) /(x+T\langle x\rangle)$.
By [6], the second part of the theorem is due to H. von Koch [3] and E. Landau [4].

For $\kappa>1$ and $T, x>0$ we define

$$
J_{\kappa}(x, T)=\frac{1}{2 \pi i} \int_{\kappa-i T}^{\kappa+i T} \frac{-\zeta^{\prime}(s) x^{s}}{s \zeta(s)} \mathrm{d} s
$$

Lemma 7 If $x \geq 2, \kappa=1+1 / \log x$ and $T>0$ then

$$
\left|\psi_{0}(x)-J_{\kappa}(x, T)\right| \ll \frac{x \log ^{2} x}{T}+\frac{x \log x}{x+T\langle x\rangle}
$$

Lemma 8 If $\inf _{\rho=\beta+i \gamma}|\gamma-T| \gg 1 / \log T$ then for $-1 \leq \sigma \leq 2$,

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)} \ll \log ^{2} T
$$

If $\min _{n \in \mathbb{N}_{0}}|s+2 m| \geq \frac{1}{2}$ then for $\sigma \leq-1$,

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)} \ll \log (2|s|)
$$

Theorem 9 Let $\Theta=\sup _{\rho=\beta+i \gamma} \beta$. Then for $x \geq 2$,

$$
\psi(x)=x+O\left(x^{\Theta} \log ^{2} x\right) \text { and } \pi(x)=\operatorname{li}(x)+O\left(x^{\Theta} \log x\right)
$$

## Chapter II.5. The Selberg-Delange method

The following are Theorems 5.1, 5.2, 5.3 (Bateman, 1972) and 5.4 in [7]. The mentioned reference is [1].

Let $Z(s)=Z(s, z)=((s-1) \zeta(s))^{z} / s: D \rightarrow \mathbb{C}$ where $D \subset \mathbb{C}$ is open, connected, avoids 0 and zeros of $\zeta$, contains $[1,+\infty)$ and $Z(1, z)=1$.

Theorem $10 Z(s, z)$ is holomorphic in the disc $|s-1|<1$ where

$$
Z(s, z)=\sum_{j \geq 0} \frac{1}{j!} \gamma_{j}(z)(s-1)^{j}
$$

The coefficients $\gamma_{j}(z)$ are entire function satisfying for any $A, \varepsilon>0$ and $|z| \leq A$ the bound

$$
\gamma_{j}(z) / j!<_{A, \varepsilon}(1+\varepsilon)^{j}
$$

Let $z \in \mathbb{C}, c_{0}>0, \delta \in(0,1]$ and $M>0$. We say that $F(s)=\sum_{n \geq 1} a_{n} / n^{s}$ is $P\left(z, c_{0}, \delta, M\right)$ if $G(s, z)=F(s) \zeta(s)^{-z}$ has holomorphic extension to $\sigma \geq$ $1-c_{0} /\left(1+\log ^{+}|\tau|\right)$ and in this domain is bounded by

$$
|G(s, z)| \leq M(1+|\tau|)^{1-\delta}
$$

If $F(s)$ is $P\left(z, c_{0}, \delta, M\right)$ and there is $\left(b_{n}\right) \geq 0$ such that $\left|a_{n}\right| \leq b_{n}$ and $\sum_{n \geq 1} b_{n} / n^{s}$ is $P\left(w, c_{0}, \delta, M\right)$ then we say that $F(s)$ is $T\left(z, w, c_{0}, \delta, M\right)$.

Theorem 11 Let $F(s)=\sum_{n \geq 1} a_{n} / n^{s}$ be $T\left(z, w, c_{0}, \delta, M\right)$. For $x \geq 3, N \geq 0$, $A>0,|z|,|w| \leq A$ we have

$$
\sum_{n \leq x} a_{n}=x(\log x)^{z-1}\left(\sum_{k=0}^{N} \frac{\lambda_{k}(z)}{(\log x)^{k}}+O\left(M R_{N}(x)\right)\right)
$$

with $R_{N}(x)=R_{N}\left(x, c_{1}, c_{2}\right)$. The constants $c_{1}, c_{2}>0$ and in $O$ may depend only on $c_{0}, \delta$ and $A$.

