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In the seventh lecture we cover Chapter II.4. The prime number theorem and
the Riemann hypothesis, Chapter II.5. The Selberg–Delange method and Chapter
II.6. Two arithmetic applications in G. Tenenbaum’s book [7], up to page 317.

Chapter II.4. The prime number theorem and the Riemann
hypothesis

The following are Theorems 4.1 and 4.2 and Lemma 4.3 (Hadamard’s three
circles lemma) in [7].

Theorem 1 For some c > 0 and every x ≥ 2,

ψ(x) = x+O
(
x exp

(
− c
√

log x
))

and π(x) = li(x) +O
(
x exp

(
− c
√

log x
))
.

This is the Prime Number Theorem with strong error term, ψ(x) =
∑
n≤x Λ(n),

π(x) =
∑
p≤x 1 and li(x) =

∫ x
2

dt/ log t.
The Riemann hypothesis is the conjectured location of all nontrivial zeros of

ζ(s) on the line σ = 1
2 . The Lindelöf hypothesis is the conjectured asymptotics

ζ( 1
2 + iτ)�ε τ

ε (τ ≥ 2). It is named after the Finnish mathematician Ernst L.
Lindelöf (1870–1946).

Theorem 2 “The Riemann hypothesis implies that of Lindelöf. More precisely,
if all non-trivial zeros of ζ(s) have real parts equal to 1

2 , then, for any ε > 0, we
have

Log(ζ(s))�ε (log |τ |)2−2σ+ε ( 1
2 < σ ≤ 1, |τ | ≥ 2).”

Here Log(r exp(iϕ)) = log r + iϕ, r > 0 and ϕ ∈ [−π, π).

Lemma 3 If F (s) is holomorphic in 0 < R1 ≤ |s| ≤ R2 then the function

M(r) = max
|s|=r

|F (s)|

is logarithmically convex on [R1, R2].
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This result is in fact due not to Hadamard but to Littlewood [5].
Finally, the following are Theorem 4.4, Corollary 4.5, Theorem 4.6. Lem-

mas 4.7 and 4.8 and Theorem 4.9 in [7].

Theorem 4 Let Θ := inf({ξ > 0 | ψ(x)− x� xξ (x ≥ 2)}). Then

Θ = sup({β > 0 | ζ(ρ) = ζ(β + iγ) = 0}) .

Corollary 5 The Riemann hypothesis is equivalent to the asymptotics that for
any ε > 0, ψ(x) = x+Oε

(
x1/2+ε

)
(x ≥ 2).

We define ψ0(x) := (ψ(x) + ψ(x−))/2 and

〈x〉 := min
p,ν≥1,pν 6=x

∣∣x− pν∣∣ .
Theorem 6 For x ≥ 2,

ψ0(x) = x−
∑
ρ

xρ

ρ
− log(2π)− log

(
1− x−2

)
/2

where we sum over non-trivial zeros ρ = β + iγ of ζ(s) so that ρ and ρ are
paired. Also, for x, T ≥ 2 one has that

ψ0(x) = x−
∑
|γ|≤T

xρ

ρ
− log(2π)− log

(
1− x−2

)
/2 +R(x, T )

where R(x, T )� (x/T ) log2(xT ) + (x log x)/(x+ T 〈x〉).

By [6], the second part of the theorem is due to H. von Koch [3] and E. Landau
[4].

For κ > 1 and T, x > 0 we define

Jκ(x, T ) =
1

2πi

∫ κ+iT

κ−iT

−ζ ′(s)xs

sζ(s)
ds .

Lemma 7 If x ≥ 2, κ = 1 + 1/ log x and T > 0 then

|ψ0(x)− Jκ(x, T )| � x log2 x

T
+

x log x

x+ T 〈x〉
.

Lemma 8 If infρ=β+iγ |γ − T | � 1/ log T then for −1 ≤ σ ≤ 2,

ζ ′(s)

ζ(s)
� log2 T .

If minn∈N0 |s+ 2m| ≥ 1
2 then for σ ≤ −1,

ζ ′(s)

ζ(s)
� log(2|s|) .
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Theorem 9 Let Θ = supρ=β+iγ β. Then for x ≥ 2,

ψ(x) = x+O
(
xΘ log2 x

)
and π(x) = li(x) +O

(
xΘ log x

)
.

Chapter II.5. The Selberg–Delange method

The following are Theorems 5.1, 5.2, 5.3 (Bateman, 1972) and 5.4 in [7].
The mentioned reference is [1].