Theorem 12 There is a $c>0$ such that for every $x \geq 1$,

$$
|\{n \in \mathbb{N} \mid \varphi(n) \leq x\}|=\frac{\zeta(2) \zeta(3)}{\zeta(6)} x+O(x \exp (-c \sqrt{\log x}))
$$

We define $G(s, z)=F(s) \zeta(s)^{-z}(F(s)$ is the given Dirichlet series) and

$$
\lambda_{k}(z)=\frac{1}{\Gamma(z-k)} \sum_{h+j=k} \frac{1}{h!j!} G^{(h)}(1, z) \gamma_{j}(z)
$$

where $\gamma_{j}(z)$ appear in Theorem 10.

Theorem 13 Suppose that $F(s)=\sum_{n \geq 1} a_{n} / n^{s}$ converges for $\sigma>1$ and that there is a $z \in \mathbb{C}$ and an $N \in \mathbb{N}_{0}$ such that $(w=\max (\{1-\operatorname{re}(z), 0\}))$

$$
H_{N}(z):=\sum_{n=1}^{\infty}\left(\left|g_{z}(n)\right| / n\right)(\log (3 n))^{N+1+w}<\infty
$$

Then for any $z$ with $|z| \leq A$,

$$
\sum_{n \leq x}=x(\log x)^{z-1}\left(\sum_{k=0}^{N} \frac{\lambda_{k}(z)}{(\log x)^{k}}+O_{A}\left(H_{N}(z) R_{N}(x)\right)\right)
$$

with $R_{N}(x)=R_{N}\left(x, c_{1}, c_{2}\right)$ where the constants $c_{1}, c_{2}>0$ may depend only on $A$ and where the coefficients $\lambda_{k}(z), 0 \leq k \leq N$, are defined above.

## Chapter II.6. Two arithmetic applications

The following are Theorems 6.1-6.6 in [7]. Notation: $\omega(n)=\sum_{p \mid n} 1, A \in \mathbb{R}$, $x \in \mathbb{R}, z \in \mathbb{C}$,

Theorem 14 For $A>0$ there exist $c_{1}=c_{1}(A), c_{2}=c_{2}(A)>0$ such that it holds uniformly for $x \geq 3,|z| \leq A$ and $N \in \mathbb{N}_{0}$ that

$$
\sum_{n \leq x} z^{\omega(n)}=x(\log x)^{z-1}\left(\sum_{k=0}^{N} \frac{\lambda_{k}(z)}{(\log x)^{k}}+O_{A}\left(R_{N}(x)\right)\right)
$$

with

$$
R_{N}(x):=\exp \left(-c_{1} \sqrt{\log x}\right)+\left(\left(c_{2} N+1\right) / \log x\right)^{N+1}
$$

and

$$
\lambda_{k}(z):=\frac{1}{\Gamma(z-k)} \sum_{h+j=k} \frac{1}{h!j!} G_{1}^{(h)}(1, z) \gamma_{j}(z)
$$

where the $\gamma_{j}(z)$ are the entire functions defined in Theorem 10.
Theorem 15 For $\delta \in(0,1)$ there exist $c_{1}=c_{1}(\delta), c_{2}=c_{2}(\delta)>0$ such that it holds uniformly for $x \geq 3,|z| \leq 2-\delta$ and $N \in \mathbb{N}_{0}$ that

$$
\sum_{n \leq x} z^{\Omega(n)}=x(\log x)^{z-1}\left(\sum_{k=0}^{N} \frac{\nu_{k}(z)}{(\log x)^{k}}+O_{\delta}\left(R_{N}(x)\right)\right)
$$

where $R_{N}(x)$ is defined in the previous theorem and where

$$
\nu_{k}(z):=\frac{1}{\Gamma(z-k)} \sum_{h+j=k} \frac{1}{h!j!} G_{2}^{(h)}(1, z) \gamma_{j}(z) .
$$

Theorem 16 Let $A>0, a_{z}(n): \mathbb{N} \rightarrow \mathbb{C}$ with $z \in \mathbb{C}$ have in the disc $|z| \leq A$ expansion $a_{z}(n)=\sum_{k=0}^{\infty} c_{k}(n) z^{k}$. Let $h_{j}(z), j=0,1, \ldots, N$, be holomorphic in $|z| \leq A$ and the quantity $R_{N}(x)$ (independent of $z$ ) be such that for $x \geq 3$ and $|z| \leq A$ we have

$$
\sum_{n \leq x} a_{z}(n)=x(\log x)^{z-1}\left(\sum_{j=0}^{N} \frac{z h_{j}(z)}{(\log x)^{j}}+O_{A}\left(R_{N}(x)\right)\right)
$$

Then it holds uniformly for $x \geq 3$ and $1 \leq k \leq A \log \log x$ that $C_{k}(x):=$ $\sum_{n \leq x} c_{k}(n)$ is

$$
\frac{x}{\log x}\left(\sum_{j=0}^{N} \frac{Q_{j, k}(\log \log x)}{(\log x)^{j}}+O_{A}\left(\frac{(\log \log x)^{k}}{k!} R_{N}(x)\right)\right)
$$

where $(0 \leq j \leq n$ and $k \in \mathbb{N})$

$$
Q_{j, k}(X):=\sum_{m+k=k-1} \frac{1}{m!l!} h_{j}^{(m)}(0) X^{l}
$$

In addition, if $\left|h_{0}^{\prime \prime}(z)\right| \leq B$ for $|z| \leq A$ then it holds uniformly for $x \geq 3$ and $1 \leq k \leq A \log \log x$ that $C_{k}(x)$ is

$$
\begin{aligned}
& \frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!}\left(h_{0}\left(\frac{k-1}{\log \log x}\right)+O_{A}\left(\frac{(k-1) B}{(\log \log x)^{2}}+\frac{\log \log x}{k} R_{0}(x)\right)\right) . \\
& \text { Let } \pi_{k}(x)=|\{n \leq x \mid \omega(n)=k\}| \text { and } N_{k}(x)=|\{n \leq x \mid \Omega(n)=k\}| . \text { Let }
\end{aligned}
$$

$$
\lambda(z)=\frac{1}{\Gamma(z+1} \prod_{p}(1+z /(p-1))(1-1 / p)^{z}
$$

and

$$
\nu(z)=\frac{1}{\Gamma(z+1} \prod_{p}(1-z /)^{-1}(1-1 / p)^{z}
$$

Theorem 17 For $A>0$ there exist $c_{1}=c_{1}(A), c_{2}=c_{2}(A)>0$ such that it holds uniformly for $x \geq 3,1 \leq k \leq A \log \log x$ and $N \in \mathbb{N}_{0}$ that

$$
\pi_{k}(x)=\frac{x}{\log x}\left(\sum_{j=0}^{N} \frac{P_{j, k}(\log \log x)}{(\log x)^{j}}+O\left(\frac{(\log \log x)^{k}}{k!} R_{N}(x)\right)\right)
$$

where $P_{j, k} \in \mathbb{R}[X]$ has degree $\leq k-1$ and $R_{N}(x)$ is defined in Theorem 14. In particular, we have

$$
P_{0, k}(x)=\sum_{m+l=k-1} \frac{1}{m!l!} \lambda^{(m)}(0) X^{l}
$$

Moreover we have under the same assumptions that

$$
\pi_{k}(x)=\frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!}\left(\lambda((k-1) / \log \log x)+O\left(k /(\log \log x)^{2}\right)\right)
$$