Let Z(s) = Z(s, z) =
(
(s − 1)ζ(s)

)z
/s : D → C where D ⊂ C is open,

connected, avoids 0 and zeros of ζ, contains [1,+∞) and Z(1, z) = 1.

Theorem 10 Z(s, z) is holomorphic in the disc |s− 1| < 1 where

Z(s, z) =
∑
j≥0

1

j!
γj(z)(s− 1)j .

The coefficients γj(z) are entire function satisfying for any A, ε > 0 and |z| ≤ A
the bound

γj(z)/j!�A,ε (1 + ε)j .

Let z ∈ C, c0 > 0, δ ∈ (0, 1] and M > 0. We say that F (s) =
∑
n≥1 an/n

s

is P (z, c0, δ,M) if G(s, z) = F (s)ζ(s)−z has holomorphic extension to σ ≥
1− c0/(1 + log+ |τ |) and in this domain is bounded by

|G(s, z)| ≤M(1 + |τ |)1−δ .

If F (s) is P (z, c0, δ,M) and there is (bn) ≥ 0 such that |an| ≤ bn and
∑
n≥1 bn/n

s

is P (w, c0, δ,M) then we say that F (s) is T (z, w, c0, δ,M).

Theorem 11 Let F (s) =
∑
n≥1 an/n

s be T (z, w, c0, δ,M). For x ≥ 3, N ≥ 0,
A > 0, |z|, |w| ≤ A we have

∑
n≤x

an = x(log x)z−1

( N∑
k=0

λk(z)

(log x)k
+O

(
MRN (x)

))
with RN (x) = RN (x, c1, c2). The constants c1, c2 > 0 and in O may depend
only on c0, δ and A.

Theorem 12 There is a c > 0 such that for every x ≥ 1,

|{n ∈ N | ϕ(n) ≤ x}| = ζ(2)ζ(3)

ζ(6)
x+O

(
x exp

(
− c
√

log x
))
.

We define G(s, z) = F (s)ζ(s)−z (F (s) is the given Dirichlet series) and

λk(z) =
1

Γ(z − k)

∑
h+j=k

1

h!j!
G(h)(1, z)γj(z)

where γj(z) appear in Theorem 10.
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Theorem 13 Suppose that F (s) =
∑
n≥1 an/n

s converges for σ > 1 and that
there is a z ∈ C and an N ∈ N0 such that (w = max({1− re(z), 0}))

HN (z) :=

∞∑
n=1

(|gz(n)|/n)(log(3n))N+1+w <∞ .

Then for any z with |z| ≤ A,

∑
n≤x

= x(log x)z−1

( N∑
k=0

λk(z)

(log x)k
+OA

(
HN (z)RN (x)

))

with RN (x) = RN (x, c1, c2) where the constants c1, c2 > 0 may depend only on
A and where the coefficients λk(z), 0 ≤ k ≤ N , are defined above.

Chapter II.6. Two arithmetic applications

The following are Theorems 6.1–6.6 in [7]. Notation: ω(n) =
∑
p |n 1, A ∈ R,

x ∈ R, z ∈ C,

Theorem 14 For A > 0 there exist c1 = c1(A), c2 = c2(A) > 0 such that it
holds uniformly for x ≥ 3, |z| ≤ A and N ∈ N0 that

∑
n≤x

zω(n) = x(log x)z−1

( N∑
k=0

λk(z)

(log x)k
+OA(RN (x))

)
with

RN (x) := exp(−c1
√

log x) +
(
(c2N + 1)/ log x

)N+1

and

λk(z) :=
1

Γ(z − k)

∑
h+j=k

1

h!j!
G

(h)
1 (1, z)γj(z) ,

where the γj(z) are the entire functions defined in Theorem 10.

Theorem 15 For δ ∈ (0, 1) there exist c1 = c1(δ), c2 = c2(δ) > 0 such that it
holds uniformly for x ≥ 3, |z| ≤ 2− δ and N ∈ N0 that

∑
n≤x

zΩ(n) = x(log x)z−1

( N∑
k=0

νk(z)

(log x)k
+Oδ(RN (x))

)

where RN (x) is defined in the previous theorem and where

νk(z) :=
1

Γ(z − k)

∑
h+j=k

1

h!j!
G

(h)
2 (1, z)γj(z) .