Theorem 18 For $\delta \in(0,1)$ there exist $c_{1}=c_{1}(\delta), c_{2}=c_{2}(\delta)>0$ such that it holds uniformly for $x \geq 3,1 \leq k \leq(2-\delta) \log \log x$ and $N \in \mathbb{N}_{0}$ that

$$
N_{k}(x)=\frac{x}{\log x}\left(\sum_{j=0}^{N} \frac{Q_{j, k}(\log \log x)}{(\log x)^{j}}+O\left(\frac{(\log \log x)^{k}}{k!} R_{N}(x)\right)\right)
$$

where $Q_{j, k} \in \mathbb{R}[X]$ has degree $\leq k-1$ and $R_{N}(x)$ is defined in Theorem 14. In particular, we have

$$
Q_{0, k}(x)=\sum_{m+l=k-1} \frac{1}{m!l!} \nu^{(m)}(0) X^{l}
$$

Moreover we have under the same assumptions that

$$
N_{k}(x)=\frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!}\left(\nu((k-1) / \log \log x)+O\left(k /(\log \log x)^{2}\right)\right) .
$$

Theorem 19 Let $\delta \in(0,1), A>0$ and $C=\frac{1}{4} \prod_{p>2}\left(1+\frac{1}{p(p-2)}\right) \approx 0.378694$. Then it holds uniformly for $x \geq 3$ and $(2+\delta) \log \log x \leq k \leq A \log \log x$ that

$$
N_{k}(x)=\frac{C x \log x}{2^{k}}\left(1+O\left((\log x)^{-\delta^{2} / 5}\right)\right)
$$

Finally, there are Theorems 6.7 and 6.8 in $[7] ; \tau(n)$ is the number of divisors of $n$. Further, for $u \in[0,1]$ we define

$$
F_{n}(u)=\frac{1}{\tau(n)} \sum_{\substack{d \mid n \\ d \leq n^{u}}} 1
$$

Theorem 20 It holds uniformly for $x \geq 2$ and $u \in[0,1]$ that

$$
\frac{1}{x} \sum_{n \leq x} F_{n}(u)=\frac{2}{\pi} \arcsin \sqrt{u}+O(1 / \sqrt{\log x})
$$

This theorem follows from the next one.
Theorem 21 Let $h=\prod_{p} \sqrt{p(p-1)} \log (1 /(1-p)) \approx 0.969$. It holds uniformly for $x \geq 2$ and $d \in \mathbb{N}$ that

$$
\sum_{n \leq x} \frac{1}{\tau(n d)}=\frac{h x}{\sqrt{\pi \log x}}\left(g(d)+O\left((3 / 4)^{\omega(d)} / \log x\right)\right)
$$

where $g: \mathbb{N} \rightarrow \mathbb{R}$ satisfies that $\sum_{d \leq x} g(d)=\frac{x}{h \sqrt{\pi \log x}}(1+O(1 / \log x))$.
The last two theorems were obtained in [2].

## References

[1] P. Bateman, The distribution of values of the Euler function, Acta Arith. 21 (1972), 329-345
[2] J. M. Deshouillers, F. Dress and G. Tenenbaum, Lois de répartition des diviseurs, Acta Arith. 23 (1979), 273-285
[3] H. von Koch, Contributions à la théorie des nombres premiers, Acta Math. 33 (1910), 293-320
[4] E. Landau, Über einige Summen, die von den Nullstellen der Riemanschen Zetafunktion abhängen, Acta Math. 35 (1912), 271-294
[5] J. E. Littlewood, Quelques consequences de l'hypothese que la function $\zeta(s)$ de Riemann n'a pas de zeros dans le demi-plan $\operatorname{Re}(s)>1 / 2$, Les Comptes rendus de l'Académie des sciences, 154 (1912) 263-266
[6] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, Cambridge, UK 2007
[7] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, AMS, Providence, RI 2015 (Third Edition. Translated by Patrick D. F. Fion)
[8] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Clarendon Press, Oxford 1986 (Second Edition, revised by D. R. Heath-Brown)