4



Theorem 16 Let A > 0, az(n) : N → C with z ∈ C have in the disc |z| ≤ A
expansion az(n) =

∑∞
k=0 ck(n)zk. Let hj(z), j = 0, 1, . . . , N , be holomorphic in

|z| ≤ A and the quantity RN (x) (independent of z) be such that for x ≥ 3 and
|z| ≤ A we have

∑
n≤x

az(n) = x(log x)z−1

( N∑
j=0

zhj(z)

(log x)j
+OA(RN (x))

)
.

Then it holds uniformly for x ≥ 3 and 1 ≤ k ≤ A log log x that Ck(x) :=∑
n≤x ck(n) is

x

log x

( N∑
j=0

Qj,k(log log x)

(log x)j
+OA

(
(log log x)k

k!
RN (x)

))
,

where (0 ≤ j ≤ n and k ∈ N)

Qj,k(X) :=
∑

m+k=k−1

1

m!l!
h

(m)
j (0)X l .

In addition, if |h′′0(z)| ≤ B for |z| ≤ A then it holds uniformly for x ≥ 3 and
1 ≤ k ≤ A log log x that Ck(x) is

x

log x
· (log log x)k−1

(k − 1)!

(
h0

(
k − 1

log log x

)
+OA

(
(k − 1)B

(log log x)2
+

log log x

k
R0(x)

))
.

Let πk(x) = |{n ≤ x | ω(n) = k}| and Nk(x) = |{n ≤ x | Ω(n) = k}|. Let

λ(z) =
1

Γ(z + 1

∏
p

(1 + z/(p− 1))(1− 1/p)z

and

ν(z) =
1

Γ(z + 1

∏
p

(1− z/)−1(1− 1/p)z .

Theorem 17 For A > 0 there exist c1 = c1(A), c2 = c2(A) > 0 such that it
holds uniformly for x ≥ 3, 1 ≤ k ≤ A log log x and N ∈ N0 that

πk(x) =
x

log x

( N∑
j=0

Pj,k(log log x)

(log x)j
+O

(
(log log x)k

k!
RN (x)

))
where Pj,k ∈ R[X] has degree ≤ k − 1 and RN (x) is defined in Theorem 14. In
particular, we have

P0,k(x) =
∑

m+l=k−1

1

m!l!
λ(m)(0)X l .

Moreover we have under the same assumptions that

πk(x) =
x

log x
· (log log x)k−1

(k − 1)!

(
λ
(
(k − 1)/ log log x

)
+O

(
k/(log log x)2

))
.
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Theorem 18 For δ ∈ (0, 1) there exist c1 = c1(δ), c2 = c2(δ) > 0 such that it
holds uniformly for x ≥ 3, 1 ≤ k ≤ (2− δ) log log x and N ∈ N0 that

Nk(x) =
x

log x

( N∑
j=0

Qj,k(log log x)

(log x)j
+O

(
(log log x)k

k!
RN (x)

))

where Qj,k ∈ R[X] has degree ≤ k − 1 and RN (x) is defined in Theorem 14. In
particular, we have

Q0,k(x) =
∑

m+l=k−1

1

m!l!
ν(m)(0)X l .

Moreover we have under the same assumptions that

Nk(x) =
x

log x
· (log log x)k−1

(k − 1)!

(
ν
(
(k − 1)/ log log x

)
+O

(
k/(log log x)2

))
.

Theorem 19 Let δ ∈ (0, 1), A > 0 and C = 1
4

∏
p>2(1 + 1

p(p−2) ) ≈ 0.378694.

Then it holds uniformly for x ≥ 3 and (2 + δ) log log x ≤ k ≤ A log log x that

Nk(x) =
Cx log x

2k
(
1 +O

(
(log x)−δ

2/5
))
.

Finally, there are Theorems 6.7 and 6.8 in [7]; τ(n) is the number of divisors
of n. Further, for u ∈ [0, 1] we define

Fn(u) =
1

τ(n)

∑
d |n
d≤nu

1 .

Theorem 20 It holds uniformly for x ≥ 2 and u ∈ [0, 1] that

1

x

∑
n≤x

Fn(u) =
2

π
arcsin

√
u+O

(
1/
√

log x
)
.

This theorem follows from the next one.

Theorem 21 Let h =
∏
p

√
p(p− 1) log(1/(1− p)) ≈ 0.969. It holds uniformly

for x ≥ 2 and d ∈ N that∑
n≤x

1

τ(nd)
=

hx√
π log x

(
g(d) +O

(
(3/4)ω(d)/ log x

))
where g : N→ R satisfies that

∑
d≤x g(d) = x

h
√
π log x

(1 +O(1/ log x)).

The last two theorems were obtained in [2].
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